
ar
X

iv
:1

20
5.

49
28

v1
 [

cs
.S

E
]

22
 M

ay
 2

01
2

Grey-box GUI Testing:
Efficient Generation of Event Sequences

Stephan Arlt
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg

arlt@informatik.uni-
freiburg.de

Cristiano Bertolini
Informatics Center

Federal University of
Pernambuco, Brazil

cbertolini@cin.ufpe.br

Martin Schäf
International Institute for

Software Technology
United Nations University,

Macau
schaef@iist.unu.edu

Ishan Banerjee
Dept. of Computer Science

University of Maryland
ishan@cs.umd.edu

Atif M. Memon
Dept. of Computer Science

University of Maryland
atif@cs.umd.edu

ABSTRACT
Graphical user interfaces (GUIs) encode, as event sequences,
potentially unbounded ways to interact with software. Dur-
ing testing it becomes necessary to effectively sample the
GUI’s event space. Ideally, for increasing the efficiency and
effectiveness of GUI testing, one would like to sample the
GUI’s event space by only generating sequences that (1)
are allowed by the GUI’s structure, and (2) chain together
only those events that have data dependencies between their
event handlers. We propose a new model, called an event-
dependency graph (EDG) of the GUI that captures data
dependencies between the code of event handlers. We de-
velop a mapping between an EDG and an existing black-box
model of the GUI’s structure, called an event-flow graph
(EFG). We automate the EDG construction in a tool that
analyzes the bytecode of each event handler. We evaluate
our “grey-box”approach using four open-source applications
and compare it with the EFG approach. Our results show
that using the EDG reduces the number of event sequences
with respect to the EFG, while still achieving at least the
same coverage. Furthermore, we are able to detect 2 new
bugs in the subject applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
H.1.2 [Models and Principles]: User/Machine Systems

General Terms
Software Testing, System Testing;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’2012 Minneapolis, Minnesota USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
GUI Testing, Black-box, Grey-box, Test Automation;

1. INTRODUCTION
A particular challenge for system testing of software appli-

cations that have a graphical user interface (GUI) front-end
is that the total number of all possible sequences of user
actions is prohibitively large (in principle, possibly infinite),
even for relatively small applications. A reasonably sized
and effective sample needs to be selected for testing. GUI
testing, i.e., system testing the software through its GUI
is important, because most of today’s software applications
provide services to end-users via a GUI.

Each user interaction, e.g., pressing a key on the keyboard
or clicking a mouse button, triggers an event in the appli-
cation. An application responds to an event by executing a
piece of code called the event handler associated with the
event. In GUI testing, a sequence of events is an integral
part of a GUI test case. In particular, a GUI test case con-
sist of (1) a precondition that must hold before executing a
sequence of events; (2) the actual sequence of events to be
executed; (3) possible input-data to the GUI; and (4) the
expected results of the test case (the oracle).

There has been extensive recent work on developing auto-
mated model-based GUI testing techniques. Current tech-
niques (e.g., [4, 27, 10, 5, 28, 29, 12, 3]) use a black-box
approach to generate test cases. Further, they use a graph-
based model to represent the possible sequences of events
with the GUI. Each node in these graph-based models repre-
sent an event, which is an interaction with one widget (e.g.,
selecting an element in a listbox). A path in this graph-
based model corresponds to a sequence of events with the
GUI; this sequence is used in the GUI test case.

In this paper, we propose and evaluate a grey-box [14] ap-
proach for automated GUI testing. The underlying mecha-
nism for the grey-box approach is a new event-dependency
graph (EDG) model that captures data dependencies be-
tween event-handlers in the GUI code. More specifically,
an EDG is a weighted directed graph in which each node
represents an event in the GUI. An edge from the node rep-
resenting event e1 to a node representing event e2 shows
that there is a data dependency from e1’s event handler to

http://arxiv.org/abs/1205.4928v1

e2’s event handler. The weight of the edge represents the
number of fields that flow from e1’s event handler to e2’s
event handler. Abstract event sequences are generated by
using a minimax search [24] on the EDG. An abstract event
sequence is a path through the EDG. Because of the na-
ture of the EDG model, these abstract event sequence chain
together only those events that have data dependencies be-
tween their event handlers. Further, an abstract event se-
quence does not necessarily mean that their events are al-
lowed one after the other by the GUI’s structure. For exam-
ple, e1 may be an event in the MainWindow, whereas event
e2 may be in the FileOpen dialog. An intermediate event
that opens the FileOpen dialog is needed before e2. Hence
abstract event sequences, which are paths in the EDG, may
not be executable, which is why we called them “abstract”
event sequences above. To convert abstract event sequences
into “executable” event sequences, a mapping is maintained
between the EDG and the GUI’s workflow, represented us-
ing an existing event-flow graph (EFG) black-box model of
the GUI [20]. After applying the mapping, we obtain event
sequences that (1) are allowed by the GUI’s structure, and
(2) chain together only those events that have data depen-
dencies between their event handlers. By embedding these
executable event sequences into GUI test cases, a compact
test suite is formed, which efficiently samples GUI event
space.

We evaluate the grey-box approach on four open-source
applications: TerpWord, Rachota, FreeMind and JabRef.
The results show a dramatic increase in the efficiency of
the event sequence generation and execution. Further, one
new bug in Rachota, and one bug in JabRef is revealed.

The paper is organized as follows: Section 2 provides the
background of model-based GUI testing using a black-box
approach. Section 3 introduces our grey-box GUI testing
approach, which incorporates an event-flow graph (EFG)
and an event-dependency graph (EDG) to generate efficient
event sequences. Section 4 provides an overview of the im-
plementation, which we use to evaluate the approach (Sec-
tions 5 through 6). Section 8 summarizes the related work,
and finally, Section 9 presents the conclusions and future
work.

2. BACKGROUND
When testing a system through its GUI, only a finite set

of user interactions can be tested. The choice of this set
is vital to the success of the testing procedure. A common
way to sample the possibly infinite set of sequences is to
use a graph-based model of the GUI, called event-flow graph
(EFG).

An event-flow graph, EFG = 〈E, I, δ〉, for an application
is a directed graph. Each node e ∈ E is an event in the GUI.
An event is a response of the system to a user interaction
(a click on a button triggers an onClick event). Each event
in I ⊆ E is an initial event which can be executed directly
after the application launched. An edge (e, e′) ∈ δ between
to events e, e′ ∈ E states that the event e′ can be executed
immediately after the event e. Conversely, if there is no
edge between events e, e′ then event e′ cannot be executed
immediately after event e. This may be owing to structural
characteristics of the GUI. For example, executing e may
close the window containing e′. The EFG can be obtained
automatically from the application using a GUI Ripper [21].
Section 4.2 outlines the construction of the EFG, its benefits

and limitations.
Figure 1(a) shows the GUI of an example application. The

MainWindow appears when the application is launched. A
modal dialog Dialog appears when the button e3 is clicked.
It is closed when the button e4 is clicked.

(a) GUI

e1

e2

e3

e4

(b) EFG

Figure 1: An Example Application.

Figure 1(b) shows the corresponding EFG of the example
application, which consists of 4 events (e1 to e4), where the
events e1, e2, e3 represent initial events. The execution event
e3 opens the modal dialog, s.t. e4 becomes accessible. The
event e4 closes the Dialog and thus, after e4 is executed, it
becomes inaccessible again.

An event sequence in an EFG is a sequence of events which
represents a sequence of user interactions with the GUI. An
executable event sequence s = e0, . . . , en is a sequence of
events which starts with an initial event e0 ∈ I .

Definition 1. Given an event-flow graph EFG = 〈E, I, δ〉.
An executable event sequence is a sequence of events s =
e0, . . . , en, such that e0 ∈ I and (ei, ei+1) ∈ δ for all 0 ≤ i <

n.

From the EFG, sequences of events of a particular length
are sampled. For instance, using a sequence length of 1 leads
to the following event sequences: s1 = 〈e1〉, s2 = 〈e2〉, s3 =
〈e3〉, and s4 = 〈e3, e4〉. Note that sequence s4 has length
2. This is because e4 cannot be tested with a sequence of
length 1, therefore additional reaching steps are introduced
to connect e4 to an initial event of the EFG.

Although event sequences of length 1 provide a compact
set, it is certainly not sufficient for bug detection, since pairs
and triples of events are not considered. However, increas-
ing the length of the event sequences does not scale, as the
number of generated sequences grows exponentially (Table 1
shows all event sequences generated with a length of 2 for
the EFG in Figure 1(b)). That is, a better technique for
sampling the EFG is needed in order to generate event
sequences with a reasonable length. In the following we
present a technique to efficiently generate a compact set of
relevant event sequences of arbitrary length.

3. GREY-BOX GUI TESTING
An EFG is useful to generate feasible event sequences.

However, when generating longer event sequences the num-
ber sequences becomes prohibitively large and a more so-
phisticated sampling strategy is needed.

s1 = 〈e1, e1〉 s5 = 〈e2, e2〉 s9 = 〈e3, e4, e2〉
s2 = 〈e1, e2〉 s6 = 〈e2, e3〉 s10 = 〈e3, e4, e3〉
s3 = 〈e1, e3〉 s7 = 〈e3, e4〉
s4 = 〈e2, e1〉 s8 = 〈e3, e4, e1〉

Table 1: Generated Event Sequences using an EFG

Sequences Length of 2

To efficiently sample the event sequences generated from
an EFG, we propose to incorporate additional information
from the source code of the event handlers. Knowing which
fields are modified and which are read upon the execution of
an event makes it possible to prioritize sequences of events
where the event handlers influence each other and to avoid
those sequences, where events are completely independent
(e.g., a Copy and a Help button in a word processor).

1 class MainWindow {
2 boolean enabled = true ;
3 String text = "Hello World";
4

5 void e1() {
6 enabled = false;
7 }
8

9 void e2() {
10 text = text .toLowerCase ();
11 }
12

13 void e3() {
14 if (enabled)
15 openDialog (this);
16 else
17 Log.write(text);
18 }
19 }
20

21 class Dialog {
22 MainWindow mainWindow ;
23

24 void e4() {
25 mainWindow .text = null ;
26 closeDialog ();
27 }
28 }

Listing 1: Java Snippet of the Example Event

Handlers.

Listing 1 shows the Java snippet of the example appli-
cation, especially of their 4 event handlers. The example
application consists of the classes MainWindow and Dialog,
where MainWindow contains three event handlers (e1, e2, and
e3), and Dialog the event handler e4. Event handler e1 sets
the field enabled to false, and e2 converts the string of field
text to lower case. In e3, the field enabled is evaluated in a
conditional. If enabled is true, the dialog is opened and the
current instance this of MainWindow is passed to the dialog.
If enabled is false, the content of text is written to a log.
Event handler e4 sets the field text of the current instance
of MainWindow to null and closes the dialog.

The execution of the event sequence 〈e3, e4, e2〉 throws a
NullPointerException, because the field text in e2 was
set to null in e4. This example application is a simplified
version of a bug which we found in real world applications.

Without considering the application’s source code, in the
worst case, all sequences of length 2 must be generated and

executed to detect the bug. For our example, this leads to 10
event sequences in total. When analyzing the source code
of an application, we observe that certain event handlers
share a data dependency, which helps to prefer or to neglect
certain events from event sequence generation: Event e1

writes field enabled which is read in e3; e4 writes field text,
which is read in e2. Further, there is no data dependency
between e1 and e2. To utilize these data dependencies for a
more efficient event sequence generation, we introduce a new
graph-based mode called event-dependency graph (EDG).

3.1 Event-dependency Graph
An event-dependency graph EDG = 〈E,ψ〉 is a directed

graph where, like in the EFG, each node in E represents
a GUI event. Note that in contrast to the EFG, an EDG
does not have initial events since it represents data depen-
dency and not control-flow. An edge (e, w, e′) ∈ ψ is labeled
with a weight w. The weight w ∈ N

+ indicates the data
dependency between e and e′.

The edge value (w) is computed as follows: All fields which
are written in the event handler of e are collected in a set
W . All fields that are read in the event handler of e′ are
collected in a set R. For each event handler, we recursively
follow potential method calls, collect these fields, and place
them in set W and R respectively. The edge from e to e′ is
labeled with the size of the intersection of these set |R∩W |.

A path π = ei . . . ej in the EDG represents a sequence
of events, where the execution of one event always changes
fields which are read by the succeeding event. However, it
is not necessary that two events in question can be executed
consecutively in the GUI. The benefit of these sequences
is that the execution of one event might change relevant
fields for the execution of its successor and cause this one
to execute other code fragments. This can lead to a higher
code coverage and further reduce the amount of code that
is tested redundantly. Since the EDG has no initial events,
and succeeding events on a path in the EDG might not be
directly executable in the GUI, we refer to an EDG path as
an abstract event sequence.

Definition 2. Given an event-dependency graph EDG =
〈E,ψ〉. An abstract event sequence is a sequence of events
π = ei, . . . , ej, such that (ek, ek+1) ∈ δ for all i ≤ k < j.

Algorithm 1: Construction of the EDG.

Input: P : Program,
〈E, I, δ〉 : Event-flow graph

Output: 〈E′, ψ〉 : Event-dependency graph
1 begin

2 E′ = E
3 W = {},R = {}
4 foreach (e in E) do
5 W = getFieldsWritten(e, P)
6 foreach (e′ in E) do

7 R = getFieldsRead(e′, P)
8 if ((R ∩W) 6= ∅) then

9 w = |R ∩W |
10 ψ = ψ ∪ (e, w, e′)
11 end if

12 end foreach

13 end foreach

14 end

Algorithm 1 shows how the EDG is constructed. The

algorithm takes the program P and a corresponding event-
flow graph EFG as input, and returns an event-dependency
graph EDG. Since both EFG, and EDG refer to the same
set of events, we copy E to E′ (line 2). Then, we iterate
over all pairs of events e, e′ (line 4).

We call the method getFieldsWritten which returns a
set W of all fields that are written during the execution of
the event handler of e (line 5). Then, we call the method
getFieldsRead that returns a set R of all fields which are
read during the execution of the event handler of e′ (line 7).
If the intersection of R and W is not empty (line 8), we
add a new edge to the edge which is labeled with the size of
the intersection (line 10). Note that our algorithm does not
create an edge between events if the intersection of R and
W is empty. In this case, there is no data dependency be-
tween both events and thus, they are not directly connected
(otherwise the EDG would be fully connected).

3.2 Event Sequence Generation
Our event sequence generation is built out of two con-

secutive steps. First, we select potentially interesting se-
quences of events, called abstract event sequence, from the
EDG using Algorithm 2. Second, we use the abstract event
sequences to generate executable event sequences from the
EFG using Algorithm 3.

Algorithm 2 takes an EDG and two parameters as input:
len gives the maximum length of the abstract event sequence
to be generated, and top gives the maximum number for
abstract event sequences to be generated for each event. The
algorithm returns a set Π of abstract event sequences. These
are later used for generating executable event sequences.

Algorithm 2: Generating abstract event sequences.

Input: 〈E,ψ〉 : Event-dependency graph,
len : max length of abstract event sequence,
top : max number of abstract event sequences per event

Output: Π : set of abstract event sequences
1 begin

2 Sequences of events Π = {}
3 foreach Event e ∈ E do

4 Sequences of events Π′ = {}
5 while |Π′| < top do
6 Sequence of events π = e
7 Event e′ = e
8 while |π| < len ∧ post(e′) 6= {} do

9 e′ = bestSucc(e′,Π)
10 π = π • e′

11 end while

12 if π ∈ Π then break
13 Π′ = Π′ ∪ {π}
14 end while

15 Π = Π ∪ Π′

16 end foreach
17 return Π
18 end

For each event e ∈ E, a new set Π′ of abstract event
sequences is created, which initially is empty (line 4). As
long as the size of this set is smaller than top (line 5), we
add further abstract event sequences (line 6). Each such
abstract event sequence π initially contains only e (as we are
looking for sequences of events that start in e). While the
length of π is smaller than len (line 8), and the last event of
π still has successors, the method bestSucc is finds the best
possible successor and adds it to the end of π (line 10). The

method bestSucc uses a minimax strategy to identify the
best successor, unless this successor leads us on a path which
is already in Π′. In this case, bestSucc returns the second
best choice. We use the minimax strategy to minimize the
selection of events with low dependencies.

The loop in line 5 terminates either, if it has collected top
abstract event sequences that start with the event e or, if the
algorithm detects a path twice (line 12). In that case, best-
Succ cannot find a suitable path that has not been visited
so far.

For each abstract event sequence in Π, we want to gen-
erate an executable event sequence. However, the abstract
event sequences are not necessarily executable, as consecu-
tive events in the EDG might have no direct connection in
the EFG. Therefore, we use Algorithm 3 to find one EFG
path for each of these abstract event sequences, which starts
in an initial event of the EFG. Note that the only case, where
such a path does not exist is, if the application is terminated
between the execution of two events. In that case, we split
the sequence into two sequences that later on are tested im-
mediately after each other.

Algorithm 3: Conversion from abstract event sequences
to executable event sequences.

Input: 〈E, I, δ〉 : Event-flow graph,
Π : set of abstract event sequences

Output: S : Set of executable event sequences
1 begin

2 Sequences of events S = {}
3 foreach Sequence ei, . . . , ej in Π do

4 pick e0 from I
5 Path s = shortestPath(e0, ei)
6 for k = i to j − 1 do

7 s = s • shortestPath(ek , ek+1)
8 end for

9 S = S ∪ {s}
10 end foreach
11 return S

12 end

Algorithm 3 takes an EFG and the set Π of abstract event
sequences computed by Algorithm 2 as input, and returns
a set of executable event sequences, which are paths in the
EFG and start in an initial event. For each sequence of
events ei . . . ej in Π (line 3), a path s (line 5) is created. We
pick the shortest path from an event e0 ∈ I to ei, and then
iterate over the events in the abstract event sequences and
always add the shortest path between succeeding events to
s (line 7). Then we add s to the set S (line 9). Since paths
in S start in an initial event of the EFG, it can immediately
executed as a GUI event sequence.

Infeasible event sequences are only generated if the EFG is
not complete (e.g., because it was generated automatically)
or if the data dependency analysis is imprecise. As these are
implementation issues, we refer to Section 4 for details.

Figure 2 shows the EDG of our example application. If we
apply Algorithms 2 with len = 2 and top = ∞, Algorithm 3
outputs the following executable event sequences: e1 writes
into e3, which results in s1 = 〈e1, e3〉. Since the field text

is both read and written in e2, s2 = 〈e2, e2〉 is generated. e3
does not write into any other event, and thus, is considered
in a single event sequence s3 = 〈e3〉. Finally, e4 writes
into e2, which leads to s4 = 〈e3, e4, e2〉. Because e4 does

not represent an initial event, the intermediate event e3 is
inserted.

e1 e2 e3 e4

|{enabled}|

|{text}|

|{text}|

Figure 2: EDG of the Example Application.

Note that it is not possible to combine EFG and an EDG
into one graph-based model: On the one hand, it is pos-
sible to label a directed edge (e1, e2) in the EFG with the
weight of the data dependency (e.g., zero in case of a non-
dependency). On the other hand, a directed weighted edge
(e3, e4) has to be added to the EFG, if a data dependency is
detected. However, the added edge may represent an event
sequence, which is not allowed in the GUI.

4. IMPLEMENTATION
We integrate an implementation of the grey-box approach

into GUITAR1, which is a open source, model-based system
for automated GUI testing. Figure 3 presents an overview
of the GUITAR system. The grey-highlighted steps in the
overview emphasize our extensions made to the GUITAR
system. Considering the grey-box approach, testing an ap-
plication using the GUITAR system consists of the following
steps:

GUI

Bytecode

(1) GUI Ripper

(2) EFG Construction

(3) EDG Construction

(4) Event Sequence Generator

(5) Replayer

AUT

Figure 3: Overview of the GUITAR System, includ-

ing the Grey-box Extensions.

4.1 GUI Ripper
In the first step, the GUI Ripper executes the AUT and

records the GUI structure. A GUI structure consists of wid-
gets (e.g., windows, buttons, and text fields) and their cor-
responding properties (e.g., enabled/disabled, height, and
width). While executing the AUT, the GUI ripper enumer-
ates all widgets of the main window using reflection, and
stores the obtained information in the GUI structure. For
each found widget (e.g., a button), GUI ripper triggers the
assigned event (i.e., a button click). For instance, if the click
on the button opens a new window, GUI ripper continues
to record the GUI structure of that recently opened window
and so on. The process stops, if all found windows have been
explored. Since each GUI represents a hierarchical structure,
a depth-first search is performed on the AUT’s GUI. For the
grey-box approach, we enhanced the GUI ripper, such that,

1http://guitar.sourceforge.net/

for each widget the event handlers assigned to this widget
are additionally stored in the GUI structure. This informa-
tion is needed during the analysis of the bytecode which is
performed as a part of the EDG construction.

4.2 EFG Construction
The GUI structure recorded by the Ripper serves as input

to the EFG Construction, which automatically constructs
the EFG that is used for the test case generation. While the
GUI structure contains information about widgets and their
properties, the EFG represents an abstract view which only
contains the events and their following events. The EFG
construction iterates over all windows in the GUI structure
and creates a single EFG for each window. Later, these
single EFGs are connected to one EFG representing the en-
tire application. For each window in the GUI structure, the
EFG construction creates an event for the window itself and
for each containing widget. Then, the EFG construction
connects events of the window based on their widget prop-
erties. For instance, if an event e1 represents a window, and
an event e2 an enabled button in this window, then an edge
from e1 to e2 is created in the EFG. Assume, that e2 is as-
sociated to a disabled button, then no edge between e1 and
e2 is created, because the event can not be triggered if the
window appears. For each window an EFG is created and
the event which opens/accesses other window is connected
with all initial events of this other window. The details of
the EFG construction can be found in [21].

4.2.1 Short Assessment of the EFG Construction
Since the GUI ripper performs a dynamic analysis of the

GUI, it cannot be guaranteed to find all widgets of the
AUT [20]. For instance, the AUT itself might be hostile or
even faulty, e.g., if the GUI opens a new window in the back-
ground, the GUI ripper will not be able to find it, and thus,
it cannot be considered during EFG construction. Further,
the fact if a widget is enabled or disabled during ripping
may strongly depends on the environment (e.g., user set-
tings). These problems tend to be of technical nature and
their severity might differ depending on the used platform.

Instead of executing the AUT in GUI ripping, it is in
general possible to create the GUI structure and the EFG
respectively via static analysis. However, a static analysis
technique must be tailored to comprehend how a GUI is
created. While there exist different code styles for creating
GUI’s, a static technique might find its limitations even if
a GUI is defined outside the source code of the application,
e.g., in XML files.

Note that the EFG of an AUT is not complete and repre-
sents an approximation of the AUT’s event-flow. It cannot
be guaranteed that a path in the constructed EFG is actu-
ally executable on the AUT’s GUI. For instance, if a click
on a button changes the entire parent window (e.g., remov-
ing or adding widgets), then the GUI ripper and the EFG
construction respectively does not recognize these changes
made to the GUI. A test engineer has to improve manually
the EFG according to the actual behavior of the AUT.

4.3 EDG Construction
In order to construct an EDG, we perform a shallow byte-

code [16] analysis of the AUT to obtain data dependency
between events. In particular, the bytecode analysis records,
which fields are read and written by each event handler, that

is, the functions getFieldsRead and getFieldsWritten in
Algorithm 1. Hence, the Java bytecode and the constructed
EFG of the AUT serve as input to the EDG Construction.
For our bytecode analysis, we use the the ASM framework2.
Other frameworks such as Soot3 could be used equally well.

4.3.1 Bytecode Analysis
Listing 2 shows the bytecode of the event handler e1 and

e4 from the example application in Listing 1. In bytecode,
fields are read by the instruction GETFIELD, and written by
PUTFIELD. Further, methods are called using the INVOKE4

instruction. In line 2, a constant value of 0 is first pushed
to the stack, and then assigned to field enabled in line 3.
In line 6 and 7 respectively, field mainWindow and a con-
stant value of null are pushed to the stack. Field text of
mainWindow is then assigned with the value null. Finally in
line 9, method closeDialog of is called.

1 void e1()V

2 ICONST_0
3 PUTFIELD MainWindow.enabled : Z

4

5 void e4()V
6 GETFIELD Dialog.mainWindow : LMainWindow;

7 ACONST_NULL
8 PUTFIELD MainWindow.text : Ljava/lang/String;

9 INVOKEVIRTUAL Dialog.closeDialog()V

Listing 2: Bytecode Snippet of the Example

Event Handlers.

The EDG construction is preceded by one step: the cre-
ation of a class database (ClassDB). The ClassDB models
the dependencies between fields, methods and classes of the
AUT. During EDG construction, a request to the ClassDB
determines the data dependency of two given event handlers.
Figure 4 shows the ER model of the ClassDB.

In order to build a ClassDB, the bytecode analysis starts
with visiting all classes of the AUT, since classes contain
both methods and fields. In our implementation, it is possi-
ble to provide a scope (a set of JAR archives) to restrict the
set of classes to be analyzed. For instance, only application
classes are supposed to analyze and third-party libraries are
discarded. Each class is stored in table Class of the ClassDB
and is identified by its fully-qualified name, to avoid colli-
sions if a certain class name is multiply used.

Then, the bytecode analysis visits all methods of each
class. Note that it is important to inspect all methods,
and not only those which are declared as event handlers.
Moreover, it is necessary to follow all methods calls in each
method, which can be detected by visiting the INVOKE in-
structions of the bytecode. For instance, method e4 in List-
ing 2 calls method closeDialog, which may write further
fields. Thus, there exist a recursive relationship calls be-
tween methods. Each method is stored in table Method in
the ClassDB and is associated to its class.

For each method, the bytecode analysis fetches all fields
that are read and written. This is can be detected by visiting
the GETSTATIC and PUTSTATIC instructions of the bytecode.
Read and written fields are stored in table Field, where each
field is associated to its method.

2http://asm.ow2.org/
3http://www.sable.mcgill.ca/soot/
4INVOKEVIRTUAL, INVOKESTATIC, INVOKESPECIAL

Class

Method

Field

contains

contains

calls

reads

writes

1

*

1

* *

*
*

*

*

*

Figure 4: Simplified ER Model of the ClassDB.

Once all classes, methods and fields are visited and mapped
in the ClassDB, Algorithm 1 uses this information to con-
struct the EDG. For instance, if the algorithm requests the
getFieldsRead and getFieldsWritten for a certain event e,
the ClassDB aggregates all called method within the event
handler of e. For each called method, and for the event
handler itself, the read and written fields are collected and
returned to the EDG construction. In this way, a possible
data dependency between events is captured. Further, due
to this shallow analysis of the bytecode, the computation
time for building the ClassDB is low, even for big applica-
tions.

4.3.2 Short Assessment of the EDG Construction
Java distinguishes between instance fields and class fields,

which are treated the same way in our bytecode analysis.
That is, not only class fields are mapped to a certain class
in the ClassDB, but also instance fields. Moreover, instance
fields are not mapped to their objects. Further, the byte-
code analysis does not distinguish between calls of instance
methods and class methods and thus, is not reliable regard-
ing polymorphism.

The bytecode analysis does not consider potential aliasing
of fields or potentially infeasible control-flow. Hence, the
resulting EDG is only an approximation of the actual data
dependencies between fields. However, we are interested in
prioritizing events, so a cheap bytecode analysis in terms of
computation time is sufficient, while leaving room for further
in-depth analyses.

4.4 Event Sequence Generator
The Event Sequence Generator takes as input an EFG and

an EDG from the application. In this step, the Algorithms 2
and 3 are applied. The output is a set of executable event se-
quences, where each executable event sequence is embedded
into one GUI test case.

4.5 Replayer
The Replayer is responsible for executing GUI test cases.

A test case is considered as a precondition, an executable
event sequence, input-data and an oracle. Figure 5 presents
an overview of the Replayer process. It consists of the fol-
lowing steps: (1) it selects an executable event sequence; (2)
it prepares a test case, which ensures that the precondition
of the test case holds; (3) it executes the test case on the
AUT, which performs the executable event sequence; (4) it
restarts the AUT, which covers the events exit and launch

of the AUT; (5) it evaluates, whether the test case has failed
or passed.

5. EXPERIMENT
We compare our grey-box approach with the black-box

approach by studying efficiency and effectiveness. Efficiency

(1) Select Event Sequence

(2) Prepare Test Case

(3) Execute Test Case(4) Restart AUT

(5) Evaluate Results

Figure 5: Overview of the Replayer Process.

is considered as the computation time for generating the
abstract event sequences(in minutes) and the time for test
case execution (in hours). Effectiveness is considered as the
line and branch coverage (in percentage). We define two
research questions. Q1: Is the grey-box approach efficient
in terms of mean time to execute the test cases? And Q2:
Is the grey-box approach effective in terms of mean code-
coverage?

5.1 Setup of the Experiment
We evaluate the grey-box approach using four Java-based

open source applications: TerpWord 4.0 is a word proces-
sor, Rachota 2.3 is a time recording system. FreeMind 0.9.0
creates mind maps, and JabRef 2.7 manages bibliographic
references. It is important to observe that we use stable
versions of all applications where bugs are rarely found. We
choose these applications to consider both small and large
applications (in terms of # of classes), and to cover different
code styles. Table 2 shows some relevant statistics of the Ap-
plications Under Test (AUTs): the number of lines of code
(LOC), number of classes (Classes), number of GUI events
(Events), number of edges in the EFG (EFG edges), and
number of edges in the EDG (EDG edges).

TerpWord Rachota FreeMind JabRef

LOC 6,842 13,750 40,922 68,468
Classes 215 468 1,362 4,027
Events 159 154 959 776
EFG edges 4,229 1,493 105,986 100,211
EDG edges 4,100 2,172 25,248 10,034

Table 2: Experiment setup.

Table 3 shows six different configuration used to test the
four applications. For brevity of exposure we use identifiers
(ID) to refer to these configurations.

The black-box approach presented in [20] is used in Con-
figuration A, B, and C. These configurations are the base-
line of our experiment. Configuration A generates one event
sequence (length = 1) for each event in the EFG. Configura-
tion B (length = 2) generates event sequences for each pair
of events (ei, ej), that have a direct connection in the EFG.
Configuration C (length = 3) generates event sequences for
each triple of events (ei, ej , ek), where {ei, ej} and {ej , ek}
are direct neighbors in the EFG.

The grey-box approach is used in Configuration D, E.
Configuration D considers abstract event sequences of length
2 and does not limit the number of abstract event sequences
generated per event. Configurations E and F have abstract
event sequences of length 3. Here, the number of generated
abstract event sequences is limited to 50 and 100 respec-
tively. This is because each event in the applications Terp-
Word and FreeMind has about 25 dependent events. That

Black-box Approach Grey-box Approach
ID Configuration ID Configuration

A len= 1 D len = 2
B len= 2 E len = 3; top = 50
C len= 3 F len = 3; top = 100

Table 3: Experiment configurations.

is, the number of abstract event sequences of this size is al-
ready large. In particular, we are interested in knowing, if
doubling the number of generated abstract event sequences
from 50 to 100 will have a significant impact on the coverage.

Each generated executable event sequence is embedded in
a GUI test case, which is executed by the Replayer. The pre-
condition of each test case states, that all user-settings have
to be deleted before performing the event sequence on the
AUT. As an oracle, a crash monitor is used, which records
any exception found during the test case execution.

The test cases are executed on 10 Linux machines with a 4
x 2.0 GHz CPU, 4 GB RAM, 500 GB HDD. The experiment
was executed two times with the same setup (e.g., the same
seed for input-data) to ensure that the obtained results are
reproducible. The total number of test cases executed is
6,089,403.

5.2 Experimental Results
Table 4 shows a summary of the experimental results. For

each configuration we report the number of event sequences
(# es), broken event sequences (# broken es), total gener-
ation time (gen t (m)), generation time per event sequence
(gen t per es (s)), total execution time (exec t (h)), exe-
cution time per test case (exec t per tc (s)), line coverage
(line cov.) and branch coverage (branch cov.). The event se-
quence generation time is expressed in minutes and the test
case execution time in hours. The generation time per event
sequence and execution time per test case are expressed in
seconds.

Observation 1: Configuration A has the smallest num-
ber of event sequences and the lowest coverage. The num-
ber of event sequences corresponds to the number of events,
which means that each event is only tested once. However,
we believe that this approach is useful for smoke tests [23],
since the generation and execution time is also the lowest
amongst all the configurations.

Observation 2: As expected, Configuration D is signif-
icantly more efficient than Configuration B on the applica-
tions TerpWord, FreeMind, and JabRef. For these appli-
cations, both configurations have the same line and branch
coverage. However, Configuration D uses significantly fewer
event sequences and consumes less time than Configuration
B. Thus, the grey-box approach generates more efficient
event sequences than the black-box approach for these three
applications.

Observation 3: For Rachota, Configuration D attains a
higher coverage than Configuration B. However, more event
sequences are generated in Configuration D, and the execu-
tion consumes more time. This is likely owing to the fact
that in Rachota, the EDG has significantly more edges than
the EFG.

Observation 4: The number of generated event sequences
of JabRef in Configuration C exceeds 5 million. Compar-
ing to Configuration B, the obtained coverage for JabRef is

TerpWord Rachota FreeMind JabRef

Configuration A (Black-Box Approach)
es 159 154 959 776
broken es 0 0 5 5
gen t (m) 0.3 0.28 1.10 1.08
gen t per es (s) 0.12 0.12 0.12 0.12
exec t (h) 0.50 0.58 4.58 4.22
exec t per tc (s) 12 15 30 28
line cov. (%) 41 60 50 51
branch cov. (%) 22 31 36 22

Configuration B (Black-Box Approach)
es 3,307 1,310 11,396 43,017
broken es 0 0 57 258
gen t (m) 6.62 2.62 24.68 93.2
gen t per es (s) 0.12 0.12 0.13 0.13
exec t (h) 11.94 5.82 98.13 358.48
exec t per tc (s) 13 16 31 30
line cov. (%) 55 61 53 54
branch cov. (%) 36 34 37 26

Configuration C (Black-Box Approach)
es 79,949 20,221 489,250 5,360,366
broken es 0 0 2,446 32,162
gen t (m) 159.90 40.44 1,223.13 15,187.70
gen t per es (s) 0.12 0.12 0.15 0.17
exec t (h) 310.92 95.49 4,348.89 44,669.72
exec t per tc (s) 14 17 32 30
line cov. (%) 55 62 53 55
branch cov. (%) 36 36 38 27

Configuration D (Grey-Box Approach)
es 2,695 1,407 9,944 5,860
broken es 0 0 63 83
gen t (m) 7.63 4.22 43.08 20.52
gen t per es (s) 0.17 0.18 0.26 0.21
exec t (h) 9.73 6.25 88.39 48.83
exec t per tc (s) 13 16 32 30
line cov. (%) 55 62 53 54
branch cov. (%) 36 36 37 26

Configuration E (Grey-Box Approach)
es 2,068 1,781 7,113 9,595
broken es 0 0 45 135
gen t (m) 6.55 5.93 35.57 36.78
gen t per es (s) 0.19 0.2 0.3 0.23
exec t (h) 9.19 8.91 65.20 90.62
exec t per tc (s) 16 18 33 34
line cov. (%) 47 62 53 55
branch cov. (%) 26 36 38 27

Configuration F (Grey-Box Approach)
es 4,036 3,307 12,904 18,497
broken es 0 0 81 261
gen t (m) 13.45 11.57 68.82 77.07
gen t per es (s) 0.2 0.21 0.32 0.25
exec t (h) 17.94 17.45 118.29 179.83
exec t per tc (s) 16 19 33 35
line cov. (%) 55 62 53 55
branch cov. (%) 36 36 38 27

Table 4: Results of the Experiment.

disappointing with respect to the generation and execution
time. On the other hand, Configuration E and F are sig-
nificantly more efficient on application Rachota, FreeMind,
and JabRef, since fewer event sequences are generated and
executed while preserving the same line and branch cover-
age.

Observation 5: For TerpWord, Configuration E attains
a lower line and branch coverage than for Configuration D
and F. Thus, the parameter top influences the quality of
the selected event sequences. In TerpWord, there are a few
events which have more than 50 dependent events. So, set-
ting top = 50 might not be effective enough. The Configu-
ration F achieves more coverage when setting top = 100.

Observation 6: For the grey-box Configurations D, E
and F, increasing the length of the abstract event sequences
does not significantly improve the coverage.

Observation 7: The number of broken event sequences
is relatively low comparing to the total number of event se-
quences; they ranges between 0,5% and 1,4%. Broken event
sequences are sequences sampled from the EFG, but could
not be executed due to the limitations described in Sec-
tion 4.2.

Observation 8: The experiment found 3 different bugs:
The first bug is found in JabRef with Configuration B and
Configuration D. A NullPointerException is thrown if the
user clicks Options, Manage custom imports, Add from fol-

der, Cancel. The bug is found in the black-box and in the
grey-box approach using a sequence length of 2.

Observation 9: The second bug was found in JabRef
with Configuration D. The following sequence of events causes
an ArrayOutOfBoundsException: (1) In the main window,
click Manage content selectors, which opens a new dialog;
(2) switch to the main window and choose Close database.
Then, (3) switch back to the previously opened dialog and
click OK. The error occurs, because the new opened dialog is
startedmodeless, which allows the user to close the database,
although the dialog still suggests the user to modify the
database.

Close database

Manage content selectors OK

(a) EFG

Close database

Manage content selectors OK

2
2

2

(b) EDG

Figure 6: EFG and EDG snippet of JabRef.

Figure 6 shows the EFG and EDG of JabRef that cor-
responds to the found bug. In the event sequence genera-
tion for event Close database, the grey-box approach de-
tects the data dependency to event OK. This data depen-
dency (weight = 2) consists of a field for JabRef’s meta-
data, which is written in OK and read in Close database.
Thus, the abstract event sequence 〈Close database, OK〉 is
generated. This abstract event sequence is converted into
an executable event sequence, because there exists no corre-
sponding path in the EFG. Algorithm 3 picks the shortest
path from an initial event to Close database, and the short-
est path between succeeding events to OK, which leads to
the following executable event sequence: 〈Manage content

selectors, Close database, Manage content selectors,
OK〉. The black-box approach will be able to detect this
failure using a event sequence of length 4. However, it will
first need to generate and execute all possible sequences of
length 4.

Observation 10: The third bug was found in Rachota
with Configuration D. The following sequence of events causes

a NullPointerException at restart: (1) Click on System

settings; (2) Add a new task (Add task) and leave the
text fields blank; (3) click the OK button (OK2). Then, (4)
click on the OK button (OK2), that writes all tasks to a file.
The errors occurs, because the new added task contains a
null value when it is written to the user settings. Then, a
null-reference is returned when the user settings are read,
which is not correctly handled.

System settings Add task

OK1 OK2

(a) EFG

System settings Add task

OK1 OK2

7

5

19 4

6

6

625
6

6

4

4

(b) EDG

Figure 7: EFG and EDG snippet of Rachota.

Figure 7 shows the EFG and EDG of Rachota that cor-
responds to the bug. When generating abstract event se-
quences, we choose those sequences with the highest edge
values first. For event OK2, the first abstract event sequence
is 〈OK2, System settings〉, with a weight of 6. Our sec-
ond abstract event sequence is 〈OK2, OK1〉, with a weight of
6. Since this abstract event sequence is not allowed to ex-
ecute in its current form, it is converted into an executable
event sequence using Algorithm 3. Hence, the final exe-
cutable event sequence that can be run on the application is
〈System settings, Add task, OK2, System settings, OK1〉.
The black-box approach will be able to detect this failure
using an event sequence of length 5. However, the number
of event sequences with length 5 would be 6,605,912, since
Rachota consists of 154 events.

6. DISCUSSION
Regarding the research question of our experiment we

found that the answer of Q1 is yes: Considering possible
data dependencies between events lead to fewer event se-
quences and decreases the time to run all test cases. The
answer of Q2 is no: We did not find enough evidences to
show an improvement of the effectiveness.

The main result is that the grey-box approach in most
cases produces a lot less test cases (each generated abstract
event sequence represents one test case) than the black-box
approach. Our initial assumption is that in GUIs several
widgets carry out completely independent tasks. For ex-
ample, a toolbox usually offers save, print, copy, undo/redo
and find. However, print is unlikely to have a side effect on
all other widgets. Thus, it is not efficient to test all com-
binations of print plus one other event (see Configuration
B). Here, the grey-box approach can achieve significant im-

provements. For Rachota, more abstract event sequence are
generated than in the black-box approach. The reason is
that the events in Rachota have a lot of dependencies to
other events. In this case, more edges in the EDG than
in the EFG are obtained, and thus, more abstract event se-
quence are generated. However, we observe that in the other
AUTs the number of EFG edges is higher than the number
of EDG edges.

Increasing the length of event sequences in both approaches
(black-box and grey-box) implies a considerably increase of
the generation time. However, if we compare with the ex-
ecution time, the generation time itself is not a big issue.
Moreover, in practice, the testing process can be very lim-
ited in terms of resources and time to generate and execute
all event sequences and test cases respectively. In this way,
we could adapt our approach to an on-the-fly test case gen-
eration, where a specific timeout is given and parameter like
len and top are not fixed, but vary in a range.

Using the grey-box approach, two different bugs were found,
that were not found in the black-box approach, and, there
are two main reasons: (1) all abstract event sequences incor-
porate data dependencies in the application’s bytecode, and
(2) the abstract event sequences have a non-fixed length.
For instance, while Configuration A, B, and C select events
that are directly connected, Configuration D, E, and F se-
lect events based on their data dependencies. Thus, the
executable event sequence length in these grey-box config-
urations may vary comparing to the black-box configura-
tions. Further, in the grey-box approach the length of an
executable event sequence can be very long, e.g., if the dis-
tance of events in an abstract event sequence, in terms of
intermediate events, is very high in the EFG.

The overall code coverage reported in our experiment is
relatively low for several reasons. For instance, key strokes
(KeyListener) and mouse gestures (MouseListener) are not
yet considered, but frequently used in the application Free-
Mind, in order to draw a mind-map via mouse interactions.
Support for these events in the GUI ripper and Replayer is
scheduled for the future release of GUITAR. Moreover, the
use of random input-data may lead to the execution default
branches in the applications.

7. THREATS TO VALIDITY
We report 2 threats to internal validity. The first is the

experiment replication. Almost all applications store user
settings to the HDD, such as enabled and disabled toolbars,
recently opened files etc. In order to ensure the precondition
(i.e., the system’s state) for each run of a test case, it is
important that those user settings have to be deleted before
execution. Otherwise, test cases may mistakenly fail, e.g., a
GUI component is not found due to an existing user setting.
In order to decrease this threat to internal validity we ran
the experiment twice and got the same result.

The second is that some applications are strongly con-
nected to the date and time of their execution. For instance,
GUI components like calendar controls are considered in the
GUI ripper and in the construction of the EFG. When re-
playing the test cases, some of them may fail, because the
GUI components are not recognized anymore (during re-
playing the calendar control shows a different date as the
calendar control was ripped).

One threat to external validity is the portability of the
configurations. For instance, mobile phones have a different

environment and the construction of the EFG and EDG can
be completely different. In principle, there is no reason to
believe that the grey-box approach is not applicable to other
platforms. To generalize the approach to other platforms,
we must first port the ripper and replayer tools. Further,
the model implementations have to be adapted to the cor-
responding environment. In this way, we believe that our
approach can be generalized to different platforms.

8. RELATED WORK
Several approaches for modeling GUI-based applications

have been developed for test case generation.
Model-based GUI testing: Different models can be

used for event sequence generation [2, 25, 26]. For exam-
ple, AI planning techniques are used in [22]; covering arrays
in [28]. Event sequences are generated from these models
and executed as test cases on the GUI to validate its behav-
ior. In the grey-box approach, the EDG, created by ana-
lyzing bytecode, is used to generate event sequences. In [8],
symbolic execution is used to find adequate inputs for event
sequences. While symbolic execution is a powerful technique
to find precise input values, it’s applicability is limited due
to the complexity of the used algorithms. In contrast, the
grey-box approach only tries to identify simple data depen-
dencies without tracking the actual value of fields, and thus
it is applicable for reasonably sized applications. In [19], a
method to dynamically observe a program’s behavior at ex-
ecution time is presented. Instead of analyzing the source
code, an analysis of the call stack at run-time is performed.
Event Sequences are then generated such that a minimum
set covers a maximum possible set of program execution
paths. In [17, 18] the AutoBlackTest approach is presented,
which constructs a GUI model by learning how the GUI
interacts with the system functionalities. Then, the tool se-
lects an executable and non-redundant test suite. They also
compare with the GUITAR approach. However, we could
not empirically compare with AutoBlackTest since it is not
available at the moment. In [29], feedback obtained by ex-
ecuting an event sequence is used to generate an improved
test suite. It is an iterative method where GUI run-time
feedback is used instead of source code information. In [13]
the execution of a GUI-based application is represented as
a sequence of events and output states. A state graph for
the GUI is built which makes it possible to apply code based
testing methods to GUIs.

Byte, Binary and Source Code Analysis: Many tools
are available for reachability analysis and state space explo-
ration of programs using the byte, binary, or source code.
For example, JavaPathFinder [11] works at the Java byte-
code level to identify deadlocks, assertion violations and
other properties of the program using heuristics for reduc-
ing the state space explosion. Soot [15] is designed to be a
framework to allow researchers to experiment with analyses
and optimizations of Java bytecode. In the grey-box ap-
proach, we are interested in detecting sequences of events,
which eventually bring the system to a failure state. Hence,
we decide to implement a light-weight bytecode analysis,
which can be enhanced by the support of alternative tools.

Search-based testing: In [1] a search-based testing tech-
nique is proposed. Unit tests for Java classes and methods
are generated by looking for tests that satisfy given heuris-
tics. Another approach using search-based testing is pro-
posed in [6]. Heuristics are used to generate test cases that

violate automated test oracles. In the grey-box approach, a
data dependency can be seen as a heuristic, which helps to
sample the user-level model (EFG) more efficiently.

The grey-box approach is similar to the generation of se-
quences of method calls, e.g., in libraries. However, when
system testing an application through its GUI, not all meth-
ods (event handlers) may be available. For instance, a check
box is likely to have no separate event handler, which changes
the value from selected and deselected, once a user clicks
this check box. This behavior may be implemented in the
GUI framework and is not existing in the application it-
self. Without a user-level model it is difficult to generate a
proper event sequence, if the value of the check box is evalu-
ated in a further event handler (method) within the applica-
tion, while it was changed in the GUI framework. Further,
providing precise input for data-bound widgets, e.g., for an
event handlers that governs a text box, is tough. Trans-
ferring input-data to a text box during test case execution,
e.g., via reflection, may violate an invariant of the class. For
instance, when the text box is disabled with regard to the
event-flow, and does not accept any input.

9. CONCLUSION AND FUTURE WORK
We presented a new automatic grey-box approach for GUI

event sequence generation. An EFG is generated automat-
ically by observing the GUI at run-time (black-box). In
addition, the application’s bytecode is analyzed to find data
dependency between event handlers (white-box) to generate
a model called event-dependency graph (EDG). Abstract
event sequences representing data dependencies are first gen-
erated from the EDG. These are then converted into Exe-
cutable event sequences by looking up the EFG.

The grey-box approach incorporates 2 main steps: (i)
model construction (EFG and EDG), and (ii) event sequence
generation. The approach improves event sequence genera-
tion by producing fewer test cases and avoids generating
event sequences where consecutive events share no data de-
pendencies. Empirical evaluation shows that the grey-box
approach decreases the time to generate event sequences and
the time for executing test cases while retaining coverage.

Utilizing a black-box and a white-box model for the gen-
eration of event sequences is promising: We plan to improve
the creation of the models and the generation of event se-
quences:

Model Creation: We plan to enhance the analysis of
event handlers and the computation of the weight between
two events respectively. Table 4 shows the potential for in-
creasing the coverage of the AUT’s. We believe that analyz-
ing conditionals, i.e., if-, switch-, and loop-statements, can
lead to the execution of more lines and branches. In the long
run, the grey-box approach is supposed to provide a frame-
work, where different black-box and white-box techniques
can be plugged to generate event sequences. For instance,
one would like to guide a dynamic symbolic execution [9]
based on the EFG, or wrap a GUI application in a set of
parameterized unit tests [7].

Event Sequence Generation: Typically, applications
contain a subset of events with a relatively high number of
dependent events, e.g., the system settings are read in many
other event handlers. The grey-box approach enables us to
identify these events, which we call hot spots. Intuitively, hot
spots may be fault prone owing to inter-procedural data de-
pendencies. In a future work, we plan to specifically analyze

hot spots while generating event sequences. More precisely,
our event sequences generation uses the parameters len and
top while generating a set of executable test cases. Consid-
ering hot spots might be useful to limit the event sequence
generation and test case execution to a specific timeout. The
idea is to spend a certain time on the testing of highly de-
pendent events.

Evaluating the fault detection effectiveness is an impor-
tant aspect of automated event sequence generation tech-
niques. As a future work, we consider to evaluate the ef-
fectiveness of sequences generated from the EDG. We will
start with fault-seeded versions of the application, and then
naturally occurring faults in fielded applications. In order
to have strong evidence about the experiment, we plan to
execute the best configuration with different seeds.

Acknowledgments
The authors would like to thank Simon Pahl who supported
us in the implementation. This work is partially supported
by the research projects EVGUI and ARV funded by the
Macau Science and Technology Development Fund, and the
US National Science Foundation under grant CNS-0855055.

10. REFERENCES
[1] L. Baresi and M. Miraz. TestFul: automatic unit-test

generation for Java classes. In ICSE (2), pages
281–284, 2010.

[2] F. Belli. Finite-State Testing and Analysis of
Graphical User Interfaces. In ISSRE, pages 34–43.
IEEE Computer Society, 2001.

[3] C. Bertolini, A. Mota, E. Aranha, and C. Ferraz. GUI
Testing Techniques Evaluation by Designed
Experiments. In ICST, pages 235–244, Los Alamitos,
CA, USA, 2010. IEEE Computer Society.

[4] C. Bertolini, G. Peres, M. d’Amorim, and A. Mota.
An Empirical Evaluation of Automated Black Box
Testing Techniques for Crashing GUIs. In ICST, pages
21–30, 2009.

[5] R. C. Bryce, S. Sampath, and A. M. Memon.
Developing a Single Model and Test Prioritization
Strategies for Event-Driven Software. IEEE Trans.
Software Eng., 37(1):48–64, 2011.

[6] G. Fraser and A. Arcuri. EvoSuite: automatic test
suite generation for object-oriented software. In
SIGSOFT FSE, pages 416–419, 2011.

[7] G. Fraser and A. Zeller. Generating parameterized
unit tests. In M. B. Dwyer and F. Tip, editors, ISSTA,
pages 364–374. ACM, 2011.

[8] S. Ganov, C. Killmar, S. Khurshid, and D. Perry.
Event Listener Analysis and Symbolic Execution for
Testing GUI Applications. In ICFEM, pages 69–87,
2009.

[9] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In V. Sarkar and M. W.
Hall, editors, PLDI, pages 213–223. ACM, 2005.

[10] A. Grilo, A. Paiva, and J. Faria. Reverse Engineering
of GUI Models for Testing. In CISTI, pages 1–6. IEEE
Computer Society, 2010.

[11] A. Groce and W. Visser. Heuristics for Model
Checking Java Programs. STTT, 6(4):260–276, 2004.

[12] A. Jääskeläinen, M. Katara, A. Kervinen,
M. Maunumaa, T. Pääkkönen, T. Takala, and

H. Virtanen. Automatic GUI test generation for
smartphone applications - an evaluation. In ICSE,
pages 112–122, 2009.

[13] M. R. Karam, S. M. Dascalu, and R. H. Hazimé.
Challenges and opportunities for improving code-based
testing of graphical user interfaces. J. Comp. Methods
in Sci. and Eng., 6:379–388, April 2006.

[14] N. Kicillof, W. Grieskamp, N. Tillmann, and
V. Braberman. Achieving Both Model and Code
Coverage with Automated Gray-box Testing. In
A-MOST, pages 1–11. ACM, 2007.

[15] J. Lhoták, O. Lhoták, and L. J. Hendren. Integrating
the Soot Compiler Infrastructure Into an IDE. In CC,
pages 281–297, 2004.

[16] T. Lindholm and F. Yellin. Java Virtual Machine
Specification. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[17] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro.
AutoBlackTest: a Tool for Automatic Black-box
Testing. In ICSE, pages 1013–1015, 2011.

[18] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro.
AutoBlackTest: Automatic Black-Box Testing of
Interactive Applications. In ICST, Montreal, Canada,
2012. IEEE Computer Society.

[19] S. McMaster and A. M. Memon. Call-Stack Coverage
for GUI Test Suite Reduction. IEEE Trans. Software
Eng., 34(1):99–115, 2008.

[20] A. M. Memon. An Event-Flow Model of GUI-based
Applications for Testing. Software Testing Verification
and Reliability, 17(3):137–157, 2007.

[21] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. In WCRE, pages 260–269, 2003.

[22] A. M. Memon, M. E. Pollack, and M. L. Soffa. Plan
Generation for GUI Testing. AIPS, pages 226–235,
2000.

[23] A. M. Memon and Q. Xie. Studying the
Fault-Detection Effectiveness of GUI Test Cases for
Rapidly Evolving Software. IEEE Trans. Softw. Eng.,
31:884–896, October 2005.

[24] M. J. Osborne and A. Rubinstein. A course in game
theory. The MIT Press, July 1994.

[25] A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F.
A. M. Vidal. Modeling and Testing Hierarchical GUIs.
In Abstract State Machines, pages 329–344, 2005.

[26] H. Reza, S. Endapally, and E. S. Grant. A
Model-Based Approach for Testing GUI Using
Hierarchical Predicate Transition Nets. ITNG, pages
366–370, 2007.

[27] J. a. C. Silva, C. C. Silva, R. D. Gonçalo, J. a.
Saraiva, and J. C. Campos. The GUISurfer Tool:
Towards a Language Independent Approach to
Reverse Engineering GUI Code. In 2nd ACM SIGCHI,
pages 181–186, New York, NY, USA, 2010. ACM.

[28] X. Yuan, M. B. Cohen, and A. M. Memon. GUI
Interaction Testing: Incorporating Event Context.
IEEE Trans. Software Eng., 37(4):559–574, 2011.

[29] X. Yuan and A. M. Memon. Iterative
execution-feedback model-directed GUI testing.
Information & Software Technology, 52(5):559–575,
2010.

	1 Introduction
	2 Background
	3 Grey-box GUI Testing
	3.1 Event-dependency Graph
	3.2 Event Sequence Generation

	4 Implementation
	4.1 GUI Ripper
	4.2 EFG Construction
	4.2.1 Short Assessment of the EFG Construction

	4.3 EDG Construction
	4.3.1 Bytecode Analysis
	4.3.2 Short Assessment of the EDG Construction

	4.4 Event Sequence Generator
	4.5 Replayer

	5 Experiment
	5.1 Setup of the Experiment
	5.2 Experimental Results

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Work
	10 References

