
Making System User Interactive Tests Repeatable:
When and What Should we Control?
Zebao Gao∗, Yalan Liang†, Myra B. Cohen†, Atif M. Memon∗ and Zhen Wang†

∗Department of Computer Science, University of Maryland, College Park, MD 20742, USA
Email:{gaozebao,atif}@cs.umd.edu

†Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Email:{yaliang,myra,zwang}@cse.unl.edu

Abstract—System testing and invariant detection is usually
conducted from the user interface perspective when the goal is
to evaluate the behavior of an application as a whole. A large
number of tools and techniques have been developed to generate
and automate this process, many of which have been evaluated
in the literature or internally within companies. Typical metrics
for determining effectiveness of these techniques include code
coverage and fault detection, however, with the assumption that
there is determinism in the resulting outputs. In this paper we
examine the extent to which a common set of factors such as
the system platform, Java version, application starting state and
tool harness configurations impact these metrics. We examine
three layers of testing outputs: the code layer, the behavioral (or
invariant) layer and the external (or user interaction) layer. In a
study using five open source applications across three operating
system platforms, manipulating several factors, we observe as
many as 184 lines of code coverage difference between runs using
the same test cases, and up to 96 percent false positives with
respect to fault detection. We also see some a small variation
among the invariants inferred. Despite our best efforts, we can
reduce, but not completely eliminate all possible variation in the
output. We use our findings to provide a set of best practices
that should lead to better consistency and smaller differences in
test outcomes, allowing more repeatable and reliable testing and
experimentation.

I. INTRODUCTION

Numerous development and maintenance tasks require the
automated execution and re-execution of test cases and often
these are run from the system or user interface perspective [1].
For instance, when performing regression testing on a web
application [2] or integrating components with a graphical
user interface (GUI), a test harness such as Selenium [3],
Mozmill [4], or Unified Functional Test (UFT) [5] can be used
to simulate system level user interactions on the application by
opening and closing windows, clicking buttons and entering
text. Re-execution of tests is also needed when performing in-
variant generation [6], [7], and when experimenting to evaluate
the effectiveness of new test generation techniques [8]–[10].

Over the past years, numerous papers have proposed im-
proved GUI and Web automation testing/debugging techniques
[8]–[17], and common metrics have been used to determine
success such as fault detection [12], [18], [19], time to early
fault detection [20], business rule coverage [9], and state-
ment, branch and other structural coverage criteria [21]. Test
oracles—mechanisms that determine whether a test passed or
failed—for these applications operate at differing degrees of

precision [22] such as detecting changes in the interface prop-
erties [23], or comparing outputs of specific functions [24], or
through the observation of a system crash [25]. The assump-
tion for all of these scenarios, however, is that these System
User Interactive Tests (SUITs) can be reliably replayed and
executed, i.e., they produce the same outcome (code coverage,
invariants, state) unless either the tests or software changes.

Recent work by Luo et al. [26] illustrates that many tests
do not behave deterministically from the perspective of fault
detection – what is commonly called flaky behavior in indus-
try [27]. Other research by Arcuri et al. [28] has developed
methods to generate unit tests that behave differently in vary-
ing environments, controlling this by replacing API calls and
classes related to the environment with mocked versions. And
there has been attention given to revisiting the expectation of
sequence-based testing – that of test order independence [29].

In our own experience with GUI testing and benchmark-
ing [27], [30], [31], we have learned that the ability to repeat
others’ experimental results with different platforms and/or
setups is hard to do. We set out to compile a comprehensive
list of factors that should be controlled to ensure testing can be
repeated reliably within and across platforms. Unfortunately,
the harder we tried, the more we learned that our assumptions
about how well we could control tests were incorrect. We
found that even within the same platform, simple changes to
system load or a new version of Java, or even the time of
day that we ran a test, could impact code coverage or the
application interface state.

In this paper we have taken a step back to empirically
evaluate the set of factors that we have observed have the
largest impact on our results, and to examine how and if these
can be controlled. We have designed a large empirical study
to evaluate for certain classes of interactive applications (those
driven by the graphical user interface or GUI), what extent of
variation is seen, and which factors matter the most. We use
an entropy based metric to determine the stability of test runs
and study this for different test metrics (code coverage, GUI
state, and invariants). Our results show that the impact is large
for many applications when factors are uncontrolled (as many
as 184 lines of code coverage differ and more than 95% false
positives for fault detection may be observed).

Despite our ability to control factors and reduce variance,
there still may exist some that we cannot control - that

are application specific, or sensitive to minor changes in
timing or system load, therefore a single run of any testing
technique (despite fault determinism) may lead to different
code coverage or even different invariants, and that unless one
accounts for the normal variance of a subject, a single test run
may be insufficient to claim that one technique is better than
another, or even that a fault is really a true fault.

The contributions of this work are:
1. The identification of a set of factors that impact the
repeatability of testing results at three different layers of user
interactive applications;
2. A large empirical study across a range of platforms on a
set of open source applications that measures the impact these
factors have on different types of test outputs; and
3. A set of practical steps that one can take when comparing
different test runs to ensure higher repeatability.

In the following section we provide a motivating example
and discuss related work. We follow this with our empirical
study in Section III followed by results (Section IV). Finally,
in Section V we conclude and present future work.

II. MOTIVATING EXAMPLES

We begin by differentiating three layers, illustrated in
Figure 1 of a user-interactive software application: (1) User
Interaction Layer: we typically use this layer to execute
SUITs and extract information for test oracles, (2) Behavioral
Layer: to infer properties, such as invariants, regarding the test
execution, and (3) Code Layer: for code coverage.

User Interaction Layer

Behavioral Layer

Code Layer

Fig. 1: Layers of a User Interactive Application

User Interaction Layer: We use this to interface with the
application and run tests. For example, in the Android system,
one could write the following code segment in a system test
to programmatically discover and click on the “OK” button.

U i O b j e c t okBut ton = new U i O b j e c t (new U i S e l e c t o r () . t e x t (”OK”)) ;
okBut ton . c l i c k () ;

We also can use this layer to identify faults since this is the
layer that the user sees. For instance, if a list widget fails to

render or displays the wrong information, then this layer will
reveal a fault. From an automation perspective, the properties
of the interface widgets can be captured and compared to a
correct expected output, e.g., using the following code that (1)
gets a handle to the current screen, (2) clicks on a list, and
(3) checks whether the list contains the text “Android”.

s o l o = new Solo (g e t I n s t r u m e n t a t i o n () , g e t A c t i v i t y ()) ;
s o l o . c l i c k I n L i s t (1) ;
a s s e r t T r u e (s o l o . s e a r c h T e x t (” Android ”)) ; / / A s s e r t i o n

During our experiments, we find variation in the properties
of certain interface widgets between runs, that would
appear as a fault to the test harness (and would be a real
fault if this happened during manual execution), but that
is most likely an artifact of automated test execution –
a false positive. For instance in the application, JEdit,
described later in Section III, we found that the widget
org.gjt.sp.jedit.gui.statusbar.ErrorsWidgetFactory$ErrorHighlight
had empty text in one run, but was filled in during other runs.
We believe this had to do with a delay between test steps that
was too short when the system load increased, preventing
the text from rendering to completion before the next test
step occurred. A test case that checks the text in this widget
may non-deterministically fail during one run and succeed in
another.

Behavioral Layer: This layer presents behavioral data, such
as runtime values of variables and function return values, and
returning data to an external location or database, which may
be obtained from the running program via instrumentation
hooks. Such data can also be mined/analyzed to infer invari-
ants. Invariant detection involves running a set of test cases
and inferring from this, a set of properties that hold on all
test cases. Invariants represents high level functionality of the
underlying code and should be consistent between runs.

In our experiments, we found differences in the invariants
reported. For instance, in the application Rachota, Sec-
tion III, we found that approximately in two of every ten runs,
the application started faster than normal and generated the
following two extra invariants related to the startup window:
t h i s . l b Image == o r i g (o rg . c e s i l k o . r a c h o t a . g u i . Star tupWindow .

s ta r tupWindow . lb Image)
t h i s . l o a d i n g == o r i g (o rg . c e s i l k o . r a c h o t a . g u i . Star tupWindow .

s ta r tupWindow . l o a d i n g)

not found in the other eight runs. In each run we used exactly
the same set of test cases. The “correct” set of invariants is
dependent on the speed at which the window opens and again,
may be an artifact of the system load or test harness factors.

Code Layer: At the lowest level we have the source code.
It is common to measure code coverage at the statement,
branch or path level to determine coverage of the underlying
business logic. It is very commonly used in experimentation
to determine the quality of a new testing technique.

In our experiments, we found numerous instances of the
same test case executing different code. In fact, this was a
large motivating factor for our work. The harder we tried to
deterministically obtain ten runs with the exact code coverage,

the more we learned that this may not be possible. We also
ruled out factors such as concurrency and multi-threading. The
following code shows an example of memory dependent code
from the application DrJava that we cannot deterministically
control with our test harness.

i f (whole == 1) {
sb . append (whole) ;
sb . append (’ ’) ;
sb . append (s i z e s [i]) ; . . . }

In this code (lines 571-580 of StringOps.java, the memSize-
ToString() method) we see code that checks memory usage so
that it can create a string object stating the memory size. It
checks for whole block boundaries, e.g., 1B, 1KB, 1MB, via
whole == 1 and constructs the string content accordingly.
Because the actual memory allocated to the executing JVM
may vary from one run to the next, in our experiments one in
ten executions covered this code because by chance the space
was not equal to a block.

The next code segment is an example of code that we can
control by making sure the environment is mimicked for all
test cases.

p u b l i c s t a t i c i n t p a r s e P e r m i s s i o n s (S t r i n g s) {
i n t p e r m i s s i o n s = 0 ;
i f (s . l e n g t h () == 9) {

i f (s . c ha rA t (0) == ’ r ’)
p e r m i s s i o n s += 0400 ;

i f (s . c ha rA t (1) == ’w’)
p e r m i s s i o n s += 0200 ;

. . . .
e l s e i f (s . c ha rA t (8) == ’T ’)

p e r m i s s i o n s += 01000;}
re turn p e r m i s s i o n s ;}

In this code (JEdit, MiscUtilities class lines 1318-1357)
the application checks file permissions. We found that the
files did not always properly inherit the correct permissions
when moved by the test script and this caused 9 different
lines being covered between executions, or when time and date
were involved as has been described in [28]. Other examples
of differing code coverage occurred when opening screens of
windows have code that waits for them to settle (based on a
time).

These are just some examples of the types of differences
we found at the various layers when we examined our results.
Our aim in this work is to identify how much these impact our
testing results and provide ways to minimize these differences.
We next present the set of factors that we believe cause the
largest impact on test differences in our applications.

A. Factors Impacting Execution

We categorize the factors we believe have the greatest
impact on running SUITs deterministically into four groups:
1. Test Execution Platform. Many of the applications that
we test can be run on different execution platforms which
includes different operating systems (e.g., Windows Mac OS,
Linux) or on different versions of the same operating system
(e.g. Ubuntu 12, Ubuntu 10). Different operating systems may
render system interfaces differently and could have different
load times, etc. In addition, applications often contain code
that is operating system specific.

2. Application Starting State/Configuration. Many applica-
tions have preferences (or configuration files, registry entries)
that impact how they start up. Research has shown that the
configuration of an application impacts test execution [32]
therefore we know that this starting point is important. Even
if we always start with a default configuration at the start of
testing, test cases may change the configurations for future
tests. Therefore the program configuration files should be
located and restored before each test is run.
3. Test Harness Factors. Test harnesses such as Selenium
contain parameters such as step delays or startup delays to
ensure that the application settles between test steps, however
this is often set to a default value and/or is set heuristically
by the tester. Long delays may mean that the application
pauses and runs additional code, but short delays may not
allow completion of some functionality, particularly when
system load or resources vary between executions. In early
experiments we ran tests on a VM where we can change CPU
and memory and have found that reducing memory and/or
CPU has a large impact on the ability to repeat test execution
– primarily due to the need for tuning these parameters.
4. Execution Application Versions. If we are running web ap-
plications using different web browsers or Java programs using
different version of Virtual machines (e.g. Java 7 versus 6 or
OpenJDK versus Oracle Java), we may run into differences
due to support for different events and threading policies.

We select a subset of these factors in our experimentation
to evaluate them in more detail.

III. EMPIRICAL STUDY

We now evaluate the impact of factors that we have identi-
fied (summarized in the previous section) on test repeatability
in SUITs via the following research questions.
RQ1: To what extent do these factors impact code cover-
age?
RQ2: To what extent do these factors impact invariant
detection?
RQ3: To what extent do these factors impact GUI state
coverage?

Note that our questions include one for each of the layers.
We start with the lowest code layer (code coverage) and end
with the highest user interaction layer (GUI state).1

A. Objects of Analysis

We selected five non-trivial open source Java applications
with GUI front ends from sourceforge.net. All of these have
been used in prior studies on GUI testing. Table I shows the
details of each application. For each we show the version, the
lines of code, the number of windows and the number of events
on the interface. Rachota is a time tracking tool allowing one
to keep track of multiple projects and create customized time
management reports. Buddi is a personal financial tool for
managing a budget. It is geared for those with little financial
background. JabRef is a bibliography reference manager.

1We have included supplemental data of our experiments at
http://cse.unl.edu/∼myra/artifacts/Repeatability/.

JEdit is a text editor for programmers. Last, DrJava is an
integrated development environment (IDE) for Java programs.

TABLE I: Programs used in Study.

Name Version LOC No. Windows No. Events
Rachota 2.3 8,803 10 149
Buddi 3.4.0.8 9,588 11 185
JabRef 2.10b2 52,032 49 680
JEdit 5.1.0 55,006 20 457
DrJava 20130901-r5756 92,813 25 305

B. Experiment Procedure
Having selected the applications, our experiment procedure

involves executing a number of test cases on these applications
multiple times on various platforms and collecting information
at the 3 layers discussed earlier. For each application we run
200 test cases randomly selected from all possible length 2
test cases generated by the GUITAR test case generator that
are executable (and complete) on all three different platforms,
Ubuntu 12.04, Redhat Scientific Linux 6.4 and Mac OSX 10.8.
The Ubuntu machine is a stand-alone server with an Intel
Xenon 2.4GHZ CPU and 48 GB of memory. The MacOS
machine is a laptop with a 2.5 GHZ Intel Core and 8GB
of memory and the RedHat Scientific Linux machine is an
Opteron cluster server running at 2000MHz with 8GB of mem-
ory on each node. All test cases are short, which reflects what
might be done for overnight regression or smoke testing [33].
We decided that using the shortest possible (reasonable) tests
would keep us from unduly biasing this data. We view this as a
baseline – if we can’t control length 2 tests, then longer tests
should be even harder. For each application and experiment
configuration, we run the tests 10 times using the GUITAR
replayer [34], [35].

We instrumented each application with the Cobertura code
coverage tool [36] to obtain the line coverage. We obtain
the GUI state from the GUITAR oracle generator. For the
oracle, we excluded common patterns that are known to be
false positives (see [35]). For the code coverage, we parse the
Cobertura report files to determine if we cover the same (or
different) lines of code in each run. We share the test cases
and scripts between platforms to ensure consistency.

C. Independent Variables
We selected our factors from each of the four categories

based on those identified in Section II.
1) Platform: We use the three operating systems that are

described above (Ubuntu, Mac and Scientific Linux).
2) Initial Starting State/Configuration: We control the

initial configuration of each application, input data files
that are loaded or written to and when possible (on the
Ubuntu and Mac OS stand-alone machines) we control
the date and time of the machine running the tests (note
that we could not control the time on our Redhat cluster,
but try to run tests within the same day when possible).

3) Time Delay: These are the delays that are used in the
test harness to control the time that GUITAR waits to
stabilize during replay of each step in the test case.

4) Java Version: We use three different Java versions in
our experiments: Oracle JDK 6 and 7, and OpenJDK 6.

Our experiments vary each of the factors above. We do not
vary all combinations of factors, but have designed a set of
experiments that we believe is representative. The experiment
configurations are shown in Table II. Each configuration (row)
represents a set of conditions.

TABLE II: Configurations of our Experiments

Runs Config Input Date& Delay JDK
Fixed Files Time

1. Best Y Y Y Best Oracle 6
2. Unctrl N N N (rand) 0ms Oracle 6
3. No Init N N N (actual) best Oracle 6
4. D-0ms Y Y Y 0ms Oracle 6
5. D-50ms Y Y Y 50ms Oracle 6
6. D-100ms Y Y Y 100ms Oracle 6
7. D-200ms Y Y Y 200ms Oracle 6
8. Opn-6 Y Y Y Best OpenJDK 6
9. Orc-7 Y Y Y Best Oracle 7

Best means the best configuration (our gold standard for
the experiments). For this we use the same configuration
setup and use the same initial input files for the applications
so that its starting state is the same. We also control the
time (when possible) and fix the Java version to Oracle 6.
To obtain the best configuration, we first tried to control as
many factors as possible, and heuristically selected the best
delay value for each different platform (where best shows the
smallest variation based on a visual inspection of a sample of
the test cases). We then fixed this configuration as our best
configuration and created variants of these for study.

Unctrl means uncontrolled. This is expected to be our worst
configuration. We do not control any of the factors mentioned.
We just run our test cases with the default tool delay value
(0ms), and do not reset the starting configuration files or
provide a fixed input file. We use a random date (on the two
platforms where we can control this).

Starting from our best configuration, we removed the initial
configuration/starting state files. We call this No Init (see
configuration #3). We then varied the delay values (shown as
D-0 through D-200ms, while keeping the configuration files
and inputs fixed. Our last configurations (Opn-6 and Orc-
7) use the best delays and control all other factors but use
different versions of Java (Open JDK 6 and Oracle 7) instead
of the default version (Oracle 6).

D. Dependent Variables: Metrics

We gather code coverage, invariants, and interface properties
(oracles) as we run the tests. For code coverage we use
statement coverage as reported by Cobertura. For interface
oracles we use the states returned by GUITAR. To avoid
false positives and compare only meaningful properties of GUI
state, we filter out properties, such as the ID of widgets given
by the testing harness, minor differences in coordinates of
widgets, etc. The remaining differences should be meaningful
such as the text in a text field, or missing widgets. For invariant
detection we use the Daikon Invariant Detector [37]. Due to the

large number of invariants generated we only selected three
classes for study, those with the highest code coverage. To
calculate the stableness of our runs, we use entropy as our
measure [38], [39]. We illustrate this metric next.

Assume we have the test cases with the coverage metrics
as shown in Table III. The coverage can be line or branch or
some other unit (in our experiments we use line coverage).
The test suite (TS) includes 4 test cases (rows TC1- TC4), is
executed 4 times on a subject application that has 6 lines of
code (cols 1..6 within each run). A dot in the table means that
the line is covered during a single execution of the test case.
For example, In the first run of test case 1 (TC1), line 2 and
3 are covered whereas all other lines are not.

TABLE III: Example Test Case/Suite Coverage Variance

#Cov Run 1 Run 2 Run 3 Run 4 Const Groups1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
TC1 • • • • • • • • 4
TC2 • • • • • • • • • • • • • • • 3/1
TC3 • • • • • • • • • • • • 2/2
TC4 • • • • • • • • • • • • 2/1/1
TS • 3/1

Definition 1 (Consistently Covered Lines): A line is Consis-
tently Covered in two runs iff the line is covered in both runs
or not covered in either of the runs.

In our example, Line 1 is consistently covered in Run 1
and Run 2 of TC1 because Line 1 is not covered in either
run. Line 2 is also consistently covered, because it is covered
in both runs.

Definition 2 (Consistent Coverage): Two runs of a test case
or test suite have Consistent Coverage iff all lines of the subject
application are consistently covered in both runs.

Both Run 1 and Run 2 of TC1 cover line set {#2, #3} and
thus have consistent coverage.

Because the consistent coverage relationship is reflexive,
symmetric, and transitive and is hence an equivalence relation,
we can divide all runs of a test case/suite into equivalence
groups based on the consistent coverage relationship, and
measure stableness of a test case/test suite as the entropy (or
H) of the group based on the following formula [38]:

H(X) = −
n∑

i=1

p(xi)loge(p(xi))

where n is the number of groups and p(xi) is the probability
that a certain run falls into the ith group.

For example, the 4 runs of TC1 are divided into a sin-
gle equivalence group of consistent coverage; thus we have
H(X)TC1 = −(4/4 ∗ loge(4/4)) = 0. The 4 runs of TC4,
however, are divided into 3 groups with sizes 2, 1 and 1, and
the corresponding entropy is H(X)TS = −(2/4∗ loge(2/4)+
1/4 ∗ loge(1/4) + 1/4 ∗ loge(1/4)) = 1.04.

To measure the impact of the variance, we further measure
the range of difference of all runs of a test case/suite.

Definition 3 (Range of Difference): The Range of all runs
of a test case or test suite is the total number of lines that are
not consistently covered in any two runs.

For example, in the 4 runs of TC1, the same set of lines
are covered in each run, thus the range of difference is 0,
while the test suite has a range of 1 (at line #6). We show
the ranges and entropies calculated for test cases and the test
suite in Table IV. The average range and entropy of test cases
are shown in the last row of the table. Note that the more
unstable the groups are, the greater the entropy value is. TC1
has perfect stability and thus has an entropy value 0. TC4 is
the most unstable and thus has the greatest entropy value for
test cases. The entropy of a test suite is generally smaller than
the average entropy of all test cases. This is because some
lines that are not covered by one test case may be covered by
another and the individual differences are erased (we see this
phenomenon in our study). If however, tests do not have this
property, then the entropy of test suite will be higher than the
average entropy of test cases.

TABLE IV: Entropy Metrics for Table III

Metrics Inconsistent Range Groups Entropy
Lines

TC1 {} 0 4 0
TC2 {#5} 1 3/1 0.56
TC3 {#1, #4} 2 2/2 0.69
TC4 {#3, #6} 2 2/1/1 1.04
TS {#6} 1 3/1 0.56
Average 1.25 0.57

E. Threats to Validity

One threat to validity of our study is that some of our
individual results may be test harness (GUITAR) specific, but
we believe that the lessons learned should be transferable to
other tools. To reduce this threat we have performed some
additional studies using Selenium and discuss this in Section
IV-D. We used only 5 applications in these studies, but we
selected ones that are different and all have been used in prior
studies on GUI testing. For state comparison, we use the GUI
state of the first run as the oracle. For invariant detection we
only selected a small subset of classes to instrument and obtain
invariants due to scalability issues. This means that the size
of both our state and invariant variances may differ if we
modify the selection. However, our results are still relevant
since we have found differences; the study conclusion still
holds. Finally, we may have used the wrong metrics for our
different layers, but believe that code coverage, invariants and
GUI properties are the most common types of information that
would be obtained during testing of this type, and entropy has
been used in prior work to show stability.

IV. RESULTS

A. RQ1: Code Coverage

We begin by looking at the data for code coverage using
the first and second configurations from Table II. These
configurations include the best with everything controlled
and the potentially worst configuration (where we control
nothing). Table V shows the Test suite (TS) entropies for each
application on each operating system. The rows labeled TC

TABLE V: Comparison Between Best & Uncontrolled Environments for Code Coverage and GUI False Positives.

#Metrics Rachota Buddi JabRef JEdit DrJava
Ubuntu Mac Redhat Ubuntu Mac Redhat Ubuntu Mac Redhat Ubuntu Mac Redhat Ubuntu Mac Redhat

TS Best 0.67 0.69 0 0 0 1.23 0 0 0 0 0.33 0.33 0 0 0.64
Unctrl 1.28 0.94 0.94 0 0.94 2.16 0 0 1.61 1.64 1.01 0.90 1.83 0.90 1.61

TC Best 0.00 0.00 0.00 0 0.00 0.15 0.00 0.01 0.00 0 0.09 0.24 0.06 0.20 0.05
Unctrl 0.42 0.40 0.41 0.32 0.34 0.57 0.01 0.06 0.10 0.22 0.10 0.23 0.41 0.18 0.13

Range Best 0.05 0.05 0.03 0 0.02 39.56 0.03 0.17 0.02 0 0.88 6.21 0.32 3.82 2.70
Unctrl 83.85 80.22 83.09 4.98 5.00 90.83 2.72 2.72 181.62 72.63 5.03 1.99 184.22 13.19 13.37

FP Best 4.44 1.44 2.11 0.06 0 1.56 0.50 0.06 0.50 0.11 3.17 1.50 0 5.67 0.17
Unctrl 96.61 96.44 69.39 66.56 76.67 7.50 1.44 19.00 14.56 34.67 19.00 5.33 24.67 38.17 14.78

●●●●● ●●●●● ● ● ●●

●

●●●

●

●●●●●●●●●● ●●●●●

●

●●●●

●

●●●●●●●●●● ●●

●

●

●

●

●
●

●

●

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

0.0

0.5

1.0

1.5

2.0

En
tro
py

2.3

Rachota Buddi JabRef JEdit DrJava

(a) Best Controlled Environments

●

●

●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●●

●

●●
●
●●●

●
●
●

●
●

●

●

●
●

●●●●●●●

●

●

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

0.0

0.5

1.0

1.5

2.0

En
tro
py

2.3

Rachota Buddi JabRef JEdit DrJava

(b) Uncontrolled Environments

Fig. 2: Entropies of Line-Coverage Groups of 3 Platforms in Best & Uncontrolled Environments

are the average entropy of the individual test cases within the
test suite. In these tables we have 10 runs of test cases. Note
that 0’s without decimal places have true 0 entropy, while 0.00
indicates a very small entropy that is rounded to this value. The
highest entropy occurs when all 10 runs differ – in this case we
have an entropy of 2.3. When only a single run out of 10 differs
the entropy is 0.33 and when half of the runs differ we have an
entropy of 0.69. We see lower (close to zero), but not always
zero, entropy when we control the factors, and higher entropy
when we don’t. We see differences between the applications
and between platforms. We also show the range of coverage
(in lines) which is the average variance across test cases. We
can see that in the uncontrolled configuration we see as high as
184 lines on average differing and in the best we see closer to
zero. However, we still have a few platforms/applications (such
as Redhat running Buddi) where there is a large variance
(90+ lines). This is because we were not able to control the
time/date on this server and Buddi uses time in its code.

We show this data in an alternative view in Figure 2. The
entropy of all 200 test cases by application and operating
system within the application. Figure 2(a) shows the best while
(b) shows the uncontrolled factors. Entropy is lower in the best
environment (but not zero) across most of the applications and
that it varies by platform. Rachota and Buddi have almost
zero entropy in their test cases while JEdit and DrJava

have a non-zero entropy even when we control its factors.
Only the Ubuntu platform with the best configuration shows
a zero entropy.

We next turn to the configurations that do not control the
initial environment (No Init), vary the delay time (D-xms) and
vary Java versions (Opn-6 and Orc-7). We show this data in
Tables VI through VIII. Table VI shows the test suite entropy,
while Table VII shows the average test case entropy. Table VIII
shows the variance in line coverage. We see that the initial
starting state and application configuration (No Init) has an
impact on some of our applications, but not as large as we
expected, when we control the other factors.

A boxplot of the entropies by application when we don’t
control the initial state and configurations is seen in Figure 3.
We show a boxplot of the entropies by application for different
delays in Figure 4. We see that the different delays also impact
the entropy and the delay value varies by application and
platform. Finally, looking at the boxplots of the Java Versions
in Figure 5, we see differences between Java versions, the
largest being with DrJava using Oracle 7.

B. RQ2: Invariants

To examine the results at the behavioral or invariant level
we examine the invariants created by Daikon. Two runs
of a test case have the same behavior if all the invariants
that hold in these two runs are exactly the same. We use

●●●●● ●

●●●●

●

●
●●●

●●

●

●●●

●

●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●● ●●●● ●● ●●

●

●
●●

● ●●●●

● ●

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

W
ith

 In
it

N
o

In
it

0.0

0.5

1.0

1.5

2.0

2.3

En
tro

py

Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat
Rachota Buddi JabRef JEdit DrJava

Fig. 3: Entropies of Test Cases of 2 Platforms with/without Initial State and Configuration Control

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●● ● ● ●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●● ●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●

●

●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●

●

●●● ●●● ●●●● ●

●

●●●

●

●

●● ●

●●
●

●

●

●

●

●●●

●●

●

●

●

●●
●
●
● ●

●
●

●

●
● ●

●

●●
● ●

●

●

●

●

●
●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●●

●
●●●
●

●

●●●

●

●●
●
●

●●

●

●
●

●

●

●●●●●

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

D
−0
m
s

D
−5
0m

s
D
−1
00
m
s

D
−2
00
m
s

0.0

0.5

1.0

1.5

2.0

2.3

En
tro
py

Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat
Rachota Buddi JabRef JEdit DrJava

Fig. 4: Entropies of Test Cases with Different Delay Values

●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ●●

●

●●●

●

●●●●●●●●●● ● ●●●●● ●●●●●●●●●●● ●● ●● ●●●●●

●●●●

●

●

●

●
●

●

●

●

●●

●

●●●●●●

●

●●●

●

●●

●●

●
●●

● ●● ●●

●

●

●

●●●●

●

●●●●●●●●

●

●

●●

●●●

●

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

O
rc
−6

O
pn
−6

O
rc
−7

0.0

0.5

1.0

1.5

2.0

2.3

En
tro
py

Ubuntu Redhat Ubuntu Redhat Ubuntu Redhath Ubuntu Redhat Ubuntu Redhat
Rachota Buddi JabRef JEdit DrJava

Fig. 5: Entropies of Test Cases with Different JDK Versions

TABLE VI: Entropies of Test Suite Line Coverage for Initial State, Delays and Java Version.

Entropy Rachota Buddi JabRef JEdit DrJava
Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat

No Init 1.42 0.69 0 0.94 0 0 0.33 0.67 0.80 1.09
D-0ms 0.69 0 0 0.80 0 0.64 0.50 0.64 0.64 1.28
D-50ms 0.94 0 0 1.47 0 0.33 0.33 0 0 0.64
D-100ms 0.69 0 0 1.19 0 0.33 0 1.06 1.17 1.09
D-200ms 0.67 0 0 0.50 0 0.33 0 1.03 0.94 1.36
Opn-6 0.94 0 0 1.47 0.33 0 0.50 1.36 0.95 0.90
Orc-7 1.36 0 0 1.23 0 0.33 0.80 1.61 0.64 0.94

TABLE VII: Average Entropies of Test Case Line Coverage.

Entropy Rachota Buddi JabRef JEdit DrJava
Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat

No Init 0.41 0.35 0 0.03 0.00 0.00 0.13 0.24 0.20 0.05
D-0ms 0.01 0.06 0 0.03 0.00 0.08 0.01 0.24 0.06 0.04
D-50ms 0.01 0.06 0 0.05 0.01 0.00 0.01 0.23 0.06 0.13
D-100ms 0.01 0.00 0 0.04 0.01 0.00 0.02 0.23 0.07 0.14
D-200ms 0.00 0.00 0 0.05 0.00 0.00 0 0.24 0.39 0.36
Opn-6 0.02 0.00 0 0.05 0.13 0.00 0.02 0.26 0.16 0.13
Orc-7 0.02 0.00 0 0.05 0.01 0.00 0.02 0.27 0.36 0.40

TABLE VIII: Average Variance-Ranges of Line Coverage

Range Rachota Buddi JabRef JEdit DrJava
Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat

No Init 85.19 63.41 0 84.59 0.02 4.06 10.06 1.92 14.06 4.89
D-0ms 0.10 0.72 0 94.18 5.69 168.46 0.19 7.63 0.93 1.49
D-50ms 0.12 0.71 0 150.65 2.61 6.46 0.13 1.77 0.32 12.70
D-100ms 0.09 0.03 0 146.83 0.05 5.89 0.14 1.92 0.97 14.12
D-200ms 0.05 0.03 0 114.62 0.03 5.18 0 2.00 82.77 14.63
Opn-6 0.25 0.08 0 43.08 0.80 3.56 0.22 56.75 1.55 13.94
Orc-7 0.38 0.03 0 13.68 0.06 11.29 7.36 61.01 97.45 15.56

TABLE IX: Average/Max/Min Entropies of Invariants across
200 test cases. 0 without decimal places have true 0 entropy;
0.00 indicates a very small entropy rounded to this value.

Entropy Buddi Rachota JEdit JabRef DrJava
Best

Avg 0 0.45 2.30 0 0
Max 0 1.22 2.30 0 0
Min 0 0 2.16 0 0

Unctrl
Avg 0.00 1.04 2.30 0.00 0.15
Max 0.33 1.64 2.30 0.33 0.33
Min 0 0 2.30 0 0

entropy again for this purpose. The average, maximum and
minimum entropies of the 200 test cases using the best and
uncontrolled configurations are shown in Table IX. As we can
see, the invariants seem to be more sensitive to application
than to the factors that we are controlling. We can see this
if we examine Figure 6. Rachota seems to have internal
variation not related to these factors, while three of the other
applications appear to have almost zero entropy for both the
best and uncontrolled runs. For DrJava, the factors impact
the invariants. In general though the variation is lower than at
the code level of interaction.

C. RQ3: GUI State

For this layer, we use false positives as our high-level
measure of stableness. Our reasoning is that if one were to use

●●

●

●●

R
ac
ho
ta

Bu
dd
i

Ja
bR

ef

JE
di
t

D
rJ
av
a

0.0

0.5

1.0

1.5

2.0

En
tro
py

2.3

(a) Best Controlled Environment

●

●

● ●●●

R
ac
ho
ta

Bu
dd
i

Ja
bR

ef

JE
di
t

D
rJ
av
a

0.0

0.5

1.0

1.5

2.0

En
tro
py

2.3

(b) Uncontrolled Environment

Fig. 6: Entropies of Invariant Groups on Ubuntu

the state as an oracle for fault detection, any change detected
would indicate a fault. We use the state that is captured during
the first (of 10) runs as the oracle, and then then calculate the
false positives based on the following formula:∑

FalsePositives/(
∑

#testcases ∗ (#runs− 1)) ∗ 100.
The results of false positives are shown in Table V in the

last rows as FP. We see as high as a 96% chance (Rachota
on Ubuntu) for obtaining a false positive. In general in the
best configuration we see a very low false positive rate (no

●●●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●●● ●

●

●●●●●●

●

●●●●●●●

●

●

●●●●●●

●●

●

●

●●

●

●●●●

●

●● ●●●●●●●●●

●

● ● ● ●

●

●

●●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

0.0

0.5

1.0

1.5

2.0

En
tro
py

2.3

Rachota Buddi JabRef JEdit DrJava

(a) Best Controlled Environments

●

●
●
●
●

●●
●

●

●
●
●

●

●●●

●

●

●

●●

●

●●

●

●
●
●

●●●●

●●

●

●

●

●

●●●

●

●

●●
●

●

●

●●

●

●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●●●●●

●

●

●

●●●●

● ●●●●●●●●●●●●●●●● ●●●●

●

●

●●

●

●

●●

●

●

●●●●

●

●●

●

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

U
bu
nt
u

M
ac

R
ed
ha
t

0.0

0.5

1.0

1.5

2.0

En
tro
py

2.3

Rachota Buddi JabRef JEdit DrJava

(b) Uncontrolled Environments

Fig. 7: Entropies of GUI-State Groups of 3 Platforms in Best & Uncontrolled Environments

TABLE X: (Potential) False Positives detected by GUI State Oracle (%)

FP(%) Rachota Buddi JabRef JEdit DrJava
Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat Ubuntu Redhat

No Init 48.17 38.78 0.22 2.94 0 1.00 2.22 0.28 10.22 11.33
D-0ms 2.22 3.06 0.06 4.22 1.83 12.28 2.50 4.61 0.22 3.44
D-50ms 2.44 5.94 0.50 1.56 27.33 1.06 0.72 1.17 0 1.61
D-100ms 1.22 9.33 0.22 1.57 1.00 0.61 0.22 0.06 0 3.72
D-200ms 4.44 1.28 0 2.56 0.50 0.72 0.11 0.06 65.22 2.39
Opn-6 3.39 2.61 1.78 22.22 0 0.56 0.39 0.44 0.83 3.44
Orc-7 2.83 3.83 26.61 23.89 0 1.83 17.67 1.22 0.17 3.11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

En
tro

py
 o

f T
es

t C
as

es

D
−0

m
s

D
−5

0m
s

D
−1

00
m

s

D
−2

00
m

s

N
o

In
it

O
pn
−6

O
rc
−7

●

● ●
●

● ●

●

●

Code Coverage on Redhat
GUI State on Redhat

(a) JabRef on Redhat

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

En
tro

py
 o

f T
es

t C
as

es

D
−0

m
s

D
−5

0m
s

D
−1

00
m

s

D
−2

00
m

s

N
o

In
it

O
pn
−6

O
rc
−7

●

●

● ●
● ●

●

●

Code Coverage on Redhat
GUI State on Redhat

(b) JEdit on Redhat

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Av

er
ag

e
En

tro
py

 o
f T

es
t C

as
es

D
−0

m
s

D
−5

0m
s

D
−1

00
m

s

D
−2

00
m

s

N
o

In
it

O
pn
−6

O
rc
−7

●

●

●
●

●

●
●

●

Code Coverage on Redhat
GUI State on Redhat

(c) DrJava on Redhat

Fig. 8: Average Entropy: Code Coverage vs GUI State

more than 6%), however it is only 0 in a few cases (such as
Buddi on Mac). The high false positive rate is concerning for
experiments that report on new techniques and finding faults.
This data also concurs with other recent work on flakiness
which uses fault detection as the metric (see Luo et al. [26]).

Figure 7 shows the distribution of entropies for interface
state for the 200 test cases. Figure 7(a) shows the entropy
rate is very low for all 5 applications in the best controlled
configuration, but that in 7(b) there is a higher median entropy
when we leave our factors uncontrolled. Finally we show the
false positives for the other experimental configurations in

Table X. The results show that this level of information is
sensitive to the initial state, delay values, and Java version.

To study a possible correlation between the stableness of
code coverage and GUI state layers, we plot curves of average
entropies in Figures 8a - 8c, for 3 applications on the RedHat
platform. We see that the unstableness in code coverage is
generally greater than the GUI state. But we don’t see a
correlation between the two. Figure 8b shows a big difference
in code coverage and GUI state entropy; sometimes code
coverage is unstable when GUI states are stable. Figure 8c
shows this trend.

D. Discussion and Guidelines
We have seen some interesting results during these exper-

iments. First, in almost none of our layers were we able to
completely control the information obtained. We saw instances
of an application with zero entropy for one or two of the
testing configurations, but in general most of our results had a
positive entropy meaning at least one test case varied. Some of
the greatest variance appears to be related to the delay values
and issues with timing which are system and load dependent.
Since this might also be an artifact of the tool harness that
we used (GUITAR), we wanted to understand the potential
threat to validity further, therefore we ran an additional set of
experiments using the Selenium test case tool which automates
test execution on web applications.

We selected a web application that has existing test cases
called schoolmate version: 1.5.4. It was used as one of
the subjects by Zou et al. in [40]. SchoolMate is a PH-
P/MySQL solution for elementary, middle and high schools.
We randomly selected 20 of the test cases and modified the
delay values of the test cases to be 0ms, 100ms and 500ms.
We ran each 10 times as we did in our other experiments. Six
of the twenty test cases failed at least once (and 5 failed in all
10 runs) when the delay value was 0ms or 100ms. This shows
us that the delay value is relevant in other tools as well.

One might expect monotonic behavior with respect to the
delay, but we did not observe this. Since tools such as GUITAR
cannot use human input to advise them about which properties
to wait for, they use heuristics to detect an application steady
state. The delay value says how long to wait before checking
for a steady state. In some applications, there are system events
that check periodically for a status, such as timing or reporting
events. Since these run at intervals (and the intervals may
vary), they create a complex interaction with the delay value,
resulting in unpredictable behavior.

We also found some interesting application specific issues
such as code which is dependent on the size of memory the
application is using, the time of day that the application is
run or the time it takes to refresh a screen. For instance,
one application had a 30 day update mechanism and we just
happened to run one of our early experiments on the 30 day
update (and covered new/additional code). Had we been run-
ning a real experiment, we might have incorrectly reported that
our technique was superior. With respect to operating system
differences, we saw three primary causes. Some differences
are due to permissions or network connections. For instance,
Rachota will send requests to a server using the network
and these calls were blocked on the Mac experiments. We also
saw differences with system load. Certain code is triggered if
the application takes longer to perform a particular task or
if the resolution is different. This is not necessarily due to
differences in the operating systems, but is machine specific.
Last, we found code such as in JabRef that only runs under
specific operating systems enclosed within if-blocks.

We did find that we could control a lot of the application
starting state and configurations by judicious sharing of the
starting configuration files, and that if we heuristically find a

good delay value for a specific machine it is relatively stable.
The invariant layer was our most stable layer, which indicates
that the overall system behavior may not be as sensitive to our
experimental factors. Despite our partial success, we believe
there is still a need to repeat any tests more than once.

Our overall guidelines are:
1. Exact configuration and platform states must be re-
ported/shared. When providing data for experimentation or
internal company testing results, the exact configuration infor-
mation, including the operating system, Java version, harness
configurations/parameters and the application starting state
needs to be shared.
2. Run Tests Multiple Times. For some of the differences
observed we do not see an easy solution and expect some
variance in our results. Therefore studies should include mul-
tiple runs of test cases and report averages and variances of
their metrics, as well as sensitivity of their subjects to certain
environmental conditions (e.g., resources, date/time).
3. Use Application Domain Information to help reduce some
variability. For instance, if the application uses time, then
clearly this is an environmental variable that needs to be set.
But we found others such as memory variances, file permission
variances, and simple timing delays within the application that
would vary. Knowing what some of these are may allow you
to remove that variable code from the evaluation.

V. CONCLUSIONS

In this paper we have identified three layers of information
that are sensitive to a set of factors when performing automated
testing of SUITs. We performed a large study to evaluate
their impact. The largest variance was at the bottom and top
layer (the code and GUI state layers). When we controlled
our factors we saw as little as zero difference in variation,
but had entropies as high as 2.3 (where each test run differed)
when we did not control these. Despite seeing a lower entropy
at the middle, or behavioral level, we did find some cases
where invariants differed between runs. Our recommended
practice is that all results for testing from the user interface
should provide exact configuration and platform as well as
tool parameter information. We also recommend running tests
more than once and providing both averages and ranges
of difference since we are unable to completely control all
variation. Finally, we believe application domain information
may help to alleviate some parts of the code that are known
to be variable based on runtime factors (such as memory
allocation or monthly updates) that testing cannot control. In
future work we plan to expand our experimentation to other
types of applications and look at ways to remove some of the
innate application specific variance.

VI. ACKNOWLEDGMENTS

We thank M. Roberts for help with Daikon. This work was
supported in part by NSF grants CNS-1205472, CNS-1205501
and CCF-1161767.

REFERENCES

[1] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in Proceedings of the 12th ACM SIGSOFT Twelfth
International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’04/FSE-12, 2004, pp. 241–251.

[2] A. Marback, H. Do, and N. Ehresmann, “An effective regression testing
approach for php web applications,” in Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, ser. ICST ’12, 2012, pp. 221–230.

[3] Selenium - Web Browser Automation, 2014 (accessed September 2014).
[Online]. Available: http://www.seleniumhq.org/

[4] Mozmill - Mozilla — MDN, 2014 (accessed September 2014).
[Online]. Available: https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/Mozmill

[5] Automation Testing Software Tools, QuickTest Professional, (Unified
Functional Testing) UFT — HP Official Site, 2014 (accessed
September 2014). [Online]. Available: http://www8.hp.com/us/en/
software-solutions/unified-functional-testing-automation/

[6] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing
by checking invariant violations,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09, 2009, pp. 69–80.

[7] M. Pradel, “Dynamically inferring, refining, and checking api usage
protocols,” in Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’09, 2009, pp. 773–774.

[8] S. Arlt, C. Bertolini, and M. Schaf, “Behind the scenes: An approach to
incorporate context in GUI test case http://comet.unl.edu/generation,” in
Software Testing, Verification and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, March 2011, pp. 222–231.

[9] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided test generation for web applications,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13,
2013, pp. 162–171.

[10] A. Marchetto and P. Tonella, “Using search-based algorithms for ajax
event sequence generation during testing,” Empirical Softw. Engg.,
vol. 16, no. 1, pp. 103–140, Feb. 2011.

[11] A. Mesbah and A. van Deursen, “Invariant-based automatic testing of
ajax user interfaces,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09, 2009, pp. 210–220.

[12] A. Marchetto, F. Ricca, and P. Tonella, “An empirical validation of a
web fault taxonomy and its usage for web testing,” J. Web Eng., vol. 8,
no. 4, pp. 316–345, Dec. 2009.

[13] S. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Event listener
analysis and symbolic execution for testing GUI applications,” in Formal
Methods and Software Engineering, ser. Lecture Notes in Computer
Science, K. Breitman and A. Cavalcanti, Eds., 2009, vol. 5885, pp.
69–87.

[14] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based GUI testing of an android application,” in Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International
Conference on, March 2011, pp. 377–386.

[15] Z. Yu, H. Hu, C. Bai, K.-Y. Cai, and W. Wong, “GUI software
fault localization using N-gram analysis,” in High-Assurance Systems
Engineering (HASE), 2011 IEEE 13th International Symposium on, Nov
2011, pp. 325–332.

[16] B. U. Maheswari and S. Valli, “Algorithms for the detection of defects
in GUI applications.” Journal of Computer Science, vol. 7, no. 9, 2011.

[17] C.-Y. Huang, J.-R. Chang, and Y.-H. Chang, “Design and analysis of
GUI test-case prioritization using weight-based methods,” Journal of
Systems and Software, vol. 83, no. 4, pp. 646 – 659, 2010.

[18] N. Alshahwan and M. Harman, “Augmenting test suites effectiveness
by increasing output diversity,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12, 2012, pp. 1345–
1348.

[19] ——, “Coverage and fault detection of the output-uniqueness test
selection criteria,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014, 2014, pp. 181–192.

[20] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test case prioritization
for regression testing of service-oriented business applications,” in
Proceedings of the 18th International Conference on World Wide Web,
ser. WWW ’09, 2009, pp. 901–910.

[21] N. Alshahwan and M. Harman, “Automated web application testing
using search based software engineering,” in Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software En-
gineering, ser. ASE ’11, 2011, pp. 3–12.

[22] T. Yu, W. Srisa-an, and G. Rothermel, “An empirical comparison of the
fault-detection capabilities of internal oracles,” in Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on, Nov
2013, pp. 11–20.

[23] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, “Automated
replay and failure detection for web applications,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05, 2005, pp. 253–262.

[24] F. Zaraket, W. Masri, M. Adam, D. Hammoud, R. Hamzeh, R. Farhat,
E. Khamissi, and J. Noujaim, “Guicop: Specification-based gui testing,”
in Proceedings of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, ser. ICST ’12, 2012, pp.
747–751.

[25] P. Tramontana, S. De Carmine, G. Imparato, A. R. Fasolino, and
D. Amalfitano, “A toolset for gui testing of android applications,” in
Proceedings of the 2012 IEEE International Conference on Software
Maintenance (ICSM), ser. ICSM ’12, 2012, pp. 650–653.

[26] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Foundations of Software Engineering (FSE), November
2014, to appear.

[27] A. M. Memon and M. B. Cohen, “Automated testing of GUI applica-
tions: Models, tools, and controlling flakiness,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE ’13,
2013, pp. 1479–1480.

[28] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit test generation
for classes with environment dependencies,” in IEEE/ACM Int. Confer-
ence on Automated Software Engineering (ASE), 2014, to appear.

[29] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin, “Empirically revisiting the test independence assumption,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014, 2014, pp. 385–396.

[30] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test suites
using a genetic algorithm,” in International Conference on Software
Testing, Verification and Validation (ICST), April 2010, pp. 245–254.

[31] COMET - Community Event-based Testing, 2014 (accessed September
2014). [Online]. Available: http://comet.unl.edu/

[32] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression
testing: An empirical study of sampling and prioritization,” in Interna-
tional Symposium on Software Testing and Analysis, ISSTA, July 2008,
pp. 75–85.

[33] X. Yuan, M. Cohen, and A. M. Memon, “Covering array sampling
of input event sequences for automated GUI testing,” in International
Conference on Automated Software Engineering, 2007, pp. 405–408.

[34] “GUITAR – a GUI Testing frAmewoRk,” website, 2009,
http://guitar.sourceforge.net.

[35] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: an
innovative tool for automated testing of gui-driven software,” Automated
Software Engineering, pp. 1–41, 2013.

[36] Cobertura, 2014 (accessed September 2014). [Online]. Available:
http://cobertura.github.io/cobertura/

[37] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1–3,
pp. 35–45, Dec. 2007.

[38] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-based
test generation for improved fault localization,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
Nov 2013, pp. 257–267.

[39] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons, and M. Harman,
“An analysis of the relationship between conditional entropy and failed
error propagation in software testing,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014,
2014, pp. 573–583.

[40] Y. Zou, Z. Chen, Y. Zheng, X. Zhang, and Z. Gao, “Virtual DOM cov-
erage for effective testing of dynamic web applications,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
ser. ISSTA 2014, 2014, pp. 60–70.

