
Scalable System Environment Caching and Sharing for Distributed Virtual
Machines

Teng Long∗, Ilchul Yoon†, Alan Sussman∗, Adam Porter∗ and Atif Memon∗
∗Department of Computer Science, University of Maryland, College Park, USA

{tlong,als,aporter,atif}@cs.umd.edu
†Department of Computer Science, State University of New York, Incheon, South Korea

icyoon@sunykorea.ac.kr

Abstract—Virtual machines have become very widely used in
many software development communities. Developers can con-
veniently provision specific machine configurations using VMs,
and those VMs can contain operating systems, libraries, and
other applications required to build and execute their software
under development. However, the size of full VM images and
network bandwidth limitations makes large-scale reuse of VMs
among distributed groups of developers extremely difficult. In
this paper we address the problem of provisioning software
configurations realized as virtual machine images rapidly and
incrementally from a set of pristine VM states, by caching and
sharing configuration fragments between developer groups. We
first formally model the entire configuration space that might
be cached and shared between groups, describe the design
of our infrastructure to incrementally provision configurations
from its fragments, and finally evaluate the performance of
our approach with an example scenario common in software
testing. Our experimental results show that our approach can
help developers reduce the time and resource requirements for
provisioning software configurations.

I. INTRODUCTION

Virtual machine images have recently been used for

many purposes, such as preserving and distributing operating

system states [1], encapsulating and exchanging software

system configurations [2], and being provided to end users

in an IaaS infrastructure as the initial state of a cloud

environment [3]. In many instances the content of a base

system in a virtual machine is updated incrementally, and

being able to cache and share the intermediate states created

by each update is essential for some applications and tools

that rely on virtual machines [2], [4].

Currently, such intermediate system states are usually

captured and shared as full virtual machine images. The

size of such files is likely to be very large (i.e. GBytes),

which makes it infeasible to cache a large number of

them in a local repository, or to move them frequently

across a wide-area network. For example, for automated

software testing tools that rely on virtual machine caching

and reusing to test software functionality and interoperability

over multiple software configurations, the number of states

being cached can greatly affect performance [5]. Perfor-

mance improvements can be large especially when there are

dependencies between software developed by independent

groups of developers. In that case, the developers can greatly

decrease testing time and effort by sharing and reusing many

configurations that are identical and required for testing

their software [6]. So collaborative testing of software by

geographically distributed developer groups is a major usage

case for the methods described in this paper. For collabora-

tive software testing it is critical to employ a technique that

reduces the space required for saving software configurations

realized in cached virtual machine images.

We have observed that in many usage cases of sharing and

caching virtual machine images, the content encapsulated

in a system image can be divided into (1) a pristine state

of the system (often a base operating system installation)

and (2) an incremental update from that pristine state.

All cached virtual machine images originate from a small

number of pristine system states. The pristine systems are

usually very large, while the incremental updates to them

are relatively small. With proper tools and infrastructure, it

is possible to cache and share only the incremental parts to

the pristine states. This enables storing many system states

in a fixed amount of space, and rapidly reconstructing the

states by retrieving only the incremental updates from a

local repository or across wide-area network, when a tool

or application wants to share the states.

In this paper, we formally model the procedure of incre-

mental updates to pristine system environments. We have

also developed an infrastructure called Ede (Environment

Differencing Engine (pronounced the same as Eddy) to sup-

port efficient system environment differencing and scalable

system environment sharing between distributed sites. Ede
contains a set of tools to acquire the incremental parts of a

system from a pristine state, and to restore the system state

from a pristine state using an incremental update. Ede also

operates a centralized repository for clients in distributed

sites to share and request desired VM environments effi-

ciently via the Internet. We apply this infrastructure to a

software testing scenario and evaluate the benefits obtained

by caching and sharing incremental parts of system environ-

ments instead of full virtual machine images. Experimental

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.98

860

�������	
����������	

����������
			�����
�	��	
�� 	�������	 	���

��������	 ��������	

	
�
�	 ���	���	��

	
��	
�
�	 ���	���	��
�	 ���	���	���	��
�	 ���	���	���	���	��
�	 ��

*

+ D

B C

*

E

*

F

*

G

A

Figure 1. An Example System Model

data suggests that developers can save significant time and

space using this infrastructure.

The rest of the paper is organized as follows. Section II

is an overview of component-based software testing that in

particular relies on environment (virtual machine) caching

and sharing for good performance. Our techniques that

reduce the size of cached virtual machine states have been

developed mainly to support this type of software testing,

although the techniques are applicable for other purposes, as

we have described earlier. Section III formally models the

process of applying incremental updates to pristine system

environments in virtual machines. Section IV introduces the

infrastructure we designed to support scalable environment

caching and sharing. In Section V we describe how the

infrastructure can be used to support the software testing sce-

nario from Section II and evaluate the performance benefits

from using the infrastructure. Section VI discusses related

research, and we wrap up in Section VII with conclusions

and a discussion of future work.

II. BACKGROUND AND MOTIVATION

In this section we introduce the process of collaborative

building and functional testing of component-based software

systems, which is the scenario of using virtual machine

images to cache and share system environments for the

testing. Section II-A addresses our prior work on modeling

component-based software systems, Section II-B introduces

Rachet [2], an automatic build test system that relies on vir-

tual machines to test component-based systems in a parallel

and distributed manner, and finally Section II-C describes

a scenario of reusing prebuilt virtual machine images to

conduct collaborative functional testing.

A. Annotated Component Dependency Model

We model component-based systems using a represen-

tation called ACDM (Annotated Component Dependency

Model) [2] [5]. The model consists of two parts: a directed

acyclic graph called Component Dependency Graph(CDG)
and a set of Annotations. As illustrated in Figure 1, circular

nodes in a CDG represent uniquely identifiable components,

Flood

*

*

*

Managelogs

*

*

Serf

*

*

Subvers ion

*

Neon

BerkeleyDB

*

APR-Util

*

*

APROpenss l

SQLite

Zlib

GNU Compiler

Ubuntu

Figure 2. Systems with Common Components

and inter-component dependencies are modeled by connect-

ing nodes with AND(*) or XOR(+) relationships represented

as rectangular nodes. For example, in Figure 1 component

A depends on component D and either one of B or C.

Dependency between components means that a component

requires other components at build-time, run-time, or both.

Annotations in this example include version identifiers for

components, and constraints between different components

and component versions, written in first-order logic.

When different software systems share components, re-

lationships between the systems are represented by an in-

tegrated CDG with overlapping sub-graphs. The example

CDG in Figure 2 shows that four top-level components (Serf,
Flood, Subversion and Managelogs) depend on different

sets of components that provide features required by the

components. However, there are overlaps between the set

of provider components. Note that the APR component is

required by all top-level user components. This suggests

that all top-level component developers will use their test

resources to build the components contained in the shared

sub-graph, rooted at the APR node, and moreover they will

test the behavior of the overlapped components to ensure

error-free builds of the top-level component. We will discuss

more details about the testing procedure for this scenario in

Sections II-B and II-C.

B. Testing Component-based Systems in Parallel

As presented in Figure 1, individual components can have

many versions and this will result in a large number of

component version combinations on which the correctness of

the build and functionality of the top-level component have

to be tested. Each combination is called a configuration. In

our previous work, we developed Rachet, an automatic tool

to perform the build testing of component-based software

systems. Rachet utilizes virtual machines hosted in multiple

compute nodes of a high-performance compute cluster or a

private cloud to build and test configurations.

861

Building each configuration individually can be very

time-consuming and is unnecessary. First, there could be

identical components to build for two different configu-

rations. For example, in Figure 1, building configuration

{G1E1F1B1C1D1A1} and {G1E1F1B1C1D2A1} involves

building the same set of components {G1E1F1B1C1} at the

beginning of their build paths. Rachet therefore uses only

one VM to build these components, then make a copy of the

virtual machine image and continues with the two branched

building proceduress in two VMs. On the other hand, if there

exists a virtual machine image in the cache that contains the

set of components {G1E1F1B1C1}, Rachet will reuse that

VM image and only build the missing set of components

in that VM. In [5], we showed that the number of virtual

machine images that can be cached significantly reduces the

overall testing time.

However, the cache available locally on each compute

node is limited and therefore it is infeasible to cache a

large number of virtual machine images locally, nor can we

transfer such images from caches of other Rachet processes.

It takes minutes to transfer a virtual machine image even

on a LAN environment. This means that building some

components have to be repeated multiple times, because

Rachet will rebuild components if the cost of reusing cached

configurations is higher. If we have a cost-effective method

to reduce the size of data required to reconstruct each cached

virtual machine image, significant time would be saved by

avoiding redundant component builds.

C. Collaborative Testing across Distributed Sites

Rachet tests the build-compatibility of a component-based

system over many configurations in parallel, at a local cluster

environment. However, since components required for such

a system are in many cases developed by different parties,

testers of these components may also run their own tests

at their local sites. Our previous research [6] showed that

redundant test efforts were spent by software testers. Similar

to reusing locally cached virtual machine images, testers

would be able to save build effort if they can share their

cached build artifacts efficiently via the network.

There are two challenges preventing testers from sharing

build artifacts. First, sharing whole virtual machine images

is infeasible because of the bandwidth limit of wide-area

network. Second, different testers may use different virtual-

ization techniques, thus shared virtual machine images may

not always be compatible with local virtual machine hosting

systems. To enable collaborative testing across distributed

sites, we need a method that greatly reduces the size of

the test environment data being shared, and also allows

the reuse format independent from specific virtualization

systems used.

III. PROBLEM MODELING

We now model incremental updates to system environ-

ments in virtual machines.

Definition Update: an update to a system state is defined as

an atomic and deterministic operation that causes a change

to the state of the system.

Definition Pristine State: the pristine state of a system is an

arbitrary state that a system maintainer chooses as the base

state before any updates. Any update to the pristine state is

considered an incremental update to the pristine state.

We model the states of system environments as a de-

terministic state machine. The same system must always

start from the same pristine state, so that it can be updated

deterministically by applying a set of updates. Each update

will change the state of the system environment to another

known state. Therefore when different users apply the same

set of updates to the same pristine system environment, they

will create identical states of the environment. Therefore we

make the following claim:

A state of a system environment can be deterministically

reconstructed by applying a series of updates onto a pristine
state.

A user A who shares the same set of system environment

pristine states and the same update space with another user

B does not need to send the whole system environment to B
in order to reconstruct a given environment state as long as

the user B already has the identical pristine state. Instead A
just needs to send the set of updates that should be applied

to the pristine state locally available in B. B can then replay
the updates onto its pristine state to reconstruct the desired

environment state.

The cost of producing updates for the first time will be

much more expensive than replaying the updates later. The

tester who generates an update previously non-existent will

have to first build a component from its source code and then

deploy produced files including the binary code. However,

for replaying the update, testers will only need to acquire the

update and deploy the files included in the update into their

system environments. This update sharing and incremental

replaying at distributed sites will greatly reduce overall test

efforts.

IV. INFRASTRUCTURE DESIGN

In this section we describe an infrastructure called Ede
(Environment Differencing Engine) and apply the incremen-

tal update approach to the component-based software testing

scenario discussed in Section II.

As defined in Section III, the update operation is em-

bodied as building and deploying a component on a sys-

tem environment. We start by explaining methods that can

identify the parts of a pristine state realized as a virtual

machine image, extract incremental parts from the pristine

862

����
����	
����

�����
���

�����������

���
����� �

��
��������
����
���

�
���������

Figure 3. High-level Design of Ede Infrastructure

state once the system is modified by building and deploying

components, and finally apply the updates to another pristine

state. We also describe the design of an online repository

that enables users to efficiently and effectively share the

data on reusable system environments. The repository can

answer the queries on system environment states that contain

specific sets of deployed components. The Rachet build

testing tool is updated to support the caching and sharing

of artifacts that contain incremental state data instead of full

virtual machine images.

The high-level design of Ede is shown in Figure 3. Ede
can have multiple clients and environment providers, and the

system in Figure 3 has one of each. Every Ede client has two

parts: a local agent and virtual machine(VM) instance(s).
The local agent acquires pristine virtual machine instances,

controls the state of each VM instance managed by the

agent by applying the update operations. The local agent

accomplishes this by communicating with a process called

VM agent running inside each VM instance. The process is

invoked when the VM boots up and executes commands for

various tasks required for managing the VM state.

When the VM agent receives from the local agent the

information on the system environment that needs to be

provisioned, it first queries the data repository to search for a

prebuilt system environment. If found, the agent updates the

VM state to the specified state and informs the local agent

that the environment is ready. Otherwise, the local agent is

responsible for provisioning the desired system environment

locally, which means that required components should be

built in the VM from a pristine state or from another locally

stored system environment.

The data repository and the environment providers are the

sources where VM agents look for prebuilt system environ-

ments. The data repository and the environment providers

will be located in different sites. The provider creates

prebuilt system environments, stores both the environments

and the update files in its local file server, and register the

environments to the data repository. When a query for a

specific environment is submitted to the data repository, the

URL for the incremental update file located in a file server

is returned to the VM agent. Since each test site will run

both the Ede client and the environment provider, the file

server containing the update files would be often the one

co-located with the Ede client.

In the following sections we discuss the structure of each

part of Ede in more detail.

A. Obtaining Pristine States and Incremental Updates

The procedure for using Ede has three phases:

1) Select and “sign” a pristine state of a system environ-

ment, and share the state with all participants.

2) Update a pristine system environment and obtain incre-
mental updates.

3) Transport the incremental updates to another participant

who knows of the same pristine state, and apply the

updates to a local copy of the pristine state.

As we discussed in Section III, all participants who want

to share system environments have to consent to the same set

of pristine states. Thus phase 1 only needs to be executed

once, and then copies of all virtual machine images that

realize the selected pristine states will be shared by all

participants. Afterwards, the sharing and caching activities

will require only phase 2 and/or phase 3.

For the software testing scenario aforementioned, the set

of components deployed in a system is considered as a sys-

tem environment. In typical Unix/Linux systems, deploying

a component involves copying binary files to the correct

directories with proper permissions, creating symbolic links

and setting up environment variables.

Based on the rdiffdir utility [7] for Unix/Linux, we devel-

oped a tool that performs three operations: sign, update and

replay. The sign operation is used to set a system state as

a pristine state. This is done by creating a signature file for

all the files under the monitored directories. The signature

file describes the state of all monitored files at the binary

level, and is shared to all participants together with the

virtual machine image that realizes the pristine state. When a

participant changes files under in the monitored directories

(i.e., the system environment has been updated), the diff
operation is executed to identify the update information from

the pristine state. The incremental updates are encapsulated

as delta files. Since each sharing party has a copy of a

pristine state and its signature file, only delta files needs to

be transported for other participants to apply the updates.

When a participant receives a delta file, the participant

can execute the replay operation to reconstruct the updated

system environment by applying the updates contained in

the delta file on the pristine system state.

B. Updating Repository

The data repository provides a set of SOAP-based Web

services. The users of the repository are automated software

testing systems and they will insert and request system

environments at run time during test sessions. Therefore the

863

���

�� �

!� ! �� � !� ! �� �

��

�� �

!� ! �� � !� ! �� �

Figure 4. Example Environment Space

repository must be designed to address two major issues:

(1) how to store the delta files for all available system

environments and (2) how to answer the queries efficiently.

As mentioned earlier in this Section, the repository does

not store the delta files locally. Instead the repository stores

URL to the delta files registered to the repository. System

environment providers are responsible for registering the

environments stored in their file systems. Since a tester often

plays both the role of environment provider and environment

consumer in the testing scenario, the delta files would be

stored in the file server owned by the tester. That is, each

tester will create and store a set of system environments and

updates locally and register them to the repository. When

other participants later requests the registered environments,

the requests will be redirected to the file server owned by

the tester. It is also possible that a provider registers an

environment to the repository and then deletes it from its

local file server due to the limited space. In that case, the

participant requesting the environment will get a failure

message and will have to rebuild the environment from

scratch on a pristine state.

From the model described in Section III, if we have the

complete information on all available pristine states and

possible updates, the space of all system environments can

be determined. For example, consider two pristine states:

OS1 and OS2, and suppose that we install component A
followed by B or C, each of which has two versions.

Then, the full environment space can be represented as

the forest shown in Figure 4. Each path from a root to a

node in the forest represents a feasible system environment.

The data repository builds and maintains the forest when

environments are registered. The complexity for querying an

environment will be O(logN
m) for the average cases, where

N is the total number of available environments, and m is

the total number of available pristine system states.

Subvers ion

*

*

*

Neon

BerkeleyDB

*

APR-Util

*

*

*

APR

*

OpenSSL SQLite

Zlib

GNU Compiler

Ubuntu

Figure 5. CDG for testing Subversion

Component Description
Subversion version control system
Neon HTTP and WebDAV client library
Zlib compression library
BerkeleyDB library for embedded database
APR supporting library for Apache projects
APR-util support library for APR
SQLite SQL database engine
Openssl open source toolkit for SSL/TLS
Gcc GNU C compiler
Ubuntu Ubuntu Operating System

Table I
COMPONENTS REQUIRED FOR TESTING SUBVERSION

V. EXPERIMENTS

In this section we evaluate the performance of our infras-

tructure when it is used for the component-based software

testing scenario. We first record the size of delta files and

the time to obtain and replay delta files when updates are

applied to the pristine state. We also estimate the time that

saved by employing our infrastructure.

A. Virtual Machine Agent Performance

We incrementally build and deploy a set of software

components as shown in Figure 5 to a pristine state (an

installation of Ubuntu 13.04 server edition), obtain a delta
file after deploying each component, and apply it to another

pristine state. The descriptions on the components in Fig-

ure 5 are given in Table I.

The pristine system is hosted as an instance of a Virtual-

Box virtual machine and we allocated 2048MB of memory

for the virtual machine. The size of delta files and the times

to apply the delta files are shown in Figure 6 and Figure 7.

Figure 6 and Figure 7 clearly show that our environment

differencing technique can greatly reduce the size of system

environments and enables developers to reconstruct environ-

ments required for testing their software with little overhead

864

�

�

�

�

�

��

��

��

� � � � 	 �
 � �

��
�

��
��

�	

��

�

�
���
��
���������������������

�
���������������

�����������������

Figure 6. Average Times to Obtain and Replay Delta Files

�

��

��

��

��

	�

��

� � � � 	 �
 � �

��
��

��
��	

�

��

���

�

�
��

������������������	��
����

Figure 7. Delta File Sizes

of obtaining and replaying delta files.

In Figure 6, we observe that the average time cost to

both obtain and replay a delta file are around 10 seconds

and increasing very slowly when the number of components

in a dela file increases. Although not shown in this paper,

the times are very small compared to the times to build

individual components from source code [2]. Figure 7 shows

that the size of a delta file does grow linearly as the number

of components installed in the system increases, but is still

considerably smaller than a typical full virtual machine

image, and therefore it is feasible to cache a large number

of delta files locally and/or also transport them over a wide-

area network.

B. Collaborative Testing with Rachet

In order to measure the savings achieved by employing

our infrastructure, we recorded total times to build compo-

nents in the CDG in Figure 8 on virtual machines running on

VirtualBox. For each component, we only recorded the time

required for building the component itself, assuming that

all other components it relies on are available in a system

environment – i.e., they are already built and deployed in

the virtual machine. In Figure 8, the top-level components

are SVNKit and Serf. SVNKit is an Open Source Pure Java

Subversion Library, and Serf is a high performance C-based

HTTP client library. For each component, we monitored all

version releases over one year, and each version is tested

with existing versions of the components it depends on,

and testing of any components that are built upon this new

version will be triggered as well. The direct-dependency

SVNKit

Subvers ion

Serf

*

APR-Util

**

*

Neon

BerkeleyDB

*

*

*

APR

*

OpenSSL

SQLite

Zlib

GNU Compiler

Ubuntu

Figure 8. Integrated CDG for Subversion and Serf

coverage (DD coverage [2]) criterion is used to calculate

what new configurations introduced by the new component

version should be tested. We also include component ver-

sions released in the two years before 8/3/2012, so that they

are tested together with components released in the one year

period. We then feed the times to build the components

into a simulator to calculate the total times to build all the

components in the CDG with three different cases we now

describe.

In the first case, testers of SVNKit and Serf build their con-

figurations separately within two different Rachet sessions.

Each Rachet session reuses full virtual machine images, so

there is a limit on the number of cached system environ-

ments. We set the maximum number of environments that

can be cached to 16 for this experiment, assuming that a

single virtual machine takes 1GB and each Rachet node has

roughly a 20GB of environment cache space.

In the second case, both testers cache incremental updates

instead of full virtual machine images for their Rachet
sessions. Based on the sizes of delta files, as shown in

Section V-A, the maximum number of cached delta files is

set to 1000. Although they use incremental updates, they still

test isolated without collaboration. In the third case, the two

testers exchange and reuse delta files with each other via the

data repository. Since delta files are small and also multiple

data servers are used, we did not restrict the cache size for

this case. We then record the total time each tester has to

spend on provisioning the system environments required for

building and testing their components.

Columns two to four of Table II show the total wall

clock time for the testers of the two top-level components to

build their test environments that might be realized in a end-

user’s machine during the selected one year. The last two

865

Component Case 1 Case 2 Case 3 Save-1(%) Save-2(%)
SVNKit 2495128 683246 24378 72.6 99.0

Serf 90812 27020 13742 70.2 84.9
total 2585940 710266 38121 72.5 98.5

Table II
TIMES TO BUILD COMPONENTS (SEC.) AND TIME SAVINGS(%)

columns show the time savings from caching more system

environments in the limited space and also from sharing the

environments across the testers. We see in Table II that the

technique to cache and share delta files for reconstructing

system environments boosted the performance of Rachet
significantly. This is mainly because Rachet was able to

cache a large number of system environments in the cache

space. The environment provisioning time is reduced by

72.6% for SVNKit, and 70.2% for Serf. When we assume

that Ede is used to share environments between the testers,

we see a very large time savings. 99.0% of the testing time

can be saved for SVNKit, compared to the case of using

Rachet without the techniques we have described in this

paper. Similarly, we see an 84.9% time savings for Serf.
It is clear that using Ede greatly improves the performance

of automatic testing systems by caching many system states

and also by sharing test environments between testers.

VI. RELATED WORK

In this work, we focus on enabling a distributed set

of users to share and cache virtual machine system states

efficiently, by enabling users to only update from the same

set of initial states. We employ binary-level system backup

and restore tools to obtain incremental changes from the

initial states. Using the smaller size of the incremental parts

of the virtual machine states, instead of full virtual machine

images, makes caching and sharing more scalable. To the

best of our knowledge, we are the first group to adapt

incremental system backup techniques for this purpose.

However, there are studies that address related aspects of

the problem.

SnowFlock [8] enables rapid virtual machine cloning for

cloud computing. The system forks a large number of virtual

machine states efficiently from the same initial instance,

and deploys them as individual workers to multiple hosts

for cloud computing. Different from Ede, forked virtual

machines are no longer related to each other, and there

is no exchange of states after the initial fork. In addition,

the virtual machines deployed to multiple hosts are full

VM images, so scalable caching and transport of those

image would be infeasible, or very expensive. VMPlants [9]

provides the automated configuration and creation of flexible

VMs that can be configured once and then instantiated in a

homogeneous execution environment. That system focuses

more on automatic adaptation to different host environments

instead of the guest environments within virtual machines.

VMware Workstation 8 and later versions can provide shared

virtual machines to multiple users [10], but the machines

are hosted and manipulated at a single site, and remotely

accessible by the users. None of these systems address

the problem of caching and reusing large virtual machine

images.

Incremental backup of various system environments is a

well developed technique, and there are many such options

for Unix/Linux based operating systems. The most common

ones are dump and tar. dump provides different levels of

backups that save files with variable frequency, and tar is

widely used for not only backups but also data transport

because of its efficiency. There are also well known commer-

cial storage management systems that include incremental

backup functionality, such as ADSM [11][12] and Petal [13].

ADSM has the advantage of supporting on-line backup with

different levels of consistency, while Petal allows multiple

network-connected servers to operate on a pool of physical

drives.

Dolstra and Loh have developed a Linux-based operating

system distribution called NixOS [14], which has a pure

functional approach to system configuration management.

When NixOS gets updated, the system grows incrementally

and no old configuration gets overwritten. Rebuilding a

configuration is deterministic and relatively cheap. Further-

more, Burg and Dolstra deployed NixOS in virtual machines

and automated system tests in such VMs for configuration

specific testing [15]. QEMU [16] is another open source

processor emulator which supports live snapshots of the

guest OS it is running. The live snapshots also records

only incremental parts of file system updates. Even though

there are certain similarities between these work and ours,

the NixOS research is focusing on system testing in single

configurations and does not address distributed testing sites,

and the features of NixOS also cannot be generalized to

other systems. QEMU’s incremental live snapshot is not

generally available to other VM systems either, which cannot

support the heterogeneous environment of distributed virtual

machines.

VII. CONCLUSION AND FUTURE WORK

This work is driven by the need to reduce the space re-

quired to cache virtual machine states and the time to trans-

port virtual machine states across a network, specifically

targeting collaborative component-based software testing. In

our work, the content of system environments in virtual

machines are updated incrementally, and such incremental

updates can cost-effectively be cached and shared between

testers.

We have modeled a deterministic technique to update sys-

tem environments from incremental updates, and formally

defined the incremental updates on a pristine base system.

We have designed and developed an infrastructure called

Ede to support system environment caching and sharing

for automatic software testing systems. Ede can reconstruct

866

system environments required for testing incrementally. We

measured the space required to store delta files and also

the time for obtaining and replaying the delta files. We also

evaluated the performance of our infrastructure over one-

year’s data from incrementally testing a set of software com-

ponents using our Rachet automated software build testing

system. The experimental results show that Ede can create

and replay incremental changes to system environments in

virtual machines efficiently, and the size of such incremental

updates are small enough that they are suitable for large scale

caching and transporting across even wide-area networks.

When Rachet was modified to use Ede, the time Rachet
required for building test environments was significantly

reduced.
Our future work includes extending Ede to support better

Ede user authentication and developing methods to use en-

crypted delta files to improve security. We will also integrate

Ede more tightly into the entire process of collaborative

testing of component-based systems, including the testing

of Ede with different virtualization resources such as public

and private cloud computing infrastructure. We also plan to

enhance the mechanisms to identify and distribute pristine

systems.

ACKNOWLEDGMENTS

This work was partially supported by the US National

Science Foundation (ATM-0120950, CCF-0811284, CNS-

1205501, CNS-0855055), the National Research Foundation

of Korea (NRF-2013010695), and MSIP of Korea (NIPA-

2013-H0203-13-1001).

REFERENCES

[1] “Internet Explorer Application Compatibility VPC Image,”
http://www.microsoft.com/en-us/download/, 2014.

[2] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter, “Effective
and Scalable Software Compatibility Testing,” in Proceedings
of the 2008 International Symposium on Software Testing and
Analysis (ISSTA 2008), 2008, pp. 63–74.

[3] D. Milojičić, I. Llorente, and R. S. Montero, “OpenNebula: A
cloud management tool,” Internet Computing, IEEE, vol. 15,
no. 2, pp. 11–14, 2011.

[4] I. Yoon, A. Sussman, A. Memon, and A. Porter, “Testing com-
ponent compatibility in evolving configurations,” Information
and Software Technology, vol. 55, no. 2, pp. 445–458, 2013.

[5] ——, “Towards incremental component compatibility test-
ing,” in Proceedings of 14th International ACM SIGSOFT
Symposium on Component Based Software Engineering
(CBSE-2011). ACM, 2011, pp. 119–128.

[6] T. Long, I. Yoon, A. Porter, A. Sussman, and A. Memon,
“Overlap and synergy in testing software components across
loosely-coupled communities,” in Proceedings of the 23rd
IEEE International Symposium on Software Reliability En-
gineering (ISSRE 2012). Dallas, TX, USA: IEEE Computer
Society Press, 2012.

[7] “Duplicity: Encrypted bandwidth-efficient backup using the
rsync algorithm,” http://httpd.apache.org, 2014.

[8] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan, “Snowflock: Rapid virtual machine
cloning for cloud computing,” in Proceedings of the 4th
ACM European Conference on Computer Systems (EuroSys
’09). ACM Press, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1519065.1519067

[9] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and
R. J. Figueiredo, “VMPlants: Providing and managing
virtual machine execution environments for grid computing,”
in Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing (SC’04). IEEE Computer Society Press,
2004. [Online]. Available: http://dx.doi.org/10.1109/SC.2004.
67

[10] “Running VMware Workstation as a
Server with shared virtual machines,”
http://www.vmware.com/products/workstation/, 2013.

[11] “Distributed Storage Manager (ADSM) C
Distributed Data Recovery White Paper,”

http://www.storage.ibm.com/storage/software/adsm/adwhddr.htm .

[12] “Distributed Storage Manager (ADSM)
C Frequent Asked Questions,”
http://www.storage.ibm.com/storage/software/adsm/adwhddr.htm.

[13] E. K. Lee and C. A. Thekkath, “Petal: Distributed
virtual disks,” in Proceedings of the Seventh International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII). New
York, NY, USA: ACM, 1996, pp. 84–92. [Online]. Available:
http://doi.acm.org/10.1145/237090.237157

[14] E. Dolstra and A. Löh, “NixOS: A purely functional
Linux distribution,” ACM SIGPLAN Notices, vol. 43,
no. 9, pp. 367–378, Sep. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1411203.1411255

[15] S. van der Burg and E. Dolstra, “Automating system tests us-
ing declarative virtual machines,” in Proceedings of the 2010
IEEE 21st International Symposium on Software Reliability
Engineering (ISSRE 2010), 2010, pp. 181–190.

[16] “QEMU Open Source Processor Emulator,”
http://wiki.qemu.org/, 2014.

867

