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Abstract—Monkey Fuzz Testing (MFT), a form of random
testing, continues to gain popularity to test Android apps because
of its ease of use. (Untrained) programmers use MFT tools to
fully automatically detect certain classes of faults in apps. A
challenge for these tools is the lack of a stopping criterion—
programmers currently typically stop these tools when they run
out of time. In this paper, we use the notion of the Saturation
Effect of an MFT tool on an app under test to define a stopping
criterion, parameterized by the app’s preconditions and the
tool’s configurations. We have implemented our approach in the
AndroidRipper MFT tool. We experimentally report results on
18 real Android app subjects. We show that the saturation effect
is able to stop testing when test adequacy has been achieved
without wasting test cycles.

I. INTRODUCTION

Random testing is a black-box software testing technique
where programs are tested by generating random, independent
inputs. Over the last several decades, variants of random
testing have gained popularity in automated quality assurance
testing for both conventional software applications as well as
graphical user interface (GUI) frontends. These random testing
techniques have several benefits over other testing methods:
they are fully automatic, inexpensive, relatively easy to use,
and surprisingly effective at finding bugs [1]–[3]. For example,
Miller, Fredrickson, and So used random testing to reveal
a wealth of command-line faults within Unix utilities [4];
similarly, Miller, Cooksey and Moore used random testing to
reveal faults in 10 out of 135 command-line utilities and 22 out
of 30 GUI-based utilities within MacOS applications [5]. The
general validity and importance of random testing has been
further evaluated and supported in a seminal work by Duran
& Ntafos amongst others [1]–[3].

The growing use of random testing is particularly evident in
the mobile app realm, where many platforms and developers
have adopted Monkey Fuzz Testing (MFT), a technique that
sends random button presses and mouse events to an app.1 This
growth is partially due to two factors. First, the recent wide
diffusion of mobile devices and the growing success of mobile
apps has seen the software engineering community devote
more time and resources towards mobile app engineering [6].

1E.g., see monkeyfuzz.codeplex.com and devel-
oper.android.com/tools/help/monkey.html

Because of the competitive nature of mobile app markets,
there is an increasing need for techniques and tools for
effectively supporting their development lifecycle. Among the
most critical activities of mobile app lifecycle is testing, which
is the most frequently used quality assurance activity for these
applications [7]. Second, because many of the apps are devel-
oped by amateur programmers (or hobbyists), they naturally
prefer fully automatic testing techniques that do not require
formal background in software testing or engineering [5].

Although tools for MFT are growing in availability and
popularity, there are still open issues regarding their general
use. One particular issue is how a tester may determine when
the testing process should be stopped. For example, MFT tools
are commonly used to implement simple testing processes
where the tool is run on an old, slow computer of the testing
lab and a tester periodically checks its progress [8]. Although
this approach is reasonable, it is difficult for the tester to know
when the testing process has reached a point where no further
code coverage or fault detection can be achieved. As a result,
the tester has no other option but to make an educated guess
regarding two choices: stop testing or allow the process to run
until some later termination criteria are met. The first choice
may stop the program prematurely resulting in untested code,
and the latter may stop the process later than needed and
result in wasted time and computing resources. Both cases
are non-optimal and rely on some expertise of the tester to
use a proper termination criterion and point. Many testers let
the test process run until a certain amount of time has elapsed
without the process discovering new faults. While this solution
is functional, it is hardly optimal.

In this paper, we relieve responsibility from the tester by
automatically determining a termination point based on the
exploitation of the saturation effect, a well-known phenomena
where the rate of convergence of a test case towards a
specific test adequacy criterion decreases as the amount of test
execution increases [9]. The result is that the testing process
may stop finding faults in the program under test. The point
at which no more progress is made towards achieving a test
adequacy criterion is called saturation point, and we propose
it is also the optimal termination point for the program during
random testing.



Determining the saturation point of a program can be elusive
and is dependent on the preconditions of the app and the
configuration settings of the tool chosen by the tester. For
instance, in the Android platform we have observed that the
capacity of a GUI ripper to discover faults and to cover the
app source code sensibly depends on several preconditions
including the types of events fired on the GUI, the timing be-
tween consecutive events, or input values provided to the input
fields of the GUI [10]. Such choices are dependent on both the
tester and the MFT tool the tester chooses to use. Therefore,
in order to automatically determine a saturation point of the
program, we provide as input a specific preconditions of the
app and a configuration of the tool until the saturation effect is
detected. More specifically, we determine the saturation point
based on the simultaneous execution of several random testing
sessions. By exploiting the predictability property of random
testing shown by Arcuri et al. [11], we periodically assess the
difference in code coverage between the active sessions and
stop the testing process when this difference is below a chosen
critical threshold.

We have implemented our fully automatic technique by
means of an infrastructure including a MFT tool targeting the
Android platform and a simulation environment to run each
test. To validate the implemented approach, we selected 18
Android apps from the Google Play Store and tested each
with our testing infrastructure. The study showed that the
termination points of all processes were also saturation points.

Our paper makes the following research contributions.
• We formalize a stopping criterion for automated testing

based on saturation effect.
• We recognize the importance of preconditions of the app

and the configuration settings of the tool on the saturation
effect, and hence, supply these as input to our process.

• We demonstrate proof-of-concept and experimentally
evaluate our approach.

The rest of our paper proceeds as follows: in Section II,
we describe standard MFT tools, in Section III we present a
testing process based on MFT techniques that automatically
stops at a termination point that is a potential saturation point,
in Section IV we presents a preliminary study we performed
for exploring the feasibility of the proposed testing process and
its capability of reaching the saturation effect, in Section V we
conducted a second experiment aimed at expanding the results
of the previous study, in Section VI we consider potential
validity threats to the results, in Section VII we review related
work and in Section VIII we offer concluding remarks and
intents for future work.

II. MONKEY FUZZ TESTING TOOLS & TRADE-OFFS

In this section, we offer a more detailed discussion on MFT
tools and their use. Specifically, we discuss how they can
be configured, provide a generic algorithm for their testing
process, and discuss the well-known inefficiency and reliability
problem associated with the method. We also define several
variables which will be used through out the rest of this paper.

Monkey Fuzz Testing tools were first developed as a method
of stress testing for both conventional software applications
and those applications with a GUI front-end. They perform
such testing by sending sequences of random keyboard or
mouse events to the subject applications, with the aim of dis-
covering crashes or other inconsistencies in the application’s
behavior.

MFT tools for mobile apps differ slightly from those for
desktop GUI-based applications because they can be config-
ured to send both user and system events. User events are
generated in response to external user actions involving the
touch screen (such as tap, swipe, etc.) or other parts of the
device (such as pressing a device button, rotating the device,
etc.). In contrast, system events are not directly triggered
by users. They may be generated from the device’s sensors,
hardware equipment, running applications, or other non-user
dependent events that are typical of mobile phones (such as
the arrival of a phone call or a SMS message).

Traditionally, both mobile and desktop MFT tools offer
options which can be configured to implement different be-
haviors. E.g., it is often possible to set the delay between
consecutive triggered events, the types of events to fire (such
as click, tap, or other), how often an event gets triggered, the
number of events to fire, etc. Before testing an application,
test engineers are required to configure such options (MFTSet)
and choose the preconditions of the application under test
(AUTPr), that is the state of the application under test (AUT)
before the test run. Once the tool is configured, it starts
generating random events and sending them to the (AUT) that
will reach a new state S. The process stops when a termination
condition is satisfied. This behavior can be described by the
generic algorithm reported in Figure 1.

1: procedure GENERICRANDOM(AUT, MFTSet, AUTPr)
2: S ← Launch(AUT,AUTPr)
3: Termination← FALSE;
4: while (!Termination) do
5: nextEvent← Selection(S,MFTSet);
6: S ← Execute(S, nextEvent,MFTSet);
7: Termination← EvaluateTermination();
8: end while
9: end procedure

Fig. 1: Generic GUI Random Testing Algorithm

The termination condition may be based on aspects of
the process, such as the number of events that have been
fired or the amount of time spent testing, or it may be
based on some adequacy measurement that determines whether
sufficient testing has been executed. For instance, when using
the statement coverage criterion as an adequacy measurement,
we can stop testing if all the statements have been executed, or
the percentage of executed statements is greater than a given
threshold [12].

The choice of the termination condition is always a relevant
problem with automatic testing processes, since it is able to
affect their effectiveness and cost. This stop condition is even
more important with random testing techniques, which are



notoriously affected by problems of reliability and efficiency.
The reliability problems of random testing depend on the
randomness of this technique: if the same tool is launched
multiple times, even from the same initial preconditions, the
testing results may sensibly differ, due to the randomness of
the sequence of events sent to the application. On the other
hand, the inefficiency problems of random testing depend on
the risk of wasting excessive testing effort if we try to achieve
non-reachable test adequacy levels. It is well-known indeed
that, any testing method is affected by a Saturation Effect,
that is the tendency of the method of limiting its ability to
expose faults in a program under test [13]. After reaching
this limit, continuing testing the same method may cause
significant waste of testing efforts. This limit is also called
a Saturation Point in the literature and several authors tried to
exploit it to define a termination point of testing [14].

These two problems are well illustrated by Fig. 2, which
reports the code coverage percentage (as the number of sent
events grows) of an example application that was achieved
by two different testing runs of the same MFT tool. In each
run we used the same tool configuration and started from the
same application preconditions, but used different seeds for
generating different sequences of random events.

As the figure shows, there is an initial unreliability zone
(instability phase) of the process (between 0 and about 3,000
events) where the testing runs achieve different and floating
coverage results. The code coverage achieved by the former
run (represented by the continuous line in the figure) is indeed
initially lower than the latter’s ones (represented by the dashed
lines), but there is a trend inversion after about 500 events. On
the other hand, after about 4,700 fired events, the coverage
degrees of the two runs seems to converge and to reach a
zone showing a possible saturation effect.

This code coverage trend yields to an important conse-
quence. If the tester stopped the tool after less than 4,000
events, the test adequacy would be different depending on the
considered run. Vice-versa, after firing more than 4,000 events,
the coverage results of different testing runs tend to be similar
and independent of chance. However, if the tester continues
and fires more than 4,700 events, they will do nothing but
waste both time and computing resources due to the saturation
effect. Ideally, a tester would be able to identify the number
of events large enough to overcome this instability zone and
small enough to avoid entering the inefficiency zone. The tester
could then stop the process at a point that represents an optimal
trade-off between effectiveness and cost. Since beyond this
point there is no an improvement of the testing adequacy, one
could consider this point the app’s saturation point according
to the definition given by Sherman et al. [14].

III. THE TESTING PROCESS

In this section, we present a testing process based on MFT
techniques that automatically stops at a potential saturation
point of the process, defined as the point in testing where ad-
ditional fired events result in no improvement in test adequacy.
In order to reach this objective, our implementation utilizes

Fig. 2: Code coverage of two testing runs of an MFT tool

a pool of random testing sessions. All sessions in the pool
are given the same initial conditions, but are fed a different
seed and sequence of consecutive random events to fire on the
AUT. Exploiting the predictability property of random testing
shown by Arcuri and Briand [11], one can accurately infer
that there is a point P of this process where the difference in
code coverage achieved by all sessions is equal to zero. We
suggest this point of least difference may represent a saturation
point of testing, indicating that all sessions reached the same
test adequacy. On the basis of this property, we further propose
that such a point is the application’s optimal termination point.
Of course, this calculated difference is dependent of the chosen
pool of test sessions. The smaller the number of considered
sessions, the greater the probability their code coverage be
coincident at a premature saturation point. Vice-versa, the
greater the number of sessions, the greater the likelihood they
converge at an authentic saturation point. In the sub-sections
that follow, we present our test process implementation in
greater detail.

A. The Testing Process Implementation

The testing process description requires the following defi-
nitions:

• AUT: it is the application under test.
• AUTPr: it is the set of AUT preconditions.
• MFT: it is a Monkey Fuzz Testing tool configured ac-

cording to the MFTSet settings.
• Si: it is a testing Session of the MFT tool that sends a

sequence of consecutive random events to the AUT.
• S = {S1, . . . , Sk}: it is a set of k > 1 testing sessions

Si. All the sessions start from the same initial state of
the AUT but have different seeds.

• SST: it is the Set of executable STatements composing
the source code of the AUT.

• SCS(Si, n): it is the Set of Covered Statements of the
application under test, after n events fired in Si.

• CSP(Si, n) it is the Covered Statements Percentage
achieved by the session Si after n random fired events.
It is expressed by the following formula:

CSP(Si, n) =
| SCS(Si, n) |
| SST | × 100 (1)



• CSSC(S, n): it is the Cumulative Set of Statements
Covered by the testing sessions belonging to S after n
fired events. It is defined by equation (2):

CSSC(S, n) =
k⋃

i=1

(SCS(Si, n)) (2)

• CCSP(S, n): it is the Cumulative Coverage Statement
Percentage reached by the testing sessions belonging to
S after n fired events. It is defined by equation (3):

CCSP(S, n) =
| CSSC(S, n) |
| SST | × 100 (3)

• TerCond(S, n): It is a predicate that is true after n
events, if each session of S reached a statement coverage
percentage that is equal to the cumulative one. In other
words the predicate is true when all the sessions have
actually covered the same statements of the AUT. It is
evaluated by means of equation (4).

TerCond(S, n) = TRUE ⇐⇒
CSP(Si, n) == CCSP(S, n) ∀ Si ∈ S

(4)

• TerP(TP): it is the Termination Point of the testing
process TP representing the minimum number of events
at which the termination condition is verified.

• TerL(TP): it is the Termination Level indicating the
cumulative coverage statement percentage reached by the
testing process TP up to TerP.

1: procedure TESTINGPROCESSEXECUTION(AUT, AUTPr, MFT,
MFTSet, k)

2: S[]← initSessions(AUT,AUTPr, k);
3: terCon← FALSE;
4: samplingStep← STEP;
5: fe← 0;
6: while (!terCon) do
7: fireNextEvent(AUT,MFT,MFTSet, S[]);
8: fe++;
9: if (fe == samplingStep) then

10: SCS[]← evalCov(S[]);
11: CSSC← evalCCov(SCS[]);
12: terCon← evalTerCon(CSSC, SCS[]);
13: samplingStep← samplingStep+ STEP;
14: end if
15: end while
16: stopSessions(S[]);
17: terP ← fe;
18: terL← evalPercCov(AUT,CSSC)
19: end procedure

Fig. 3: Testing Process Algorithm

The Testing Process TP is a quintuple (AUT, AUTPr, MFT,
MFTSet, k). The process is iterative and requires the periodic
monitoring of the statement coverage percentages of k random
sessions with a predefined sampling step. It is described by
the pseudo code in Fig. 3. At each iteration, each session Si

had fired a number fe of events. The algorithm relies on the
variables and method’s invocations described below.

1) Constants and Variables:
• terCon: it is a boolean variable assuming the value of the

TerCond() predicate.
• samplingStep: it is an integer variable > 0, representing

the sampling step, i.e., the number of fired events after
which the termination condition will be evaluated.

• STEP: it is a integer constant > 0 defining the sampling
period of the algorithm.

• fe: it is an integer variable representing the number of
events that have been fired by all the sessions at a given
iteration of the algorithm.

• k: it is an integer representing the number of testing
sessions executed by the testing process.

• S[]: it is an array of k testing sessions.
• SCS[]: it is an array of statement sets. The ith element of

this array represents the set of statements that have been
covered by the ith random testing session after fe fired
events.

• CSSC: it is the set of statements that have been covered
by all the sessions after fe fired events.

• terP: it is an integer variable related to the termination
point.

• terL: it is a double variable representing the value of the
termination level.

2) Methods:
• initSessions(AUT, AUTPr, k): it launches the execution

of k instances of the AUT from the same preconditions
AUTPr, and starts k testing sessions belonging to the
array S[].

• fireNextEvent(AUT, MFT, MFTSet, S[]): in each testing
session of S[], the MFT sends a random event to the AUT
according to its settings MFTSet.

• evalCov(S[]): it evaluates the set of statements that are
covered by each session of S[].

• evalCCov(SCS[]): it evaluates the cumulative set of state-
ments SCS[] that have been covered by all the testing
sessions.

• evalTerCon(CSSC,SCS[]): it computes the covered state-
ment percentage reached by each testing session and the
cumulative coverage percentage. Then, it evaluates the
predicate described by equation (4).

• stopSessions(S[]): it stops the execution of the testing
sessions belonging to S[].

• evalPercCov(AUT,CSSC): it evaluates the cumulative cov-
erage statement percentage of AUT statements at the end
of the process execution.

B. The Testing Infrastructure

We now present the developed software infrastructure used
to execute our testing process. This implementation targets the
Android mobile platform.

The infrastructure includes two types of components,
namely Testing Process Coordinator and Testing Session Ex-
ecutor. The former component is responsible for starting,
ending, and managing the results of the testing sessions’



execution. The latter component is in charge of running the
random testing sessions on the emulated Android platforms
and collecting data resulting from them. At run time, just a
single instance of Testing Process Coordinator is needed, while
many instances of the Testing Session Executor component can
potentially be deployed and run on different nodes of a dis-
tributed architecture. Fig. 4 shows an example infrastructure,
including two Testing Session Executor components.

Each Testing Session Executor component includes three
software modules: Android Emulator, Driver and Loader. The
Driver component implements the specific MFT technique
and iteratively sends the next random user event to the GUI
of the subject application. The Android Emulator provides
the emulated execution platform and consists of the Android
Virtual Device (AVD) provided by the Android SDK 2. The
instrumented Application Under Test is run on the AVD under
the control of a Robot component that actually fires the event
on the current GUI and scrapes it.

The AUT is instrumented by the EMMA Library 3 in
order to generate Code Coverage Files. The Loader module
fetches these files from the AVD and provides them to the
Coverage Repository that is deployed on the Testing Process
Coordinator component of the architecture. EMMA is an open-
source toolkit for measuring and reporting Java code coverage.
It supports coverage types such as class, method, line and basic
block. Moreover, EMMA can detect when a single source
code line is partially covered, which can happen when the
source code has branches that are not exercised by the tests
4. Referring to the algorithm in Fig. 3 the i − th element of
SCS[] is actually the EMMA run-time coverage data (which
basic blocks have been executed) that are stored in files having
.ec extensions. To obtain the CSSC we exploited the merge
feature provided by EMMA.

As to the Process Coordinator component, it includes an
Engine module that launches the testing sessions on the differ-
ent Testing Session Executor components, gets their coverage
results, and periodically assesses the termination condition.
To evaluate the termination condition, it runs Emma scripts to
compute the code coverage percentages reached both by the
sessions and their union. It then executes scripts to evaluate
whether the termination condition has been reached. While
the termination condition is not true, the Engine commands
the Driver to send further random events, otherwise it stops
all running sessions.

This architecture was implemented using Java technologies
as well as features provided by the Android Debug Bridge
(ADB) 5.

Since the implementation of Driver and Robot modules
depend on the MFT technique involved in the process, we
developed two versions of the Driver module that implement

2Android Standard Development Kit, https://developer.android.com/sdk/
index.html

3EMMA: a free Java code coverage tool, http://emma.sourceforge.net/index.
html

4http://emma.sourceforge.net/faq.html#q.fractional.examples
5Android Debug Bridge, http://developer.android.com/tools/help/adb.html

Fig. 4: Overview of the overall testing infrastructure

the fuzz testing technique used by the AndroidRipper tool
[10] and the one exploited by the Android Monkey tool 6,
respectively. The first version of the Driver directly delegates
the Robot component to interact with the AUT by means of
the APIs provided by the Android Instrumentation library 7.
Specifically, the Robot exploits the Robotium library 8 both to
fire events on the AUT and to get an instance of its GUI at
run-time. The second version of the Driver was implemented
using the androidmonkey library 9. It is a copy of the original
Android Monkey Tool and is a library made for testing and
analysis purposes. In this version, the Driver component runs
test scripts that invoke the Robot, which in turn runs JUnit
test cases and exploits the designated library to send event(s)
to the AUT.

IV. AN EXPLORATORY STUDY

This section presents a preliminary case study which as-
sesses the feasibility of the proposed testing process and its
capability of reaching the saturation effect. To this aim, we
used the proposed testing process and infrastructure to test
a real Android application named SimplyDo. This app is
medium sized (1,281 LOC) and provides a simple shopping
and TODO list manager for Android. During the process, we
used the MFT technique implemented by the AndroidRipper
tool. In its basic configuration, this tool is able to fire events
on GUI widgets having at least one event handler registered
for the event with a delay of 1000ms between consecutive
events.

6Monkey, http://developer.android.com/tools/help/monkey.html
7Android Testing Fundamentals: Instrumentation, http://developer.android.

com/tools/testing/testing\_android.html\\\#Instrumentation
8Robotium, http://code.google.com/p/robotium/
9AndroidMonkey, https://code.google.com/p/androidmonkey/



In the first phase of the study, we performed the process
multiple times. Each time we used the same AVD configu-
ration but either different preconditions for the subject app
or different MFT tool configurations. More specifically, we
defined two different tool configurations, C1 and C2, and two
different app preconditions, P1 and P2. C1 and C2 are defined
as follows:

• C1: Given a GUI with a ListView widget, Android Ripper
fires ’click’ events only on the first three items of the list.

• C2: Given a GUI with a ListView widget, Android Ripper
fires ’click’ events on all of the list items.

Similarly, we defined the two preconditions, P1 and P2, as:
• P1: SimplyDo has been installed on the device, but has

never been launched.
• P2: SimplyDo has been launched, and contains two

TODO lists and one item in the first TODOs list.
Table I reports the four combinations of tool settings and

app preconditions we considered for each process run.

TABLE I: Testing process variants and results

TP MFTSet AUTPr TerL TerP
TP11 C1 P1 76.56% 4,000
TP12 C1 P2 76.32% 3,800
TP21 C2 P1 85.1% 4,700
TP22 C2 P2 84.63% 4,300

For each variant, we ran k = 12 testing sessions in parallel,
where each session was executed on a different PC. The au-
tomatically obtained TerP and TerL values for each variant
are reported in Table I. In order to obtain a more complete
view of each process’s trends, we ran up to 10,000 events for
each session to observe coverage even after the application had
reached its termination point. Figure 5 illustrates the obtained
statement coverage percentage trends for each of the variants.

Fig. 5: Coverage trends of the four testing process variants

The obtained trends seem to suggest that all processes
reached the saturation effect. To confirm this datum, we

manually analyzed both the code coverage reports produced
by the Java Code Coverage Tool EMMA and the part of the
application’s code left out by the sessions. The aim of our
analysis was to decipher whether the resulting uncovered code
was in fact reachable. If so, it would seem that the termination
points were not all saturation points. On the other hand, if
the uncovered code was found to be unreachable, we could
conclude that every process’s termination point was also its
saturation point and our hypotheses would still hold.

At the end of the analysis, we observed that in fact all the
uncovered statements could never be exercised by the testing
processes due to the following reasons:

1) MFT tool configuration: Some code was not reachable
given the MFT tool configurations. For example, because An-
droidRipper was not configured to fill in the EditText widgets
with null values, the related NullPointerException handling
code could not be covered. Moreover, since AndroidRipper
did not use the keyboard device to fill the EditText widgets,
the related onEditorAction handlers were actually unreachable.
Eventually, the C1 settings used in TP11 and TP12 were able
to fire events only on the first three items of any menu list,
and then the code associated with the other menu items could
never be triggered.

2) AVD configuration: We also witnessed that part of the
app’s source code could never be executed due to the settings
of the AVD. For example, the code that should be executed
when the device does not include the SD card was not
reachable because the AVD used in the testing environment
was equipped with an emulated SD card.

3) AUT preconditions: Another set of statements were not
reachable on the basis of the AUT preconditions. For example,
in the process variants TP12 and TP22 that launched the app
from the P2 precondition, three LOCs executing CREATE
TABLE SQL queries were never exercised. These queries
are executable only when the app is first launched after
iinstallation.

4) Unreachable code of the AUT: The remaining uncovered
statements were unreachable, because there was no control
flow path to it from the rest of the program [15]. As an
example, we found classes and methods included in the source
code but never used by the rest of the program.

As a result, we can conclude that all reachable code of
the AUT was covered by the testing processes, and therefore,
saturation was always reached at a process’s termination point.

To further confirm our results, we analyzed whether the
choice of k = 12 sessions composing the process had
influenced the obtained results. To this aim, we post-processed
the coverage data and evaluated the termination points pro-
posed by processes made of k=2, 3, 4 and 8 sessions. We
permuted without repetitions the 12 testing sessions obtaining
66 simulations of testing processes made by k = 2 testing
sessions, 220 testing processes made by k = 3 testing sessions,
495 testing processes made by k = 4 testing sessions and
495 testing processes made by k = 8 testing sessions. We
obtained that the termination levels were always the same for
testing processes composed of k > 2 sessions, and conclude



that k = 12 sessions is an adequate choice to obtain reliable
process results.

Lastly, in order to assess whether the process is able to reach
the saturation independently of the exploited MFT technique,
we performed another testing process involving the same
application but a different MFT technique implemented by
Monkey Tool. It fires events belonging to different classes of
User Events and System Events chosen at random on the basis
of a given adjust percentage. User events includes touchscreen
events that are fired on randomly chosen points of the screen
irrespective of the actual presence of a UI widget in that point.
We executed a single testing process made by twelve random
testing sessions, starting from the initial P2 state of the AUT
and configured the tool with its default adjust percentages.
Moreover, we set at 100ms the delay between consecutive
events.

Fig. 6: Coverage trends obtained by Monkey Tool

Figure 6 reports the Statement Coverage Percentage trend
achieved by the process, where TerP = 5 × 107 and
TerL = 75.57%. The manual analysis of the code statements
left uncovered by the process confirms the uncovered code
is in fact unreachable due to the same motivations listed
above. This result, therefore, further confirms that the proposed
process reached the saturation effect independently from the
considered MFT technique, even if this effect was reached
after many more events than the former process (after about
5× 107 events rather than about 4, 000 events).

V. EXPERIMENTATION

To extend the validity of the results achieved by the
exploratory study, we conducted an experiment aimed at
answering the two Research Questions reported below.

R.Q.1: Is the proposed testing process able to reach the
Saturation at the termination point?

R.Q.2: Which are the main factors able to affect the
effectiveness of the proposed testing process at the termi-
nation point?

We addressed these research questions in the context of
Android mobile applications, using the MFT techinque im-
plemented by AndroidRipper.

A. Subjects

For this experiment we selected 18 open source Android
applications. We chose apps published on the Google Play

TABLE II: Characteristics of the Applications Under Test

AUT ID AUT Name GPC |SST|
AUT1 AardDict Book 2,097
AUT2 AndroidLevel Tools 623
AUT3 BatteryCircle Tools 249
AUT4 BatteryDog Tools 463
AUT5 Bites Lifestyle 967
AUT6 Fillup Transportation 3,807
AUT7 JustSit Lifestyle 273
AUT8 ManPages Productivity 292
AUT9 MunchLife Entertainment 184
AUT10 NotificationPlus Productivity 283
AUT11 Pedometer Health 809
AUT12 QuickSettings Productivity 2,841
AUT13 Taksman Tools 226
AUT14 TicTacToe Brain 493
AUT15 TippyTipper Finance 999
AUT16 Tomdroid Productivity 3,860
AUT17 Trolly Shopping 364
AUT18 WorldClock Travel 1,149

store, belonging to different Google Play categories and hav-
ing different source code complexity, expressed in terms of
number of statements. Table II reports for each application an
identifier (AUT ID), its name, Google Play Category (GPC)
and the number of source code statements given by | SST |.
As data show the AUTs belonged to 12 different GPCs and
their size varied from 184 to 3860 LOCs.

B. Metrics

To assess the Saturation effect at the termination point of
the process we decided to measure the residual percentage of
code statements left uncovered by the testing process until the
termination point. If the Saturation is reached then this residual
quantity is zero, or approximately equal to zero.

To evaluate this residual percentage, we used the following
sets and metrics:

• UnS(TP ): it is the Unreachable Statements set,
UnS(TP ) ⊆ SST of the AUT , made of all the AUT
statements that are unreachable by the process TP .

• ReSRS(TP, TerP ): it is the Residual Set of Reachable
Statements by TP at the termination point. It represents
the set of statements that are potentially reachable by TP
but have not been covered by it until TerP . This set is
given by the following difference:

SST − CSSC(TP, TerP )− UnS(TP ). (5)

• RePRS(TP, TerP ): it is the Residual Percentage of
Reachable Statements. It is given by equation (6)

RePRS(TP, TerP ) =
| ReSRS(TP, TerP ) |

| SST | × 100 (6)

If RePRS(TP, TerP ) = 0 we can say that all the reach-
able code of the application has been actually covered by
TP, so the process reached the saturation.



TABLE III: Experimental Results

AUT ID TerL RePRS AUT ID TerL RePRS
AUT1 71.14% 0% AUT10 41.24% 0%
AUT2 62.68% 0% AUT11 74.75% 0%
AUT3 92.89% 0.40% AUT12 48.50% 0%
AUT4 81.60% 0.42% AUT13 92.79% 0%
AUT5 57.88% 0% AUT14 99.64% 0.17%
AUT6 84.03% 0% AUT15 87.86% 0%
AUT7 70.92% 0% AUT16 69.96% 0%
AUT8 77.53% 0% AUT17 80.88% 0%
AUT9 98.86% 0% AUT18 97.37% 0%

C. Experimental Procedure

We had to configure the processes to test each subject
application. Each process included k = 12 sessions and we
used the same AndroidRipper configuration to test all the
AUTs. AndroidRipper was configured for sending events on
the GUI widgets having at least a registered listener and
for emulating the pressure both of the back button and of
the openMenu one of the mobile device. We set a delay
of 500 ms between two consecutive events and configured
AndroidRipper for filling in the EditText widgets with random
numeric values. Moreover, for each AUT we defined a specific
initial precondition and we used the same AVD configuration
in each process execution: the emulated devices were all
equipped with Android Gingerbread (2.3.3) and have 512
MByte of RAM and 64 MByte of memory on emulated SD
Card. The processes were executed by exploiting the testing
infrastructure that was configured to run on 13 different PCs
running Windows 7 64 Bit Operative System equipped with
an Intel I5 3GHz processor and 4GB of RAM.

To answer the first research question, at the end of each
process we measured the RePRS values. To measure this
metric we evaluated the UnS(TP ) set by means of a manual
analysis of the statements uncovered by each TP. To answer the
second research question, we assessed the effectiveness of the
process at the termination point by evaluating its Termination
Level TerL. Moreover, we looked for the motivations that did
not allow the complete coverage of the source code statements.
This research was made by manual analysis too.

To be confident about the results of the manual analyses,
they were performed by two different teams of software
engineers (each one including a Ph.D. student and a graduate
student), and then the obtained results were validated by a
third team including two researchers in software engineering.

D. Results

Table III reports for each AUT the termination level TerL
and the residual percentage of reachable statements RePRS
achieved by the performed testing processes.

1) Saturation results: As the data show, 15 times out of
18 the residual percentage of reachable statements was 0%.
In the remaining three cases, this percentage was negligible,
being lower then 0.5%. As to AUT3, the RePRS was 0.40%,
indicating that a single line of code over 249 of its SST was
potentially reachable, but it was not actually reached. As to
AUT4, the residual percentage of reachable statements was

0.42% due to only two potentially executable but not actually
executed statements over 463. In regards to AUT14, the
residual percentage of reachable statements was even smaller,
0.17%, with only 0.8 potentially executable statements that
were not covered during the process.

On the basis of these results we could answer R.Q. 1 and
conclude that the proposed testing process was able to reach
the Saturation at the termination point in all the considered
cases.

2) Effectiveness results: We analyzed in detail the uncov-
ered code of the AUTs with the aim of understanding why
this code was not reached during the process. We found the
motivations reported below.

(1) Part of the code was not reached depending on the
initial state of the applications under test. This motivation was
true for two applications, namely Bites and FillUp. Since the
considered preconditions set them in a state successive to the
first AUT execution on the device, then the statements of some
SQL queries needed to configure the supporting databases was
actually unreachable. This code can be indeed executed only
when these applications are launched for the first time after
their installation on the device.

(2) Part of the code was not reached depending on the
configuration of the device we exploited in the testing pro-
cesses. This motivation was verified for 8 applications out
of 18. We found code statements that could be executed
only if the apps were installed on specific devices, i.e., the
ones belonging to the Motorola and eInk Nook families.
Some other statements were unreachable because they can be
executed only on Android O.S. platforms different from the
2.3.3 version. Other statements were made unreachable by the
hardware limitations of the device emulator, i.e., the absence
of sensors, WiMAX connectivity, Bluetooth and a physic LED
and the impossibility of changing the connection status (Wi-
Fi on/off, 3g on/off). Part of the source code was unreachable
because some specific apps, like GMail, were not present on
the device emulator. Eventually, some statements could not be
reached because they can be triggered only when the device
does not present an SD card, while we equipped the emulator
with an SD.

(3) Part of the code was not reached depending on both the
settings and the limitations of the MFT tool. This motivation
was verified for 11 applications out of 18. The MFT tool was
configured to fill in the editText widgets with random integer
values. As a consequence, some statements whose execution
requires specific user input values (such as, a valid e-mail
address or valid URLs) could never be covered. Parts of the
statements were actually unreachable, given the limitations of
the MFT tool that is not able to fire all the types of event
handled by the subject apps. As an example, AndroidRipper is
not able to emulate the pressure of some device buttons (such
as Volume Up, Volume Down and Search), to interact with
the device Trackball, to fire specific events like the gesture
ones, to emulate the changes of the values read by sensors,
to send Intents, to interact with some widgets like Preferences
and webViews.



(4) Part of the code was not reached because it is actually
unreachable code of the AUT. This motivation was verified for
all the considered applications. Some apps presented activities
declared in the manifest.xml but never opened, menus defined
but never enabled, or classes that are never instantiated. In an
application, there was a fraction of source code related to the
creation of XML files that could never be executed since the
AUT lacked of the permits for writing on the SD Card. In some
applications, there were parts of code related to the interaction
with external services that are not actually available.

In conclusion the motivations that emerged from this anal-
ysis coincided with the same ones revealed by the exploratory
study, so we could answer R.Q. 2 by claiming that the main
factors affecting the effectiveness of the proposed testing
processes were (1) the preconditions of the AUT, (2) the
configurations of the testing platform, (3) the limitations and
the configuration of the MFT technique, and (4) the existence
of unreachable statements in the source code of the AUT.

E. Lessons learned

At the end of the experiment, we were able to learn some
lessons about the proposed testing process. A first lesson
regards its termination criterion. According to it, in the exper-
iment the termination points were reached when each session
composing the process reached the same code coverage as the
cumulative one. This stop condition allowed the process to
reach the saturation effect. Analyzing the experimental data
further, we were able to derive an alternative stop condition.
The data suggested to us indeed that the process could be
stopped, without loss of code coverage, as soon as the coverage
of one of the sessions reached the cumulative one. As an
example, Fig. (7) shows a zoom in the code coverage trends
achieved by the testing process TP22 presented in Section
IV and highlights two possible termination points TerP and
TerP ∗, where the second point is obtained by using the new
termination condition TerCond∗ expressed by equation (7):

TerCond∗(S, n) = true ⇐⇒
∃ Si ∈ S | CSP (Si, n) == CCSP (TP, n)

(7)

To validate this intuition, we evaluated the new Termination
points and levels that could be achieved by the new termination
condition for each AUT. Table IV shows the obtained results.
The termination levels obtained using the new termination
condition were the same as the ones reported in Table III.
As the data show, the new termination condition significantly
reduces the number of events needed to reach the same test
adequacy as the one achieved at the saturation point, and the
reduction rate varies between 24.48% and 93.58%. This new
criterion may be successfully used to improve the efficiency
of the process, leaving its test adequacy unchanged.

A second lesson we learned from the exploratory study is
that the proposed process is able to reach different Saturation
Levels, depending on the preconditions of the AUT and the
settings of the MFT technique. This lesson suggests to us
a new variant of the testing process that iteratively selects

Fig. 7: Two termination points of TP22 execution

TABLE IV: Termination Points

AUT ID TerP ∗ TerP AUT ID TerP ∗ TerP
AUT1 300 4000 AUT10 100 500
AUT2 100 700 AUT11 2300 4600
AUT3 100 500 AUT12 15200 30700
AUT4 100 800 AUT13 300 800
AUT5 7400 9800 AUT14 10300 20100
AUT6 53400 95600 AUT15 500 7200
AUT7 1900 5300 AUT16 98200 147800
AUT8 500 7800 AUT17 200 600
AUT9 300 700 AUT18 1400 3600

different app-tool configurations until the saturation effect is
detected. As an example, the tester may create a set of app-
and tool- configurations. The new process iteratively picks
a configuration and runs the MFT tool until the saturation
point. The process ends when the set of app- and tool-
configurations is exhausted. This new process may achieve
better test adequacy results than the former one. Fig. (8) shows
the cumulative coverage trend we obtained by the new testing
process where we consecutively run the four testing variants
TP12, TP11, TP22 and TP21 described in IV. However, further

Fig. 8: Cumulative Coverage achieved in the new process
variant

experiments should be performed in order to assess the validity
of these two process variants.



VI. THREATS TO VALIDITY

In this section we discuss some potential threats to the
validity of our studies and how we tried to limit them.

Threats to external validity, i.e. threats to the generaliza-
tion of the conclusions. A first threat to the external validity
is related to the subject selection. We tried to limit this threat
by selecting 18 Android applications that are different in size
and type and that can be considered as a meaningful sample of
real world Android applications. A second threat is related to
the generalization of our conclusions to other configurations
of the MFT tool and to other MFT tools. The exploratory
study presented in section IV partially addressed this threat
by exploiting two different configurations of AndroidRipper
and another MFT tool.

Threats to internal validity, i.e. threats due to external
factors that are not under control. In order to limit this threat
we carried out the experiments in the environment described
in subsection V-C in which we fixed and controlled all the
characteristics of the Android execution environment and the
application preconditions, too. There are no threats related to
uncontrolled external resources because the selected applica-
tions had dependencies only on static external resources.

The threats to validity related to the dependency of the
results on the number of testing sessions have been addressed
in section IV with respect to the SimplyDo application for
which we concluded that the obtained termination level was
always the same if k > 2 testing sessions were considered.

Threats to construct validity, i.e. threats due to measure
accuracy. A possible threat to construct validity is related to
the accuracy of our manual evaluation of the set of unreachable
statements of each subject app. In order to limit this threat,
we repeated the evaluation three times for each app, each
one using a different team including graduate students, Ph.D.
students and researchers, all skilled in Android development
and testing.

VII. RELATED WORKS

Nevertheless in the past random testing was considered less
promising than systematic testing techniques [16], many other
works in literature empirically demonstrated their effectiveness
in many different contexts [17], [18], [19], [20], [21]. Arcuri
et al. [11] addressed random testing from a theoretical point
of view by proposing a mathematical model for describing the
effectiveness of random testing and comparing it against par-
tition testing. Moreover they presented some novel theoretical
results regarding effectiveness, scalability and predictability of
random testing. This work focused on testing techniques that
randomly choose input values from the input domain, while
our work focuses on techniques that choose events from the
event domain.

Several studies in literature studied the predictability of the
performance of random testing techniques. Ciupa et al. [22]
[23] explored the predictability of random testing in terms
of fault detection capability in the context of object-oriented
programs written in Eiffel. More recently, Furia et al. [24]
have searched for a law able to relate the number of executed

random test cases and the number of found faults and failures
in Eiffel and Java applications. Sherman et al. [14] exploited
the existence of a saturation effect occurring when the increase
in coverage over a window of test runs (of a given size) is
less than a fixed threshold and used this effect to define new
adequacy criteria in concurrency testing.

The use of code coverage as an indicator of test adequacy
is very common in literature, in particular when the total
number of existing faults is unknown and when using test-
ing strategies that are able to found only some typologies
of failures (e.g. only crashes). Several empirical studies in
literature demonstrated the existence of a positive correlation
between code coverage and fault effectiveness of a test suite
[25], [26], [27], [28], [29]. Only Wei et al. [30] demonstrated,
on the contrary, in the context of Eiffel programs and design
by contract development, that code coverage is not always
sufficiently correlated with the fault detection capability.

Besides Monkey and AndroidRipper that have been already
described in the paper, Dynodroid [31] implements a MFT
technique that is able to fire at random just ’relevant’ events: an
event is relevant if there is at least an application event handler
registered to that event. Hao et al. [32] propose PUMA, a MFT
tool that can be customized by means of a scripting language
called PumaScript in order to support different testing tasks in
the context of Android applications. Liu et al. [33] propose an
Adaptive Random Testing approach for Android applications,
obtained by migrating the proposal of Chen et al. [34] to
the mobile context in which inputs are represented by event
sequences. This technique mixes the aspects of a random
uninformed testing technique with the heuristic optimization
proposed by an Adaptive Random Testing technique. Another
relevant contribution in the context of mobile applications is
the MFT tool Vanarsena [35] that is able to automatically find
crashes in the context of Windows Phone applications.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we addressed the problem of stopping a
random testing process at a cost-effective point, where test
adequacy is maximized and no testing effort is wasted. We
presented a fully automatic MFT process that is able to find
this point by exploiting the saturation effect and the pre-
dictability property of random testing techniques. The process
is supported by a a software infrastructure we developed
for testing Android mobile applications. The validity of the
approach in finding saturation points has been shown by an
experiment where we tested 18 real Android applications. An
analysis of the experimental results allowed us to understand
which factors are affecting the effectiveness of random testing
processes. As future works we plan to improve the experimen-
tation in order to extend the validity of the proposed approach.
In particular, to extend the validity of this approach in the
mobile context we propose to exploit the process for testing
a wider number of AUTs by means of other MFT tools even
for different mobile operating systems. Moreover, we’d like
to apply this approach in other contexts, i.e., web or desktop
applications.
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