
An Extensible Framework to Implement Test Oracles
for Non-Testable Programs

Rafael A. P. Oliveira∗†, Atif M. Memon†, Victor N. Gil‡, Fátima L. S. Nunes‡ and Márcio Delamaro∗
∗ Dept. of Computer Systems, University of São Paulo – (ICMC/USP)

São Carlos, SP, Brazil
Email: rpaes@icmc.usp.br delamaro@icmc.usp.br

† Department of Computer Science, University of Maryland – UMD
College Park, MD, USA
Email: atif@cs.umd.edu

‡ Dept. of Computer Systems, University of São Paulo – (EACH/USP)
São Paulo, SP, Brasil

Email: victor.gil@usp.br fatima.nunes@usp.br

Abstract—Test oracles evaluate the execution of SUTs (Systems
Under Test) supporting testers to decide about correct outputs and
behaviors. “Non-testable” systems are cases in which the testers
must spend extraordinary efforts to judge SUT’s outputs. Cur-
rently, some contemporary non-testable programs are represented
by systems with complex outputs such as GUIs (Graphical User
Interface), Web applications, and Text-to-speech (TTS) systems.
Currently, there is a lack of knowledge associated with automated
test oracles and SUTs with complex outputs. Extensible testing
frameworks are necessary to provide the reuse of components
and the sharing of knowledge in this field. This paper presents
an extensible framework to support the development of test
oracles for non-testable programs with complex outputs. In
addition, we present an alternative to reuse software engineering
components through plug-ins-based frameworks. The framework
adapts CBIR (Content-Based Image Retrieval) concepts to enable
testers to specify test oracles. The framework matches concepts
of signal feature extraction, similarity functions, and object
comparisons to obtain a Java program that compares two objects,
responding how similar they are, according to a threshold. We
performed proofs of concept using two empirical studies and the
results showed our framework is useful to alleviate human-oracle
efforts supporting human decisions. In addition, the plug-ins-
based framework we present is a contribution toward a reusing
of components on test oracles for systems with complex outputs.

Keywords—test oracle; software testing; knowledge engineering.

I. INTRODUCTION

Test oracles are instruments to examine particular execu-
tions of an SUT (Systems Under Test), supporting software
testing designers to decide about correct outputs [1]. In testing
environments, test oracles must deal with SUT’s outputs or
behaviors after a determined input. Test oracles may assume
several forms: programs, functions, sets of data, tables of
values or even the tester’s knowledge about the SUT [2].
Regarding complex testing scenarios, including strategies for
test case generation and coverage reports, a test oracle is a
requisite to insure the testing productiveness. Automated test
oracles can increase the test productivity and decrease testing
costs [3].

“Non-testable” programs are SUTs in which an oracle
does not exist or the tester must expend some exceptional

amount of time to determine whether the current output is
correct [4]. Despite being a well-known concept, non-testable
programs and systems hard to test are still common. For
instance, software systems whose outputs represent complex
data for test automation. In this context, some examples of
contemporary non-testable programs are: (1) systems with
complex GUIs (Graphical User Interface) whose visual infor-
mation is reflected in different screen resolution, sizes, and
orientations; (2) Text-To-Speech (TTS) systems that convert
written text in audio files; (3) some Web applications whose
result quality depends on the browsers; (4) Virtual Reality (VR)
environments, and others. Systems with complex outputs are
becoming standard and the software industry is developing
more attractive and exquisite applications. In addition, con-
temporary software has a vast array of technologies including
the hardware platforms, Operating Systems (OS), and program-
ming languages to support complex scenarios.

In the context of software testing, complex outputs make
oracle verification difficult. Existent studies on test oracles
for systems with complex outputs use manual (human-oracle),
semi-automated or ad-hoc techniques [5]. Due to their com-
plexity, test oracle analysis of complex output commonly
requires sensory and perceptual aspects of a human being:
(1) vision and (2) hearing. For instance, vision is required
for checking orientations and visibility of components in
GUIs, Web applications, and VR environments. Hearing is
needed for checking naturalness, intonations, and pauses in
TTS systems, in which audio files are the output. However,
manual approaches are unproductive and inappropriate to
support the large demand for the software. A vast array of
technologies including mobile devices, hardware platforms,
OS, and programming languages are in favor of the complex
output’s systems.

To supply the test industry with supporting strategies
to systematize and automate testing techniques for systems
with complex outputs, contributions from Software Engineer-
ing (SE) and Knowledge Engineering (KE) are necessary.
Flexible and reusable approaches may represent a way to
alleviate efforts on testing those systems. Every advancement
or increase in knowledge of testing systems with complex
outputs have to be adequately reported to enable its reuse.

In this context, knowledge-based approaches enhance the ef-
fectiveness of components and procedures reuse. Regarding
testing approaches for contemporary non-testable systems, the
knowledge has to be shared in order to follow satisfactorily
new technologies.

In this paper we present an extensible open-source frame-
work to support the development of flexible test oracles
for systems with complex outputs. O-FIm/CO (Oracle For
Images and Complex Outputs)1 adapts CBIR (Content-Based
Image Retrieval) concepts to allow tester defining flexible
and adaptable test oracles, as well as reusing plug-ins’ im-
plementations. To provide an environment of automated test
oracles, the framework matches concepts of signal feature
extraction, similarity functions, and object comparisons. CBIR
is the application of computer vision and Image Processing
(IP) techniques to help in organizing digital images using their
visual content [6]. Regarding an image database, according to
one or more extracted features, CBIR systems locate images
that are similar to a query image. Through its reusable plug-
ins, O-FIm/CO allows the generalization of these concepts for
complex outputs such as GUI screenshots and audio files. The
O-FIm/CO flexibility allows testers to obtain a Java program
that compares two objects, responding if they are similar or
not, according to a threshold.

Besides some reusable testing plug-ins by themselves, these
paper’s contributions rely on the step-by-step feasible strategy
to implement flexible test oracles for systems hard to test. We
evaluate our technique using two practical examples of real-
world systems with complex outputs: one for graphical outputs
(GUIs), and one for audio outputs (TTS). We developed test
oracles that use features from outputs as sources of information
for comparison between model outputs and current SUT’s out-
puts. In this context, the goals of this paper are: (1) Presenting
an extensible framework for testing systems with complex
output, using reusable plug-ins; (2) Describing a feasible way
to write flexible test oracles for complex output domains;
and (3) Presenting two practical examples of the framework’s
practical effectiveness on evaluating complex outputs.

II. O-FIM/CO

Besides technical and structural details of O-FIm/CO, this
section presents overall concepts of the “oracle problem” and
CBIR.

A. The Oracle Problem

When it is impossible or too difficult to decide about the
correctness of test outputs, the result is a scenario called the
oracle problem [4], [7]. Further, the oracle problem is the
absence of an accurate test oracle or cases in which it is too
expensive to apply the oracle. The oracle problem may occur
depending on the SUT. In such cases, the test oracle is not able
to support the right decisions. Due to the oracle problem, the
tester often classifies the design of the test oracle as a complex
and cognitive activity rather than being a routine activity [1].
Approaches to alleviate the oracle problem, in general, must
deal with two problems: “false positives” (when a test result
incorrectly rejects a true null hypothesis) and “false negatives”
(the failure to reject a false null hypothesis).

1see: http://ccsl.icmc.usp.br/pt-br/projects/o-fim-oracle-images

Among several contemporary examples of testing scenarios
associated with the oracle problem, our scope in this paper are
SUT with graphical (GUIs, processed images, maps, routes) or
audio (voice synthesis) outputs. Regarding testing strategies
for these systems, often the tester has to play the role of the
oracle, making the test activity unproductive and error-prone.
However, the complex output domains lead the tester to decide
about the correctness of the SUT manually.

Figure 1 presents different testing scenarios relying on
the complexity of the SUT’s outputs. In the Figure 1b, the
SUT represents a TTS system, in which the tester (human-
oracle) has to listen to the result that represents an under-
standable speech representing a written text. Similarly, Figure
1c represents a testing work-flow for an SUT with a graphical
output, where the tester has to check several graphical aspects.
For instance, regarding GUIs, the visual aspects must work
properly independently of platform, screen resolutions, screen
orientation, color systems, monitor settings, and Look and
Feels (L&Fs). In both cases (Fig. 1b and 1c), the complexity of
the SUT’s output are considered. On the other hand, Figure 1a
presents a testing scenario where the SUT has trivial outputs
and automated testing procedures can be implemented without
extraordinary efforts.

(a) Trivial-output Scenario.

(b) Audio Scenario. (c) Graphical Scenario.

Fig. 1: Testing Scenarios Depending on the SUT’s Output.

B. Content-Based Image Retrieval

CBIR is any technology which helps organize digital image
files using its visual content [6]. CBIR systems allow retrieving
a finite set of images similar to a reference image. The
similarity criteria are obtained by features extraction from the
image related to shape, color, and texture. Feature extraction
is the method used to obtain some information or particular
data from the image. A set of extracted features composes
a feature vector that will be considered in its retrieval. The
feature vector is not sufficient to determine the result. It is

necessary to measure how similar two feature vectors are
by using some sort of distance measure called a similarity
function. Then, image comparisons are performed using values
of features extracted and a similarity function. This process
results in numeric values that represent the distance between
the images.

C. O-FIm/CO: Oracle For Images and Complex Outputs

O-FIm/CO enables testers to apply test oracle strategies
in SUTs with complex outputs. O-FIm/CO extends concepts
presented in previous works [8] regarding specific domains,
CAD (Computer-Aided Diagnosis), and Web applications as
SUTs with graphical outputs. In the scope of this paper, O-
FIm/CO represents an alternative of testing verification for
cases in which the complex outputs limit testers to applying
traditional oracle strategies.

A precondition in using O-FIm/CO is the need for a
reliable and representative output from which it is possible
to establish a baseline for comparing objects under testing.
For example, when it is desired to evaluate the appearance of
a GUI in a particular L&F, it requires an environment from
which it is possible to establish a standard image (screenshot)
for comparison during the test. This standard screenshot may
represent, for example, a GUI in a default screen resolution
and orientation. On the other hand, regarding TTS systems,
two empirical strategies are possible: (1) use two different
systems and compare their outputs; and (2) compare the output
produced by a TTS system with the audio of a person who
reproduces the text input.

Figure 2 presents, in detail, the generic structure of O-
FIm/CO. Regarding the structure presented, O-FIm/CO has an
organization that matches different modules and resources in a
common environment. These modules play fundamental rules
to provide an oracle setting. These modules are: (1) “core”; (2)
“parser”; (3) “wizard”; (4) “plug-ins”; (5) “API” (Application
Program Interface); and (6) “oracle application”.

Fig. 2: O-FIm/CO General Structure.

“Plug-ins” may represent feature extractors for complex
outputs or similarity functions. In the O-FIm/CO context, plug-
ins are the main contribution from testers and they represent
a reusable package of Java classes. In these plug-ins, testers
must implement algorithms able to quantify features (feature
extractors) or to figure out the difference between objects
in accordance with their features (similarity functions). The
framework is extensible due to its acceptance of plug-ins,
providing the apportion of knowledge. In order to associate

these plug-ins and O-FIm/CO, testers must implement some
specific Java interfaces. Then, the requirement is that when
developing an extractor, the tester creates a Java class that im-
plements one of these interfaces. There are different interfaces
for audio outputs, graphical outputs, and similarity functions.
After that, “testers” are able to install/uninstall plug-ins in O-
FIm/CO in two different ways: (1) using line commands that
are interpreted by the O-FIm/CO “core”; (2) using a friendly
“wizard”. Exploring ClassLoaders, O-FIm/CO loads plug-in
packages that are able to act over an SUT (audio or graphical
output) extracting relevant information to compose test oracles.

Once the setup described above is made, testers may
specify their test oracles using the O-FIm/CO “wizard”. To
do so, feature extractors, extractor parameters, and similarity
functions must be specified. The final specification is saved
in a text file that represents an “oracle description”. Figure
3 presents an example of an oracle description including
a similarity function, two extractors, and their parameters.
During a test execution, a “parser” analyzes oracle descriptions
and sets up the test. Finally, using an intuitive “API”, testers
must write an “oracle application” that matches framework,
oracle descriptions, SUT’s outputs, and models. The oracle
application is a Java program that analyzes a set of complex
SUT outputs, extracting features specified by testers, returning
if they are similar to a model or not, according to a threshold
(precision).

similarity Euclidean
extractor Color {rectangle = [100 100 30 40] sc = 1.33}
extractor Connectedcomponent {rectangle = [0 0 128 64]}
precision = 0.87

Fig. 3: Generic Instance of an Oracle Description.

III. PROOFS OF CONCEPT

In this section we present empirical analysis whose goals
are determining whether test oracles for SUT with complex
outputs can benefit from our technique, enabling the reuse of
componentss and the knowledge sharing among researchers.
Then, the study is designed to answer the following Research
Questions (RQ):

RQ1: What is the feasibility of knowledge sharing through
reusable plug-ins when automating test oracles for
SUTs with different complex outputs?

RQ2: Is this approach (adapting CBIR concepts) flexible
enough to support oracle automation for different
complex SUTs?

To answer the above questions, we have used real system
applications for two critical complex scenarios: (1) graphical
outputs and (2) audio outputs. Regarding graphical outputs we
use O-FIm/CO to verify test results of a system with GUIs,
exploring the framework resources on verifying acceptable
behaviors of a TTS system.

A. Complex Scenario 1: Complex GUIs

In the first scenario we use the O-FIm/CO approach to
support the automated testing of GUI-based programs. This
example of usage aims to evaluate the framework resources
on alleviating manual verification of GUI visual requirements.
These visual requirements include loading the SUT in different

L&Fs, different screen resolutions, and OSs. Then, our strategy
implements an oracle application able to evaluate screenshots
exposing GUIs from different aspects and to support decisions
about their correctness regarding a model.

1) Subject Application: The subject application empirically
evaluated is the text editor jEdit2. This application is released
as free software with open source code. jEdit is a programmer’s
text editor written in Java and its main GUI has a huge
panel for text editing, a tool-bar, and a side including a
package explorer. Figure 4a presents the main jEdit GUI and
its components. Figure 4b represents this same GUI under a
different L&F. jEdit has a mean of 8000 downloads weekly
and its development team is always fixing bugs reported by
users.

2) Experimental Setup: In order to verify jEdit GUI ap-
pearance under critical situations, we have changed the default
parameters of its appearance. Further, this proof of concept
was designed to access the effectiveness of our technique in
detecting possible failures related to visual aspects of GUIs
derived from visual settings by users. Using a 20” monitor,
we have exposed jEdit’s main GUI to the following situations:

• Execution on six different screen resolutions
(800x600, 1024x768, 1152x864, 1280x1024,
1366x768, and 1600x900);

• Execution on three different L&Fs (CDE-Motif,
Metal, and Nimbus);;

• Execution on two different OS. (Linux and Microsoft
Windows R©); and

• Execution on two different GUI sizes (Maximized and
Regular).

Regarding all possible combinations of visual aspects, we
manually took 72 (36 for each OS) screenshots representing
the visual information provided by the jEdit GUI. To perform
this analysis, we have regarded the jEdit GUI with a resolution
of 1366x768 and the Metal L&F as a model. Then depending
on the OS, and the GUI size, different models were consid-
ered. We assured in advance that each model contained the
appropriate requirements for the proper use of the application.

jEdit may have vision problems that can negatively affect
its functions. Depending on the screen resolution, toolbar
buttons can disappear and, then, become inaccessible for final
users, so this constitutes a sort of visual bug. Indeed, this
is a common problem for several GUI-based applications.
Then, in this empirical evaluation we seek to automate test
oracles for identifying this and similar situations. We have
adopted a strategy that considers applying feature extractors in
different points of jEdit’s GUI. In Figure 4a we highlight the
four main spots of interest in jEdit’s GUI. Additional visual
errors are supposed to be detected by this oracle: distorted
components, and inoperable or invisible buttons. Then, based
on comparisons with model features, our test oracles judge the
test as fail when these conditions are identified.

To implement test oracles able to check the situations
described above, we have developed five O-FIm/CO plug-
ins: (1) Color count, (2) Sobel vertical, (3) Sobel horizontal,
(4) Connected component, and (5) Euclidean Distance (ED).
Along the framework website, all of these plug-ins (including
scenario 2) are available as open source code software for
possible experiments.

2see: http://www.jedit.org/

Color count is an extractor that, after pre-processing that
converts the SUT screenshot into a gray scale image, counts
the number of different gray levels in the region set by the
parameter area. The number of different colors is normalized
by 256 (number of levels). This extractor is useful in complex
toolbars and informative panels to quantify their diversity of
color.

Sobel vertical and Sobel horizontal are two edge detection
algorithms for highlighting image patterns. After binarizing the
GUI screenshot and applying the Sobel operator, this extractor
counts the number of vertical or horizontal edge pixels. Then,
the algorithm normalizes the number of pixels by the perimeter
of the GUI. This plug-in quantifies visual patterns in some GUI
components, such as combo boxes, toolbars, and information
panels.

Connected component is able to count the number of
different components in a determined region of the GUI. Using
a gray scale image, this extractor identifies components by
counting the number of similar pixels using an IP technique
known as area-point transformation. This number is normal-
ized by image width. This extractor can be used mainly to
identify missing components after changing L&Fs and screen
resolutions.

Euclidean Distance is a similarity function that corresponds
to the function that measures the distance between two vectors
of length n. The result 0.0 represents the maximum similarity.

After installing these plug-ins using the framework’s wiz-
ard, we developed two different oracles. The first oracle
(Oracle 1) rule is: to apply color count extractor in Rectangles
1, 3, and 4 of Figure 4a; Sobel vertical and Sobel horizontal
are applied in Rectangle 2; Finally, the ED function checks
the difference between the vectors (SUT versus Model). The
second test oracle (Oracle 2) rule is: to apply the connect
components extractor in Rectangles 1 and 4; in addition, the
color count extractor acts in Rectangle 3; the ED function is
used to obtain the final difference between the SUT and model.

For both oracles, the threshold is set using the distance of
the model and the screenshot of the SUT on a 1280x1024-
Nimbus GUI. This threshold (precision) is due to a visual
analysis that reveals most of the screenshots on resolutions
1280x1024, 1600x900, and 1366x768 always maintaining the
necessary functional requirements to be considered as ap-
proved (“pass”). In the same line, Nimbus is the L&F that
remains the minimal visual conditions of the GUI.

3) Experimental Results: After the test conduction, a man-
ual detailed analysis of false (positive or negatives) results
was carried out. Table I presents the false alarms noticed by
our automated oracle regarding the whole proof of concept,
including oracles, false positives, false negatives, and error
rate. Each row represents one oracle in a specific OS under 36
different visual conditions. The error rate represents the sum
of false positives and false negatives for each row. Broadly,
for the Linux OS, considering the Maximized screenshots, the
1280x1024, 1366x768 e 1600x900 resolutions did not present
any visual problem of loss of components or inactivity of
buttons. However, the 800x600, 1024x760 e 1152x864 have
presented some loss or distortion of components and therefore
it was expected that the oracles fail their tests. For regular sizes
GUIs, model images were considered in regular sizes and thus,
it was expected that none of the screenshots presented prob-
lems. Analyzing of the screenshots of the Windows operating
system, we note that the only difference to be considered in

(a) Default jEdit GUI (b) jEdit GUI: Motif L&F

Fig. 4: jEdit GUIs.

comparison to previous analyzes is that the Maximized size
screenshots with 1152x864 did not present visual problems.

TABLE I: Error Summary for Complex Scenario 1.

Oracle OS False positives False Negatives Error rate
1 Linux 3 0 8.3% (3/36)
1 Windows 1 2 8.3% (3/36)
2 Linux 2 0 5.5% (2/36)
2 Windows 1 0 2.8% (1/36)

Total 7 2 6.25% (9/144)

B. Complex Scenario 2: TTS Systems

This second scenario aims to demonstrate how to explore
the framework O-FIm/CO to develop automated test oracles
for SUTs with complex outputs given in audio format. This
scenario’s scope is limited to TTS systems. Many embedded
systems use TTS applications to read e-mails or social network
updates, to read books or headlines for blind people, to
read traveling directions, news, weather forecasts, and other
written materials. However, the mainstream adoption of TTS
is severely limited by its quality. Pronunciation and intona-
tion problems make the speech synthesized highly unnatural.
Despite their importance, TTS systems have their quality as-
sessed by manual and unproductive processes. Informal human
interpretations and different manual approaches are the most
common procedures to evaluate the output of TTS systems [5].
In this empirical evaluation, using audio files in Wave format
as the source of information for verifications, we automate test
oracles to support testers’ decisions about the correctness of
TTS’s outputs through comparison of two TTS systems.

1) Subject Application: Outputs from two real TTS sys-
tems are considered in this empirical analysis: (1) TTS CPqD
(version 3.3)3; and (2) Google R©Translate Text-to-Speech4.
CPqD is the major Brazilian provider of telecommunications
and solutions. TTS CPqD is a system able to synthesize texts
written in Portuguese in speech signals near human speech.
Then, Portuguese is the idiom considered in this evaluation.

3see: http://www.cpqd.com.br/
4see: https://code.google.com/p/java-google-translate-text-to-speech/

2) Experimental Setup: The aim of this analysis is to
check two different TTS systems and compare their outputs.
Typically, outputs from one TTS have to be regarded as
model. TTS CPqD is a commercial application, then we have
considered it as our model. Consequently, Google Translate
TTS represents our SUT. In this context, in order to generate
a data set, 100 Portuguese words were selected. These words
were generated by the CPqD system loaded with three different
texts from random popular news website. The choice of words
did not follow any restriction, and it was obtained following
the order of their occurrence. At the end of the process, 100
audio files were generated. Finally, the same words were used
as input to our SUT.

We have implemented an automated test oracle exploring
two test oracles: (1) Vowel extractor; and (2) Phoneme ex-
tractor. “Vowel extractor” is able to analyze an audio signal
identifying the presence and the instant in which a Portuguese
phoneme (A [/a/, /5/], E [/e/, /E/], I [/i/], O [/o/, /O/], and U
[/u/]) is identified. Then, from a file representing a voice signal,
the algorithm is able to return useful testing information. This
information is specified through an XML (eXtensible Markup
Language) file. “Phoneme Extractor” analyzes an audio signal,
reporting the occurrences of three most common Portuguese
phonemes (K [/t/], T [/t/], and M [/m/]). Similar to the vowel
extractor, testers are able to set parameters for the phoneme
extractor using an XML file. Then, the extractor identifies the
presence and the moment of specified phonemes in an audio
file.

Both extractors went through a process of parameter cal-
ibration to work properly in the context of our TTS system
using our data set including more than 100 words. After
installing the plug-ins into the framework, we designed a test
oracle using the extractors aforementioned to evaluate in order
to assess the accuracy of the identification of the phonemes.
This experience also aims to estimate the possibility of using
oracle mechanisms for TTS systems test.

3) Experimental Results: We manually analyzed the results
regarding the oracle acting in the set of data. This analysis
aimed to measure the hits achieved in the identification of

phonemes of interest. Table II and Table III present a summary
of errors and hits of the vowel extractor and the phoneme
extractor, respectively. The tables reveal the hits regarding the
number of occurrences of the feature extracted. Through a
detailed evaluation of the results, we identify the differences
between speed and voices of both systems as the main cause
of errors.

TABLE II: Summary for the Vowel Feature Extractor.

Vowel
Number of occurrences

CPqD system Google TTS
0 1 > 1 0 1 >1

A /a/, /5/ 71% 85% 57% 60% 68% 64%
E /e/, /E/ 65% 76% 60% 73% 61% 50%
I /i/ 89% 72% 50% 74% 59% 25%
O /o/, /O/ 75% 69% 40% 61% 72% 40%
U /u/ 68% 68% 100% 93% 40% 100%

hits 74% 74% 61% 72% 60% 56%

TABLE III: Summary for the Phoneme Feature Extractor.

Phoneme
Number of occurrences

CPqD system Google TTS
0 1 0 1

K /k/ 74% 53% 81% 63%
T /t/ 85% 48% 68% 52%
M /m/ 73% 47% 52% 20%

hits 77% 49% 67% 45%

IV. RESULT DISCUSSIONS

Regarding the research questions aforementioned (Sec. IV),
our results contributed to clarify some points. We consider
our approach to check SUT’s outputs of distinct non-testable
programs feasible. Some efforts from testers are necessary to
assimilate the entire technique, however elementary concepts
of programming and IP are enough to adopt our strategy
and automate test oracles, as well as answer RQ1. Then, we
consider O-FIm/CO an extensible framework, which enables
testers to use pre-implemented plug-ins, as a potential form of
knowledge sharing on automating test oracles for SUTs with
complex outputs.

Regarding RQ2, as in most SE studies, we cannot be
sure that the subject programs and the empirical analysis we
adopted are representative to answer this question completely.
Two scenarios are not enough to generalize our results for
another complex scenario such as Web applications and RV
environments. We need further analyses and more research
focused on getting shared knowledge from other studies.

In addition to the pre-defined RQs, through the conduction
of this study, we noticed that several research investments are
necessary from testers. We consider these non-experimental
findings as trade-offs on using O-FIm/CO. Among these trade-
offs we highlight: (1) implementing or finding plug-ins; (2)
seeking reliable output models; and (3) using the API to
implement oracle applications. However, once the testers are
done with investments 1 and 2, the technique is useful to
alleviate oracle efforts on different contexts. In this context, all
these investments address the usage of O-FIm/CO to a concept
known as “amortization cost”. Generally this concept refers to
cases in which the testers spend an amount of time and effort
to set a favorable scenario to be explored again and again.

Among the limitations associated with the wide usage of O-
FIm/CO, we highlight that the correctness and precision of its

oracles actually depend on the quality of the oracle programs
(threshold and plug-ins), which are manually developed by do-
main engineers. Then, testers must to select adequate plug-ins
to achieve accurate results. In addition, the approach as whole
needs an assumption – some reliable expected output must be
given. In practice, testers and developers have to decide, based
on system specifications, about reliable sources of information
to be considered in testing. This decision evolves important
features that have to remain apart of environments variations.

V. CONCLUSION

This paper proposes an extensible and reusable framework
to support test oracle automation for non-testable programs,
alleviating human-oracle efforts through reusable testing plug-
ins and enabling the sharing of knowledge in this field. Based
on two research questions, we conducted empirical analysis on
two different complex scenarios: graphical and audio outputs.
Our findings showed the feasibility of our approach and the
possibility of reuse of plug-ins. In addition, we highlight
that complementary experiments are necessary to consider
this approach in wider scenarios such as, the usage of the
framework to evaluate visual aspects of more than five GUI-
based systems. A trade-off analysis reveals that tester has
to dedicate extra effort in the very beginning of the testing
project to achieve a favorable automated scenario. We believe
extensible frameworks set possible solutions to the lack of
knowledge associated with automated test oracles and SUT
with complex outputs. The framework and all plug-ins devel-
oped and explored to collect our results are available as free
software along with its documentation. This opens channels
for technology transfer and reveals a solid contribution of the
research reported in this paper.

ACKNOWLEDGMENT

FAPESP – Grant Numbers 2012/06474-1 and 2013/01775-
6. Much of this work was conducted at the University of
Maryland at College Park, MD, USA, during an one-year visit
by the first author.

REFERENCES

[1] W. Chan and T. Tse, “Oracles are hardly attain’d, and hardly understood:
Confessions of software testing researchers,” in Proceedings of the 13th
International Conference on Quality Software (QSIC 2013), Boston,
USA, 2013, pp. 245–252.

[2] P. Mateo and P. Usaola, “Bacterio oracle: An oracle suggester tool,” in
Proceedings of the 25th International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE 2013), Boston, USA, 2013, pp.
300–305.

[3] M. Staats, G. Gay, and M. Heimdahl, “Automated oracle creation support,
or: How I learned to stop worrying about fault propagation and love
mutation testing,” in Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012), Zurich, Switzerland, 2012, pp.
870–880.

[4] E. J. Weyuker, “On Testing Non-Testable Programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, Nov. 1982.

[5] P. Taylor, Text-to-Speech Synthesis, 1st ed. Cambridge University Press,
2009.

[6] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image Retrieval: Ideas,
Influences, and Trends of the New Age,” ACM Computing Surveys,
vol. 40, no. 2, pp. 1–60, Apr. 2008.

[7] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable pro-
grams,” in Proceedings of the ACM ’81 Conference, ser. ACM ’81. New
York, NY, USA: ACM, 1981, pp. 254–257.

[8] M. E. Delamaro, F. L. S. Nunes, and R. A. P. Oliveira, “Using concepts
of content-based image retrieval to implement graphical testing oracles,”
Software Testing, Verification and Reliability, vol. 23, no. 3, pp. 171–198,
2013.

