
Murphy Tools: Utilizing Extracted GUI Models for
Industrial Software Testing

Pekka Aho
VTT Technical Research Centre of

Finland
Oulu, Finland

Matias Suarez
F-Secure Ltd

Helsinki, Finland

Atif M. Memon
University of Maryland
College Park, MD, USA

Teemu Kanstrén
VTT, Oulu, Finland

University of Toronto
Toronto, Canada

Abstract— One of the main challenges in adopting model-
based testing (MBT) is the effort and expertise required to
produce the formal models. For an existing system, there are
various approaches to automate the process of creating the
models. In this paper, we share our experiences from a long term
industrial evaluation on automatically extracting models of
graphical user interface (GUI) applications and utilizing the
extracted models to automate and support GUI testing. While
model extraction and GUI testing has been recently a popular
research topic, most proposed approaches have limitations on
what can be modeled and industry adoption has been lacking. We
describe the process of using Murphy tools to extract GUI models
and utilize these models to automate and support various testing
activities. During the evaluation, test engineers of an industrial
software company used Murphy tools to support their daily
efforts in testing commercial software products during 1 year
time period. The results from the evaluation were promising,
significantly reducing time and effort required for GUI testing.

Keywords—graphical user interface; GUI test automation;
model extraction; reverse engineering; industrial test environment;

I. INTRODUCTION
Increasing and ubiquitous use of software systems makes

our daily lives more and more dependent on the software
functioning without errors. The software systems are constantly
growing in size and complexity and there is pressure to deliver
the systems in shorter time, increasing the possibility of errors
in the systems. Software testing aims to detect the errors to
allow fixing them before the products are released for the end
users, but the short time-to-market reduces the already scarce
resources for testing. GUIs constitute a large part of the
software being developed today [1], and the size and
complexity of modern GUIs [2] further increase the importance
and demand for automated GUI testing.

MBT is a technique for using models as a basis for
automated test generation. The industrial adoption of MBT is
challenging because creating formal models requires
specialized expertise and a considerable amount of effort [3],
and using the models for automated testing requires mapping
between the model and the actual system that was modeled [4].
When an existing system is being modeled, there are various
approaches to automate the process of creating the models.
Especially GUI software has been a popular domain for

automatically extracting models and using the models for test
automation. Unfortunately most of the existing approaches
have limitations and restrictions on the GUI applications that
can be modeled, and so far the industry adoption has been very
limited.

In our previous work [5] we have introduced Murphy tools
and our innovative platform independent technique for
automatically extracting GUI models based on dynamic
analysis of the GUI. In this paper we describe the process of
using the Murphy tools, and share our promising results and
experiences from a long term industrial evaluation showing
that models of non-trivial GUI applications can be
automatically extracted and utilized to automate and support
GUI testing.

The presented results are based on the experiences of test
engineers of F-Secure Ltd using the approach and Murphy
tools in their daily work of development and testing of
commercial software products. F-Secure Ltd is a software
company from Finland having both client and server side
products related to safety and security, such as virus protection,
including applications with a GUI for the end users. Especially
the client products have a wide variety of supported platforms
and versions of operating systems, increasing the required
effort in testing. F-Secure uses continuous integration and high
level of test automation in its software development. Each
internal software release has to pass a rigorous quality
assurance process before reaching the phase for external
release. Also the creation of virtual test environments has been
automated with Dynamic Virtual Machine Provisioning
Service [6] to use resources more efficiently.

As directly detectable defects, such as crashes and
unhandled exceptions, can be detected without using
application specific test oracles [7], Murphy begins the testing
of the GUI application already during the model extraction
process. Although capturing a lot of details internally, Murphy
abstracts and visualizes the extracted models with screenshots
of the actual GUI, and the correct behavior of the GUI
application can be validated by visual inspection of the state
models. In addition to regression testing, the manually
validated models can be used also for conformance testing, and
a large part of the behavior is validated already during the
visual inspection.

Our experiences from a long term industrial evaluation
show that model extraction can be successfully utilized on non-
trivial GUI applications and the extracted models can be
utilized to automate and support various testing activities.
Using the extracted models to derive GUI test scripts to replace
equal manually written scripts significantly reduced the amount
of hand written code related to test automation, reducing the
effort required for creating and updating the test cases.
Additionally, utilizing the extracted models and Murphy tools
to support manual GUI testing reduced the time required for
executing the existing test cases by automating the
initialization phase of the test cases.

II. BACKGROUND AND RELATED WORK

A. GUI Test Automation
The use of capture/replay (CR) tools has been a popular

approach to automate GUI testing in industry. While CR tools
are an easy and straightforward first step towards more
effective use of the testing recourses [8], a significant effort is
still required to record the test cases, it is challenging to detect
the failures [1], and a large number of test cases may have to be
re-recorded when the layout of GUI changes [9]. With the
iterative development processes and rapid prototyping cycles
of GUI development, the GUI changes very often, increasing
the maintenance effort of CR test sets.

Model-based testing aims to reduce the test maintenance
effort due to fewer artifacts to update. MBT is a technique for
deriving test cases from models of the system under test (SUT)
to provide more cost-effective means for extensive testing of
complex systems [10]. Instead of manually writing a large set
of test cases, a smaller set of test models are constructed to
describe the behavior of the SUT and how it should be tested.
Test cases are then automatically derived from the models,
according to the selected criteria [11]. If the model describes
the correct behavior of the SUT, it can be used for generating
test oracles and detecting incorrect behavior by looking for
situations which violate the model [9]. One barrier in industrial
adoption of MBT is the complexity of modeling, requiring
deep expertise in formal methods and a considerable amount of
effort [3]. Another challenge is to provide mapping between
the model and the implementation to be able to automatically
execute the generated test cases [4].

When an existing system is being modeled, there are
various approaches aiming to reduce the effort and expertise
required for constructing the test models by automating some
parts of the modeling process, e.g., extracting the models
through reverse engineering or specification mining. Especially
in the area of GUI software, there are promising academic
approaches to automatically construct GUI models based on
observing the runtime behavior of an existing application and
using the models to automate GUI testing.

B. Automated Extraction of GUI Models
It is difficult to deduce the behavior of a GUI application

from its source code without executing it, because the widgets
are often reachable only from a particular state or with other
constraints. The relation between GUI controls and the

corresponding event handlers, and even the structure of the
GUI, might be defined dynamically at runtime, with only a
basic skeleton of the GUI defined statically in the source code
[12]. Dynamic analysis that involves executing the application
and observing the runtime behavior of the GUI is better suited
for extracting models but more difficult to automate [4].
Automated execution of a GUI application requires GUI
automation, i.e., simulating an end-user by automated control
and interaction through the GUI of the executed application
[8]. Dynamic analysis allows modeling the behavior of
dynamically changing GUIs, e.g., when the visibility of a GUI
component depends on the state of another component [8].

A major challenge in automatically traversing or crawling
through the GUI during dynamic analysis is providing
application specific input for the input fields of the GUI
without predefined instructions from the user [13]. Usually,
some human intervention, such as providing a valid username
and password for a login screen, is required during the
modeling process to reach all parts of the GUI and achieve a
good coverage with dynamically extracted models [13].
Another option is that an expert manually reviews, corrects, or
extends the extracted models [14]. The efficiency of these
semi-automatic modeling techniques depends largely on the
degree of required human intervention [14].

Memon et al. have extensively published their research on
GUI Ripping [15], a technique for dynamically extracts event
based models of GUI applications for test automation purposes.
Their aim is to provide tools for fully automated model
extraction and test generation process, so they don’t address the
challenge of providing specific input. Miao and Yang propose
a finite-state machine (FSM) based GUI Test Automation
Model (GuiTam) [16] and tooling for automatically
constructing the state models by dynamic analysis. Mesbah et
al. [17] present a technique and open source tool called
Crawljax for crawling Asynchronous JavaScript and XML
(AJAX) based applications to dynamically infer state based
models. Aho et al. present GUI Driver [18], a dynamic reverse
engineering tool for Java GUI applications, and an iterative
process of manually providing valid input values and
automatically improving the created models [13]. Morgado et
al. present a fully automated version of ReGUI tool [19] and
use dynamic analysis to generate GUI models in various
formats. Amalfitano et al. provide tools for automated
modeling and testing of rich internet applications (RIAs) [20]
and Android applications [21]. Mariani et al. present
AutoBlackTest [22], a tool using dynamic analysis for model
extraction and test suite generation for GUI applications.

The latest research has utilized hybrid techniques,
combining static and dynamic analysis. Dynamic analysis
alone might miss relevant aspects of the user interface and be
ambiguous regarding what conditions trigger which alternative
behaviors. Then static analysis can be used to complement the
dynamic analysis [12]. Yang et al. [23] proposed a hybrid
reverse engineering approach and a tool called Orbit to extract
GUI models of Android mobile applications. Static analysis of
the application’s source code is used to extract the set of user
actions supported by each widget in the GUI, and the extracted
actions are used to dynamically crawl through the GUI and
dynamically reverse engineer a FSM model of the application.

Azim and Neamtiu [24] present Automatic Android App
Explorer (A3E), a hybrid reverse engineering approach and
open-source tool for systematically exploring Android mobile
applications. Gross et al. [25] presented EXSYST, a hybrid
model extraction and test generation tool that uses dynamic
analysis for exploring Java GUI applications while guided by
static analysis aiming to maximize the code coverage of the
generated test suite. Silva and Campos [12] combine dynamic
analysis with static source code analysis for reverse
engineering Web applications.

Unfortunately all of these approaches have limitations on
the GUI applications that can be modeled, most being able to
extract the model of an application only if it has been
implemented with a specific programming language, such as
Java. In this paper, we use Murphy tools utilizing dynamic
analysis and a combination of techniques to extract the GUI
models, including a platform independent technique based on
automatically captured screenshot images [5].

C. Utilizing Generated Models for GUI Testing
A challenge in automated GUI testing, especially when

using extracted models, is to provide meaningful test oracle
information to determine whether a test case passed or failed
[26]. The input of a GUI test case may consist of a long
sequence of actions, and there is no single specific output as
each executed action may affect the state of the GUI. In model-
based GUI testing (MBGT), the oracle information consists of
a set of observed properties of all the windows and widgets of
the GUI [27]. Also, to detect errors in the middle of a test
sequence, the correct state of the GUI has to be verified after
each executed action [26]. An incorrect GUI state during a test
sequence can lead to an unexpected screen, making further test
case execution useless or impossible [26].

In most approaches that use extracted GUI models for
testing, the test oracles are based on the observed behavior of
an earlier version of the GUI application. Using this kind of
test oracles, often called reference testing, changes and
inconsistent behavior of the GUI can be detected and the
models can be used for automated regression testing, but
conformance testing, i.e., validation and verification against the
specifications, is problematic [14]. Some defects, such as
crashes and unhandled exceptions, can be detected without the
use of application specific test oracles [7], making it possible to
begin the testing of the GUI application already during the
dynamic reverse engineering process, as in [13].

There are various types of models used for model-based
GUI testing (MBGT), the most popular being state based
models [28]. The key idea is that the behavior of a GUI
application is presented as a state machine, nodes of the model
are GUI states, edges are events and interactions, and each
input event may trigger an abstract state transition in the
machine. A path of nodes and edges in the state machine, i.e.,
sequence of states and state transitions in the GUI, represents a
test case [28]. The abstract states of a state machine are used to
verify the concrete states of the corresponding GUI application
during the test case execution [2]. Reverse engineered state
based models are used for testing GUI applications in various
approaches, e.g., GUI Driver [13] and GuiTam [16] for Java

GUI applications, Crawljax [29] and DynaRIA [20] for rich
internet applications (RIAs), and AndroidRipper [21] for
Android applications.

Also the Murphy tools use state based models, but in
addition to GUI automation frameworks, such as Jemmy Java
library and Microsoft UI Automation framework, the
automatically captured screenshots are utilized in
distinguishing the states of the GUI. The application specific
input, such as usernames and passwords, can be provided using
the model extraction script before modeling or the Web UI of
Murphy tools during testing.

Another popular format for extracted GUI models for
testing is event based models. Memon’s group has
implemented GUITAR [30], a model-based system for
automated GUI testing, to execute and observe GUI
applications for automatically constructing event based models
that are used for MBGT. They also present DART [31], a
framework for using automatically crafted GUI models for re-
testing the modeled GUI applications, e.g., smoke testing
nightly or daily builds of GUI software. Xie et al. [32]
introduces rapid crash testing and defines a tighter, fully
automatic GUI testing cycle for rapidly evolving GUI
applications. The key idea is to test the GUI each time it is
modified, i.e., at each code commit.

Although validated by modeling and testing open source
applications and simple proof of concepts, so far none of the
academic approaches and tools has been adopted by the
industry to test commercial software products. An important
contribution of this paper is sharing experiences from a long
term industrial evaluation, and showing that model extraction
can be successfully utilized on non-trivial GUI applications and
the extracted models can be utilized to automate and support
various GUI testing activities.

III. UTILIZING EXTRACTED GUI MODELS IN INDUSTRIAL
SOFTWARE TESTING

In this section we introduce a process of using Murphy
tools to extract models of GUI applications and utilizing the
extracted models to support various GUI testing activities, and
share our experiences of using the approach in industrial
development and testing environment. The experiences are
based on evaluation of 3 test engineers of F-Secure Ltd using
Murphy tools for modeling and testing several versions of 3
commercial GUI applications during one year time period. The
size of the modeled GUI applications was of the order of
magnitude of hundreds of thousands to millions lines of code,
and the size of the extracted models was between 81 – 178
nodes (GUI states).

A. The Process of Using Murphy Tools
At a high level, the process of using Murphy tools can be

divided into two phases: 1) automated extraction of GUI
models, and 2) utilizing the models in GUI testing. In our
previous work [5] we have covered a large part of the first
phase, so we explain the model extraction steps with less detail.

Step 1: The model extraction phase begins with writing an
application specific model extraction script, usually between 2

 Fig. 1. An extraction script of Murphy for a simple GUI application.

Fig. 2. A simple example of a GUI model extracted by Murphy.

and 200 lines of Python code, to instruct Murphy tool how to
extract the model and what are the boundaries of the GUI
exploration, for example ignoring the Web browser that is
launched from ‘Help’ menu. An example of a simple extraction
script is presented in Figure 1. This simple example of a GUI
application, installation of 7zip application, required only two
lines of Python code: one for selecting the application to be
extracted and the other for setting a boundary for the extraction
to the dialog for selecting the installation folder.

Step 2: The second step is letting Murphy tool to explore
the GUI application and dynamically extract the model. No
manual assistance or guidance is required during the model
extraction. The duration of this step depends on the size and
complexity of the GUI being modeled, but with the non-trivial
commercial GUI applications used in this evaluation, it took
about 1-2 hours to crawl through and extract the GUI model on
a normal desktop PC. A simple example, the installation flow
of 7zip extracted with Murphy, is presented in Figure 2. The
model was extracted with the script presented in Figure 1. The
transitions from a boundary node, illustrated with question
marks, are included in the extracted model but not executed
during the model extraction.

Step 3: The third step of the model extraction phase is to
visually inspect the model and validate the correctness of the
observed behavior and extracted model. Because the model is
based on the observed implementation, instead of requirements
of the system, visual inspection and manual approval of the
model is required to make sure that the modeled application
behaves as expected. To help reading the models and

understanding the behavior of the modeled application during
the manual inspection, Murphy abstracts a lot of details
captured in the internal model and visualizes the GUI model as
a directed graph with screenshots of each GUI state as nodes
and images of executed widgets as transitions between the
states. The user inspecting the model should compare the
modeled behavior with the correct behavior captured in the
requirements or other specifications.

Usually, a couple of iterations of steps 1-3 are required to
tweak and fix the extraction script and extract model with a
good coverage of the GUI. After the automated model
extraction, about 6 hours of manual effort was required to get
an approved model.

A large part of the behavior of the GUI is already tested and
directly detectable defects, such as crashes and unhandled
exceptions, are found during the model extraction phase.
Incorrect behavior, usually found with conformance testing,
can be detected when the extracted model is manually
inspected and validated. When the extracted model is inspected
and approved, it can be used for automating and supporting
various testing activities.

In phase 2, the extracted models can be utilized for the
following three types of testing activities in any order,
independently of each other.

Regression testing: The extracted models can be used for
regression testing between different versions of the same GUI
application. In a continuous integration process, the same
extraction script can be used to automatically extract a model
of the latest development version several times a day, and
automatically compare the models and send warnings if
changes in the behavior are detected. With major releases, the
model extraction scripts might require minor modifications,
such as pointing the script to the correct version of the
application and to use the correct and valid product keys. When
changes are detected, Murphy provides a Web UI for the user,
showing the screenshots of both versions for each state having
differences, highlighting the changes, and asking the user if the
changes were desired new behavior or undesired deviations and
faulty behavior.

Generating test scripts: When introducing new test
automation tools into use, the first step is often to replace the
existing, possibly manually constructed but automatically
executable test cases. Murphy provides a Web UI for the user
to specify test cases as paths in the extracted model, and
generates executable test scripts that cover the selected path.
Murphy visualizes the model with screenshots of the GUI,
allows user to select states of the model and provide specific
input for the test case, and randomly generates the missing
parts of the path, if any. The generated test scripts can be used
for example in smoke testing, automatically executed after
each code commit. The amount of manually written test related
code, and therefore the maintenance effort, is reduced and
creating new test scripts is faster and easier.

Supporting manual GUI testing: It is seldom feasible to
automate all GUI testing, and therefore Murphy provides
support also for manual GUI testing. The user can use Murphy
Web UI to select a GUI state from the visualized model, and

 Fig. 3. Defining input values for a test case with Murphy Web UI.

Murphy automatically creates a virtual machine, starts and
executes the GUI application to the selected state, and directs
the user to connect to the virtual machine with the GUI
application in the desired state. The user can select a path of
multiple states that should be visited and possibly the input
values to be entered into the input fields of the GUI
application. Murphy executes the application to visit all the
selected states, automatically deducing the route if the whole
path between the states was not defined. The user can continue
to use the application manually, for exploratory testing or other
manual verification purposes, and the time required for test
initialization is reduced. An example of using Murphy Web UI
to define input values for a test case is presented in Figure 3.

B. Experiences on Extracting GUI Models
During the evaluation, Murphy was used to extract models

of 3 commercial GUI applications. Several versions of each
application were modeled, because at any specific time there
were at least 3 release versions on different phases of the
quality assurance process, and the software developers added
new features and released new versions during the
development. The number of nodes (GUI states) in the
extracted models was between 81 and 178.

Based on our experiences, partitioning the extracted models
from one large model into a set of smaller and simpler models
reduced the complexity of the models and made it easier to use
the models in testing. During the experiment, separate models
were created for the installation flow, the flow of actually using
the application and the uninstallation flow. Also, each different
supported language was modeled as a separate model. The
partitioning is done with the boundaries in the model extraction
scripts, and each model requires a separate extraction script
with different boundaries.

Murphy was also used to extract models of all 29 different
languages of the modeled products, and the visual
presentations of the models were used to validate that the
internationalization was working as expected. As the
functionality of the application is supposed be the same
regardless of the selected language, it was possible to use the
same extraction script for creating the models of each language
with a minor modification of changing the selected language
into the extraction script. Of course, any text-based instruction

in the model extraction script might be affected with the
selected language and require modification.

C. Experiences on Utilizing Extracted Models for Testing
The extracted models and Murphy tools were used to

automate and support testing and quality assurance in various
ways during the software development cycle. New models of
the latest versions in the continuous integration process were
automatically captured and compared with earlier models 3
times a day, and warnings were sent whenever changes in the
behavior were detected. Then the test engineers used the Web
UI of Murphy to check each change and decide if the change
was intended or an error. A large part of the detected changes
were intended, and could be called false positives, but instead
of having to update the related test cases, the test engineer just
starts using the new model for the automated comparison. The
process is similar to regression testing, but actually uses model
extraction and model comparison, instead of automatically
generating and executing test cases with test oracles based on
behavior of the earlier version.

220 existing manually written GUI testing scripts were
replaced by deriving the corresponding test cases and scripts
from the extracted models. Unfortunately, precise information
about the effort used for manually creating the test scripts was
not available, but defining the test cases and generating the
scripts from the models was obviously faster and required less
effort. As a result, the amount of hand written code specific for
GUI testing was significantly reduced, reducing the effort for
maintaining the test cases and creating new ones in the future.

Murphy was used to support the execution of the manual
GUI test cases for the modeled applications, and the time
required for performing the manual GUI testing was
significantly reduced. Although the reduction varied,
depending on the application being tested and the particular test
cases, generally the results were very promising. For example,
when manual testing required over 30 minutes, it required less
than 10 minutes to test the same test cases with the help of the
generated models and the exploratory testing tool of Murphy.
The main advantage was that Murphy automatically executed
the tedious and repetitive steps and the steps that required
waiting time, leaving only the steps that required manual
analysis and verification of the results for the user.

IV. DISCUSSION AND CONCLUSION
In this paper we have introduced the process of using

Murphy tools and shared our promising experiences from a
long term industrial evaluation on automatically extracting
models of GUI applications and utilizing the extracted models
to automate and support industrial testing of commercial
software products. Testing of the GUI begins already during
the model extraction phase, as detecting directly detectable
defects, such as crashes and unhandled exceptions, does not
require application specific test oracles. Incorrect behavior and
errors can be detected also when the extracted model is visually
inspected and validated.

Based on our experiences, utilizing extracted models to
define GUI test cases and generate test scripts reduces the
amount of hand written code related to test automation,

reducing the effort for creating and maintaining test scripts.
With the help of Murphy tools, the time required for
performing manual GUI testing was significantly reduced,
mainly by automating the initialization and uninteresting parts
of manual testing.

Unfortunately, it was not possible to organize the
evaluation in a strictly controlled and structured manner, and
part of the data and metrics was confidential. As the test
engineers used the approach in their daily work of development
and testing of commercial software products, and their goal
was to reduce the effort of GUI testing by being more efficient,
they were not eager to spend time for collecting data for
academic purposes. Therefore we were not able to present as
accurate data and measurements of the costs and benefits of the
approach as often presented from smaller scale, controlled
experiments and academic feasibility studies.

We believe that an important contribution of this paper was
to show that it is possible and feasible to use dynamic analysis
to extract state based models of industrial size GUI applications
and validate the extracted models by visual inspection, and
using the extracted models for GUI testing saves time and
effort compared to the existing methods and tools. A good
indicator of success is also that based on the results, Murphy is
being adopted into wider use in F-Secure Ltd.

REFERENCES
[1] A.M. Memon, "Automatically repairing event sequence-based GUI test

suites for regression testing", ACM Trans. on Software Engineering and
Methodology (TOSEM), Volume 18, No. 2 (Nov 2008), Article No. 4.

[2] A.M. Memon, "An event-flow model of GUI-based applications for
testing", Software Testing, Verification & Reliability, Vol. 17, No. 3
(Sep 2007), pp. 137-157.

[3] G.Z. Holzmann and M.H. Smith, "An Automated Verification Method
for Distributed Systems Software Based on Model Extraction", IEEE
Trans. on Software Eng., Vol. 28, No. 4 (Apr 2002), pp. 364-377.

[4] A.M.P. Grilo, A.C.R. Paiva, and J.P. Faria, "Reverse engineering of GUI
models for testing", Proc. 2010 5th Iberian Conf. on Information
Systems and Technologies (CISTI), 16-19 Jun 2010, Santiago de
Compostela, Spain, pp. 1-6.

[5] P. Aho, M. Suarez, T. Kanstren, and A.M. Memon, "Industrial adoption
of automatically extracted GUI models for testing", Proc. Int. Workshop
on Experiences and Empirical Studies in Software Modelling
(EESSMod), 1 Oct 2013, Miami, Florida, USA, pp. 49-54.

[6] Dynamic Virtual Machine Provisioning Service, https://github.com/F-
Secure/dvmps

[7] X. Yang, "Graphic User Interface Modelling and Testing Automation",
PhD thesis, School of Engineering and Science, Victoria University,
Melbourne, Australia, May 2011.

[8] P. Aho, N. Menz, and T. Räty, "Dynamic Reverse Engineering of GUI
Models for Testing", Proc. Int. Conf. on Control, Decision and
Information Tech., 6-8 May 2013, Hammamet, Tunisia, pp. 441-447.

[9] J. Bowen and S. Reeves, "UI-design driven model-based testing",
Innovations in Systems and Sw.Eng., Vol. 9, No. 3 (2013), pp 201-215.

[10] M. Utting and B. Legeard, "Practical model-based testing: a tools
approach", Morgan Kaufmann Publishers, San Francisco, USA, 2006.

[11] T. Kanstrén, "A framework for observation-based modelling in model-
based testing", VTT Publications 727, Espoo, Finland, 2010.

[12] C.E. Silva and J.C. Campos, "Combining static and dynamic analysis for
the reverse engineering of web applications", Proc. 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS), 24-
27 Jun 2013, London, UK, pp. 107-112.

[13] P. Aho, N. Menz, and T. Räty, "Enhancing generated Java GUI models
with valid test data", Proc. 2011 IEEE Conf. on Open Systems (ICOS),
25-28 Sep 2011, Langawi, Malaysia, pp. 310-315.

[14] A. Kull, "Automatic GUI Model Generation: State of the Art ", Proc.
2012 IEEE 23rd Int. Symposium on Software Reliability Engineering
Workshops (ISSREW), 27-30 Nov 2012, Dallas, TX, USA, pp. 207-212.

[15] A.M. Memon, I. Banerjee, B. Nguyen, and B. Robbins, "The First
Decade of GUI Ripping: Extensions, Applications, and Broader
Impacts", Proc. 20th Working Conf. on Reverse Engineering (WCRE),
14-17 Oct 2013, Koblenz, Germany, pp. 11-20.

[16] Y. Miao and X. Yang, "An FSM based GUI test automation model",
Proc. 2010 11th Int. Conf. on Control, Automation, Robotics & Vision
(ICARCV), Singapore, 7-10 Dec 2010, pp. 120-126.

[17] A. Mesbah, A. van Deursen, and S. Lenselink, "Crawling Ajax-based
Web Applications through Dynamic Analysis of User Interface State
Changes", ACM Trans. on the Web (TWEB), Vol. 6, No. 1 (2012).

[18] P. Aho, N. Menz, T. Räty, and I. Schieferdecker, "Automated Java GUI
Modeling for Model-Based Testing Purposes", Proc. 8th Int. Conf. on
Information Technology : New Generations (ITNG), 11-13 Apr 2011,
Las Vegas, USA, pp. 268-273.

[19] I.Morgado, A. Paiva, and J. Faria, "Dynamic Reverse Engineering of
Graphical User Interfaces", Int. Journal on Advances in Software, Vol.
5, No. 3 & 4 (2012), pp. 224-246.

[20] D. Amalfitano, A. R. Fasolino, A. Polcaro, and P. Tramontana, "The
DynaRIA tool for the comprehension of Ajax web applications by
dynamic analysis", Innovations in Systems and Sw. Eng., Apr 2013.

[21] D. Amalfitano, A.R. Fasolino, P. Tramontana, S. Carmine, and G.
Imparato, "A Toolset for GUI Testing of Android Applications", Proc.
28th IEEE Int. Conf. on Software Maintenance (ICSM), 23-28 Sep
2012, Trento, Italy, pp. 650-653.

[22] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, "AutoBlackTest:
Automatic Black-Box Testing of Interactive Applications", Proc. IEEE
5th Int. Conf. on Software Testing, Verification and Validation (ICST),
17-21 Apr 2012, Montreal, Canada, pp. 81-90.

[23] W. Yang, M.R. Prasad, and T. Xie, "A grey-box approach for automated
GUI-model generation of mobile applications", Proc. 16th Int. Conf. on
Fundamental Approaches to Software Engineering (FASE), 16-24 Mar
2013, Rome, Italy, pp. 250-265.

[24] T. Azim and I. Neamtiu, "Targeted and Depth-first Exploration for
Systematic Testing of Android Apps", Proc. 2013 Int. Conf. on Object-
Oriented Programming, Systems, Languages & Applications
(OOPSLA), 26-31 Oct 2013, Indianapolis, USA, pp. 641-660.

[25] F. Gross, G. Fraser, and A. Zeller, "EXSYST: Search-Based GUI
Testing", 2012 34th Int. Conf. on Software Engineering (ICSE), 2-9 Jun
2012, Zurich, Switzerland, pp. 1423-1426.

[26] A.M. Memon, "GUI Testing: Pitfalls and Process", Computer, Vol. 35,
No. 8 (Aug 2002), pp. 87-88, IEEE Computer Society.

[27] J. Strecker and A.M. Memon, "Accounting for Defect Characteristics in
Evaluations of Testing Techniques", ACM Trans. on Software
Engineering and Methodology (TOSEM), Vol. 21, No. 3 (Jun 2012).

[28] X. Yuan, M. Cohen, and A.M. Memon, "GUI Interaction Testing:
Incorporating Event Context", IEEE Trans. on Software Engineering,
Vol. 37, No. 4 (Jul-Aug 2011), pp. 559-574.

[29] A. Mesbah, A. van Deursen, and D. Roest, "Invariant-Based Automatic
Testing of Modern Web Applications", IEEE Trans. on Software
Engineering, Vol. 38, No. 1 (Jan-Feb 2012), pp. 35-53.

[30] B. Nguyen, B. Robbins, I. Banerjee, and A.M. Memon, “GUITAR: an
innovative tool for automated testing of GUI-driven software”,
Automated Software Engineering, Vol. 21, No. 1 (2013), pp. 65-105.

[31] A.M. Memon and Q. Xie, "Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software", IEEE Trans. Software
Engineering, Vol. 31, No. 10 (Oct 2005), pp. 884-896.

[32] Q. Xie and A.M. Memon, "Rapid crash testing for continuously evolving
GUI-based software applications", Proc. 21st Int. Conf. on Software
Maintenance (ICSM), 25-30 Sep 2005, Budapest, Hungary, pp. 473-482.

This work was partially supported by grant number CNS-1205501 by the US
National Science Foundation, and a part of ITEA2/ATAC project funded by
the Finnish Funding Agency for Technology and Innovation TEKES.

