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Isolating Cause-Effect Chains
from Computer Programs

Andreas Zeller,Member, IEEE Computer Society

Abstract—Consider the execution of a failing program as a sequence of
program states. Each state induces the following state, up to the failure.
Which variables and values of a program state are relevant for the failure?
We show how theDelta Debuggingalgorithm isolates the relevant variables
and values by systematically narrowing the state difference between a pass-
ing run and a failing run—by assessing the outcome of altered executions
to determine wether a change in the program state makes a difference in
the test outcome. Applying Delta Debugging to multiple states of the pro-
gram automatically reveals thecause-effect chainof the failure—that is, the
variables and values that caused the failure.

In a case study, our prototype implementation successfully isolated the
cause-effect chain for a failure of theGNU C compiler: “Initially, the C
program to be compiled contained an addition of1.0; this caused an addi-
tion operator in the intermediate RTL representation; this caused a cycle in
the RTL tree—and this caused the compiler to crash.” The prototype im-
plementation is available as a public Web service, where anyone can submit
programs to be debugged automatically.

Index Terms—automated debugging, program analysis, testing tools,
combinatorial testing, diagnostics, tracing.

I. I NTRODUCTION

PROGRAM debugging is commonly understood as the pro-
cess of identifying and correcting errors in the program

code. Debugging is a difficult task, because normally, errors
can only be detected indirectly by the failures they cause. Now,
let us assume we have some program test that fails. How did
this failure come to be?

Traditionally, approaches to facilitate debugging have relied
on static or dynamic program analysis to detect anomalies or
dependencies in the source code and thus narrowed the set of
potential erroneous code. In this paper, we propose a novel
and very different approach. Rather than focusing on the source
code as potential error cause, we concentrate onprogram states
as they occur during program execution—especially, on thedif-
ferencebetween the program states of a run where the failure in
question occurs, and the states of a run where the failure does
not occur.

Usingautomated testing, we systematically narrow these ini-
tial differences down to a small set of variables: “The failure
occurs if and only if variablex has the valuey (instead ofy′)”.
That is,x = y is acausefor the failure: ifx is altered toy′, the
failure no longer occurs. If we narrow down the relevant state
differences at multiple locations in the program, we automati-
cally obtain acause-effect-chainlisting the consecutive relevant
state differences—from the input to the failure: “Initially, vari-
able v1 was x1, thus variablev2 becamex2, thus variablev3
becamex3 . . . and thus the program failed.”

State differences are not only causes of failures, but alsoef-
fects of the program code. By increasing the granularity of
the cause-effect chain, one can interactively isolate the moment
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where the program state changed from “intended” to “faulty”.
This moment in time is when the piece of code was executed
that caused the faulty state (and thus the failure)—that is, “the
error” in the program to be examined.

Our approach also differs from program analysis in that it is
purely experimental: It only requires the ability to execute an
automated test and to access and alter program states. Knowl-
edge or analysis of the program code is not required, although
hints on dependencies and anomalies can effectively guide the
experimental narrowing process.

Our prototype implementation is available as a public Web
service where anyone can submit programs to be debugged au-
tomatically. The Web service only requires the executable in
question and the invocations of the differing runs; it then de-
termines a cause-effect chain for the entire run. Such a facility
could easily be integrated within an automated test suite, auto-
matically generating a precise diagnosis whenever a new failure
occurs.

This paper is organized as follows. SectionII recapitulates
how to isolate failure-inducing circumstances automatically, us-
ing a GCC failure as example. SectionIII shows how to access
program states and to isolate their difference, obtaining a cause-
effect chain for theGCC failure. SectionIV shows how to nar-
row down failure-inducing program code—that is, “the error” in
GCC. SectionV discusses further case studies, and SectionVI
discusses the current limits of our approach. In SectionVIII , we
discuss related work and SectionIX closes with conclusion and
consequences.

II. I SOLATING RELEVANT INPUT

In this Section, we recapitulate our previous work on isolating
failure-inducing input [1]. As an ongoing example, consider the
fail.c program in Figure1. This program is interesting in one

doublemult (doublez[], int n)
{

int i , j ;

i = 0;
for ( j = 0; j < n; j ++) {

i = i + j + 1;
z[i ] = z[i ] ∗ (z[0] + 1.0);

}

returnz[n];
}

Fig. 1

THE fail.c PROGRAM THAT CRASHESGCC.
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# GCC input test
1 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✘
2 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✔
3 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✔
4 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✔
5 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✘
6 doublemult (. . . ) { int i , j ; i = 0; for (. . .) { . . .} . . .} ✔
.
.
.

.

.

.
.
.
.

18 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . . ✘
19 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . . ✔
20 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . .
21 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . .

TABLE I

ISOLATING FAILURE-INDUCING GCC INPUT

aspect: It causes theGNU C compiler (GCC) to crash—at least,
when using version 2.95.2 on Intel-Linux with optimization en-
abled:

$ gcc−O fail.c
gcc: Internal compiler error:

program cc1 got fatal signal 11
$ _

If we say “fail.c causesGCC to crash”, what do we actually
mean? Generally, thecauseof any event is a preceding event
without which the event in question (theeffect) would not have
occurred. Indeed, if we remove the contents offail.c from the
input—that is, we compile an empty file—,GCC works fine.
These two experiments (the failing and the passing run) actu-
ally prove thatfail.c is a cause of the failure.

A. A “Trial and Error” Process

In practice, we typically want a moreprecisecause than just
the contents offail.c—that is, a smaller difference between the
failing and the passing experiment. For instance, we could try to
isolate thesmallest possible differencebetween twoGCC inputs.
This can be done using a simple “trial and error” method, as
illustrated in TableI.

In Step 1, we see the entire inputfail.c, causing theGCC fail-
ure (“✘”). In Step 2, the contents offail.c have been deleted;
this empty input compiles fine (“✔”). In Step 3, we take away
only the mult body. This input also compiles fine. Thus, we
have narrowed the failure-inducing difference to themult body:
“Something within themultbody causesGCC to crash”. In Steps
4 and 5, we have narrowed the cause to thefor loop.

Continuing this “trial and error” method, we eventually nar-
row down the cause to the character set “+1.0” in Steps
18 and 19. This difference “+1.0” is minimal, as it can not
be further reduced: Removing either “+” or “1 .0” would re-
sult in aGCC syntax error (Steps 20 and 21)—a third outcome
besides failure and success, denoted here as “”. So, we have
isolated “+1.0” is a minimal difference or precise cause for the
GCC failure—GCC fails if and only if “+1.0” is present infail.c.

B. Delta Debugging

The interesting thing about the “trial and error” process to
isolate failure-inducing input is that it can beautomated—all
one needs is a means to alter the input, and an automated test to

assess the effects of the input. In fact, TableI does not show the
narrowing process as conducted by a human, but the execution
of the Delta Debuggingalgorithm, an automatic experimental
method to isolate failure causes [1].

Delta Debugging requires two program runsr✘ andr✔—one
runr✘ where the failure occurs, and one runr✔ where the failure
does not occur. Thedifferencebetween these two runs is de-
noted asδ; the difference can beappliedto r✔ to producer✘, or
δ(r✔) = r✘. Formally,δ is a failure cause—the failure occurs if
and only ifδ is applied. The aim of Delta Debugging, though, is
to produce a cause that is as precise as possible. We thus decom-
pose the original difference into a number ofatomicdifferences
δ = δ1 ◦ δ2 ◦ · · · ◦ δn.

Let us illustrate these sets in ourGCC example.r✔ is theGCC

run on the empty input, andr✘ is the run on the failure-inducing
input fail.c. We model the differenceδ betweenr✘ andr✔ as a
set of atomic deltasδi , where eachδi inserts thei -th C token of
fail.c into the input. We further assume the existence of atesting
functiontest that takes a set of atomic differences, applies the
differences tor✔, and returns the test outcome—✘ if the test fails
(i.e. the expected failure occurs),✔ if the test passes (the failure
doesnot occur), and in case the outcome isunresolved—such
as a non-expected failure.

Let us definec✔ = ∅ and c✘ = {δ1, δ2, . . . , δn} as sets of
atomic differences. By definition,test(c✔) = ✔ holds (because
nochanges are applied tor✔); test(c✘) = ✘ holds, too (because
all changes are applied tor✔, changing it tor✘).

In our GCC example,test constructs the input from the given
changes and checks whether the failure occurs.test(c✔) applies
no changes to the empty input and runsGCC; the failure does
not occur.test(c✘) inserts all characters offail.c into the empty
input, effectively changing the input tofail.c, and runsGCC; the
failure would occur. Thetest function returns✘ if and only
if the original failure occurs,✔ if the program exits normally,
and in all other cases.

Given c✔, c✘, and test , Delta Debugging now isolates two
setsc′

✔ andc′
✘ with c✔ ⊆ c′

✔ ⊆ c′
✘ ⊆ c✘, test(c′

✔) = ✔, and
test(c′

✘) = ✘. Furthermore, the set difference1 = c′
✘ − c′

✔ is
1-minimal—that is, no singleδi ∈ 1 can be removed fromc′

✘ to
make the test pass or added toc′

✔ to make the test fail. Hence,
1 is a precise cause for the failure.

Applied to theGCC input, Delta Debugging executes exactly
the tests as illustrated in TableI. Delta Debugging first splits
the input in two parts1. Compiling the header alone works fine
(Step 3), and adding the initialization ofi and j to the input
(Step 4) does not yet make a difference. However, adding the
“for” loop (Step 5) makesGCC crash. At this stage,c′

✔ is set up
as shown in Step 4,c′

✘ is set up as in Step 5, and their difference
1 = c′

✘ −c′
✔ is exactly the “for” loop—in other words, the “for”

loop is a more precise cause of the failure.
Continuing the narrowing process eventually leads toc′

✘ as
shown in Step 18 andc′

✔ as shown in Step 19: The remaining
difference is exactly the addition of “+1.0”. Steps 20 and 21
verify that each of these two remaining tokens is actually rel-
evant for the failure. So, the remaining 1-minimal difference
“+1.0” is what Delta Debugging returns—after only 21 tests, or

1In this example, we assume a “smart” splitting function that splits input at C
delimiters like parentheses, braces, or semicolons.
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Let + be the set of all differences (in input or state) between program runs. Lettest : 2+
→ {✘, ✔, } be a testing function that determines for a configuration

c ⊆ + whether some given failure occurs (✘) or not (✔) or whether the test is unresolved ().

Now, letc✔ andc✘ be configurations withc✔ ⊆ c✘ ⊆ + such thattest(c✔) = ✔ ∧ test(c✘) = ✘. c✔ is the “passing” configuration (typically,c✔ = ∅ holds)
andc✘ is the “failing” configuration.

The Delta Debugging algorithmdd(c✔, c✘) isolates the failure-inducing difference betweenc✔ andc✘. It returns a pair(c′
✔, c′

✘) = dd(c✔, c✘) such that
c✔ ⊆ c′

✔ ⊆ c′
✘ ⊆ c✘, test(c′

✔) = ✔, andtest(c′
✘) = ✘ hold andc′

✘ − c′
✔ is 1-minimal—that is, no single circumstance ofc′

✘ can be removed fromc′
✘ to make

the failure disappear or added toc′
✔ to make the failure occur.

Thedd algorithm is defined asdd(c✔, c✘) = dd2(c✔, c✘, 2) with

dd2(c′
✔, c′

✘, n) =



dd2(c′
✔, c′

✔ ∪ 1i , 2) if ∃i ∈ {1, . . . , n} · test(c′
✔ ∪ 1i ) = ✘

dd2(c′
✘ − 1i , c′

✘, 2) if ∃i ∈ {1, . . . , n} · test(c′
✘ − 1i ) = ✔

dd2
(
c′

✔ ∪ 1i , c′
✘, max(n − 1, 2)

)
else if∃i ∈ {1, . . . , n} · test(c′

✔ ∪ 1i ) = ✔

dd2
(
c′

✔, c′
✘ − 1i , max(n − 1, 2)

)
else if∃i ∈ {1, . . . , n} · test(c′

✘ − 1i ) = ✘

dd2
(
c′

✔, c′
✘, min(2n, |1|)

)
else ifn < |1|

(c′
✔, c′

✘) otherwise

where1 = c′
✘ − c′

✔ = 11 ∪ 12 ∪ · · · ∪ 1n with all 1i pairwise disjoint, and∀1i · |1i | ≈ (|1| /n) holds.
The recursion invariant fordd2 is test(c′

✔) = ✔ ∧ test(c′
✘) = ✘ ∧ n ≤ |1|.

Fig. 2

THE DELTA DEBUGGING ALGORITHM IN A NUTSHELL . THE FUNCTIONdd ISOLATES THE FAILURE-INDUCING DIFFERENCE BETWEEN TWO SETS

c✔ AND c✘ . FOR A FULL DESCRIPTION OF THE ALGORITHM AND ITS PROPERTIES, SEE [1].

roughly 2 seconds.2 Let us assume that an automated test al-
ready exists (for instance, as part of theGCC test suite); also, let
us assume we have a simple scanner to decompose the input (a
10-minute programming assignment). Then, finding the cause
in any GCC input comes at virtually no cost, compared to the
manual editing and testing offail.c.

The actual algorithm is summarized in Figure2. The num-
ber of required tests grows with the number of unresolved test
outcomes. In the worst case, nearly all outcomes are unresolved;
then, the number of tests ist = |c✘|

2
+3|c✘|. However, this worst

case never occurs in practice, because in case of unresolved out-
comes, the Delta Debugging algorithm has been designed to try
runs more similar toc✔ andc✘. The central assumption is that
the closer we are to the original runs, the lesser are the chances
of unresolved test outcomes—an assumption backed by a num-
ber of case studies [1]. In the best case, we have no unresolved
test outcomes; all tests are either passing or failing. Then, the
number of testst is limited by t ≤ log2

(
|c✘|

)
—basically, we

obtain a binary search.

III. I SOLATING RELEVANT STATES

Let us reconsider the isolated cause “+1.0”. Although remov-
ing “+1.0” from fail.c makes theGCC failure disappear, this is
not the way to fix the error once and for all; we rather want to fix
theGCCcode instead. Unfortunately, processing such arithmetic
operations is scattered all over the compiler code. Nonetheless,
during the compilation process, “+1.0” eventually induces a
faulty GCC state which manifests itself as a failure. How does
“+1.0” eventually cause the failure? And how do we get to the
involved program code?

The basic idea of this paper is illustrated in Figure3 on the
following page, which depicts a program execution as a series
of program states—that is, variables and their values. On the

2All times were measured on a LINUX PC with a 500 MHz Pentium III pro-
cessor.

left hand side, the program processes some input. Only a part
of the input is relevant for the failure—that is, a difference like
“+1.0” between an input that is failure-inducing and an input
that is not. This difference in the input causes a difference in
later program states, up to the difference in the final state that
determines whether there is a failure or not.

The problem, though, is, that even a minimized difference in
the input may well become a large difference in the program
state. Yet, only some of these differences are relevant for the
failure. So, weapply Delta Debugging on program statesin or-
der to isolate the variables and values that are relevant for the
failure; these isolated variables constitute thecause-effect chain
that leads from the root cause to the failure. This is the contri-
bution of this paper: a fully automatic means to narrow down
program states and program runs to the very small fraction that
is actually relevant for the given failure.

A. Accessing and Comparing States

Our requirements are easy to satisfy; all we need is an or-
dinary debugger tool that allows us to retrieve and alter vari-
ables and their values. Let us initiate twoGCC runs: a runr✘

on fail.c and a runr✔ on pass.c, wherefail.c andpass.cdiffer
only by “+1.0”. Using the debugger, we interrupt both runs at
the same locationL; then, we retrieve eachGCCstate as a set of
(variable, value) pairs. As a mental experiment, let us assume
that all variables have identical values inr✔ andr✘, except for
the four variables in TableII .

Obviously, this difference in the program state is the differ-
ence which eventually causes the failure: If we set the differing
variables inr✔ to the values found inr✘ and resume execution,
thenGCCshould behave as inr✘ and fail.

We can use Delta Debugging to narrow down the cause. Now,
the deltasδi becomedifferences between variable values: apply-
ing a δi in r✔ means setting thei -th differing variable inr✔ to
the value found inr✘. Thetest function executesr✔, interrupts
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NARROWING A CAUSE -EFFECT CHAIN . IN EACH STATE, OUT OF m VARIABLES , ONLY FEW ARE RELEVANT FOR THE FAILURE. THESE CAN BE ISOLATED

BY NARROWING THE STATE DIFFERENCE BETWEEN A WORKING RUN AND A FAILING RUN.

δ1 δ2 δ3 δ4
reg rtx no cur insn uid first loop store insn lastlinenum test

r✘ 32 74 0x81fc4e4 15 ✘
r✔ 31 70 0x81fc4a0 14 ✔

TABLE II

DIFFERING VARIABLES IN TWO GCCRUNS

# reg rtx no cur insn uid first loop store insn lastlinenum test

1 32 74 0x81fc4a0 14 ✔
2 32 74 0x81fc4e4 14
3 32 74 0x81fc4a0 15 ✔

TABLE III

ISOLATING FAILURE-INDUCING VARIABLES

execution atL, applies the given deltas, resumes execution and
determines the test outcome.

As an example, considerδ1 and δ2 from Table II . To test
δ1 andδ2 means to executeGCC on pass.c(run r✔), to interrupt
it at L, to setreg rtx no to 32 andcur insn uid to 74, and to
resume execution. If we actually do that, it turns out thatGCC

runs just fine—test returns✔ and we have narrowed the failure
cause by these two differences.

Unfortunately, things are not so simple. If we continue the
narrowing process using Delta Debugging, we end up in trou-
ble, as shown in TableIII . Step 1 is the application ofδ1 andδ2,
as discussed before—everything fine so far. In Step 2, though,
we would apply the changeδ3, setting the pointer variable
first loop store insn to the address found inr✘. This would
cause an immediate core dump of the compiler—not really sur-
prising, considering that an address fromr✘ probably has little
meaning inr✔.

In Step 3, we can excludelast linenumas a cause and thus
effectively isolatefirst loop store insn as remaining failure-
inducing difference, so we can easily see that our process is

feasible. However, our state model is insufficient: We must
also takederivedvariables into account—that is, all memory
locations being pointed to or otherwise accessible from the base
variables.

B. Memory Graphs

To fetch theentirestate, we capture the state of a program as a
memory graph[2]. A memory graph contains all values and all
variables of a program, but represents operations like variable
access, pointer dereferencing, struct member access, or array
element access by edges.

As an example, consider Figure4 on page6, depicting a sub-
graph of theGCC memory graph. The immediate descendants
of the 〈Root〉 vertex are the base variables of the program. The
variablefirst loop store insn, for instance, is found by following
the leftmost edge from〈Root〉. The dereferenced value is found
following the edge labeled*()3—a record with three members
value, fld[0].rtx , and fld[1].rtx . The latter points to another
record which is also referenced by thelink variable.

Memory graphs are obtained by querying the base variables
of a program and by systematically unfolding all data structures
encountered; if two values share the same type and address, they
are merged to a single vertex. (More details on memory graphs,
including formal definitions and extraction methods, are avail-
able [2].) Memory graphs give us access to the entire state of a
program and thus avoid problems due to incomplete comparison
of program states. They also abstract from concrete memory ad-
dresses and thus allow for comparing and altering pointer values
appropriately.

However, memory graphs also indicate another problem: The
set of variables itself maydiffer in the two states to be compared.
As an example, consider Figure5 on the next page. In the upper
left corner, you can see two memory graphsG✔ and G✘, ob-
tained from the two runsr✔ andr✘. As a human, you can quickly
see that, to changeG✔ into G✘, one must insert element 15 into

3Each variable name is constructed from the incoming edge, where the place-
holder() stands for the name of the parent.
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Fig. 5

DETERMINING STRUCTURAL DIFFERENCES BETWEEN MEMORY GRAPHS . ANY NODE NOT CONTAINED IN THE COMMON SUBGRAPH(DOTTED LINES)

IS EITHER INSERTED OR DELETED(TOP LEFT). APPLYING δ15 ON r✔ CREATES THE LIST ELEMENT15, APPLYING δ20 DELETES LIST ELEMENT20.

APPLYING BOTH DELTAS (BOTTOM RIGHT) TRANSFORMSr✔ TO (δ15 ◦ δ20)(r✔) = r✘ .

the list and delete element 20. To detect this automatically for
arbitrary data structures, one must compute acommon subgraph
of G✔ andG✘: Any vertex that is not in the common subgraph
of G✔ andG✘ has either been inserted or deleted. Large com-
mon subgraphs can be computed effectively byparallel traver-
sal along matching edges [2].

In Figure 5, we have determined the largest common sub-
graph, drawn using dotted lines as amatchingbetweenG✔

andG✘.4 It is plain to see that element 15 inG✘ has no match
in G✔; likewise, element 20 inG✔ has no match inG✘.

For our purposes, we translate these differences into atomic
deltas that create or delete new variables—one delta for each
non-matched variable. In this example, we obtain a deltaδ15
that creates the list element 15 and a deltaδ20 that deletes list el-
ement 20. Both deltas can be applied independently (upper right
and lower left). Altogether, we thus obtain deltas that change
variable values, as sketched in SectionIII-A , as well as deltas
that alter data structures.

4An edge is part of the matching (= the common subgraph) if its vertices
match; there is no such edge in this example.

C. Isolating the GCC Cause-Effect Chain

Let us now put all these building blocks together. We have
built a prototype calledHOWCOME that relies on theGNU debug-
ger (GDB) to extract the program state; eachδi is associated with
appropriateGDB commands that alter the state.

From SectionII , we already know the failure-inducing differ-
ence in the input, namely the token sequence “+1.0”, which is
present infail.c, but not inpass.c. HOWCOME’s test function is
also set up as discussed in SectionII .

At which locations do we compare executions? For technical
reasons, we requirecomparablestates—since we cannot alter
the set of local variables, the current program counter and the
backtrace of the two locations to be compared must be identical.
From the standpoint of causality, though, any location during
execution is as causal as any other.

HOWCOME thus starts with a sample of three events, occurring
in both the passing run and the failing run:
1. After the program start (in our case, whenGCC’s subprocess
cc1reaches the functionmain)
2. In the middle of the program run (whencc1reaches the func-
tion combineinstructions)
3. Shortly before the failure (whencc1 reaches the function
if thenelsecondfor the 95th time—a call that never returns)
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Fig. 4

A SIMPLE MEMORY GRAPH . POINTERS REFERENCE RECORDS, EACH

REFERENCING ITS MEMBERS.

C.1 At main

HOWCOME starts by capturing the two program states ofr✔

andr✘ in main. Both graphsG✔ andG✘ have 27139 vertices
and 27159 edges (Figure6); to squeeze them through theGDB

command-line bottleneck requires 15 minutes each.
After 12 seconds,HOWCOME determines that exactly one

vertex is different inG✔ and G✘—namelyargv[2], which is
"fail.i" in r✘ and"pass.i" in r✔. These are the names of
the preprocessed source files as passed tocc1by theGCC com-
piler driver. This difference is minimal, so we do not need a
Delta Debugging run to narrow it further.

C.2 At combineinstructions

As combineinstructions is reached,GCC has already gen-
erated the intermediate code (calledRTL for “register transfer
list”) which is now optimized.HOWCOME quickly captures the
graphsG✔ with 42991 vertices and 44290 edges as well asG✘

with 43147 vertices and 44460 edges. The common subgraph of
G✔ andG✘ has 42637 vertices; thus, we have 871 vertices that
have been added inG✘ or deleted inG✔.

The deltas for these 871 vertices are now subject to Delta De-
bugging, which begins by setting 436GCCvariables in the pass-
ing run to the values from the failing run (G✘). This obviously
is a rather insane thing to do, andGCC immediately aborts with
an error message complaining about inconsistent state. Chang-
ing the other half of variables does not help either. After these
two unresolved outcomes, Delta Debugging increases granular-
ity and alters only 218 variables. After a few unsuccessful at-
tempts (with various uncommonGCCmessages), this number of

Fig. 6

THE GCCG✔ MEMORY GRAPH

altered variables is small enough to makeGCCpass (Figure7 on
the facing page). Eventually, after only 44 tests,HOWCOME has
narrowed the failure-inducing difference to one single vertex,
created with theGDB commands

set variable$m9 = (struct rtxdef *)malloc(12)
set variable$m9→code = PLUS
set variable$m9→mode = DFmode
set variable$m9→jump = 0
set variable$m9→fld[0].rtx = loop mems[0].mem
set variable$m9→fld[1].rtx = $m10
set variable firstloop store insn→fld[1].rtx→

fld[1].rtx→fld[3].rtx→fld[1].rtx = $m9

That is, the failure-inducing difference is now the insertion of
a node in theRTL tree containing aPLUSoperator—the proven
effect of the initial change “+1.0” from pass.cto fail.c. Each of
the tests required about 20 to 27 seconds ofHOWCOME time, and
1 second ofGCC time.

C.3 At if thenelsecond

At this last event,HOWCOME captured the graphsG✔ with
47071 vertices and 48473 edges as well asG✘ with 47313 ver-
tices and 48744 edges. The common subgraph ofG✔ andG✘

has 46605 vertices; 1224 vertices have been either added inG✘

or deleted inG✔.
Again, HOWCOME runs Delta Debugging on the deltas of the

1224 differing vertices (Figure8 on the next page). As every
second test fails, the difference narrows quickly. After 15 tests,
HOWCOME has isolated a minimal failure-inducing difference—
a single pointer adjustment, created with theGDB command

set variable link→fld[0].rtx→fld[0].rtx = link

This final difference is the difference that causesGCC to
fail: It creates a cycle in theRTL tree—the pointerlink →

fld[0].rtx → fld[0].rtx points back tolink! The RTL tree is no
longer a tree, and this causes endless recursion in the function
if thenelsecond, eventually crashingcc1.
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NARROWING AT combineinstructions

D. The GCC Cause-Effect Chain

The total cause-effect chain forcc1, as reported byHOWCOME,
looks like this:

Cause-effect chain for ’./gcc/cc1’
Arguments are -O fail.i(instead of -O pass.i)
therefore atmain, argv[2] = ”fail.i” (instead of ”pass.i”)
therefore atcombineinstructions,
*first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx = 〈new variable〉
therefore atif thenelsecond,
link→fld[0].rtx→fld[0].rtx = link (instead of i1dest)

therefore the run fails.

With this output, the programmer can easily follow the cause-
effect chain from the root cause (the passed arguments) via an
intermediate effect (a new node in theRTL tree) to the final ef-
fect (a cycle in theRTL tree). The whole run was generated au-
tomatically; no manual interaction was required.HOWCOME re-
quired 6 runs to extractGCC state (each taking 15–20 minutes)
and 3 Delta Debugging runs (each taking 8–10 minutes) to iso-
late the failure-inducing differences.5

It should be noted again that the output above is produced in
a fully automatic fashion. All the programmer has to specify
is the program to be examined as well as the passing and fail-
ing invocations of the automated test. Given this information,
HOWCOME then automatically produces the cause-effect chain
as shown above.

IV. I SOLATING THE ERROR

The ultimate aim of debugging is to break the cause-effect
chain such that the failure no longer occurs. Our cause-effect
chain forGCC lists some possibilities: One could prevent an in-
put of “+1.0”, avoid PLUSoperators inRTL or break cycles in
the RTL tree. Again, from the standpoint of causality, each of
these fixes is equivalent in preventing the failure.

5A non-prototypical implementation could speed up state access by 1–3 mag-
nitudes by bypassing the GDB command line.
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NARROWING AT if thenelsecond

For the programmer, though, these fixes arenot equivalent—
obviously, we need a fix that not only prevents the failure in
question, but also prevents similar failures, while preserving the
existing functionality. The programmer must thus choose the
best place to break the cause-effect chain—a piece of code com-
monly referred to as “the error”. Typically, this piece of code
is found by determining thetransitionbetween anintendedpro-
gram state and afaulty program state. In the absence of an ora-
cle, we must rely on the programmer to make this distinction: A
cause can be determined automatically; the fault is in the eye of
the beholder.

Nonetheless, cause-effect chains can be an effective help for
the programmer to isolate the transition: All the programmer
has to do is to decide whether the isolated state in the fail-
ing run is intended or not. In theGCC example, the states at
main and atcombineinstructionsare intended; theRTL cycle
at if thenelsecondobviously is not. So, somewhere between
combineinstructionsandif thenelsecond, the state must have
changed from intended (“✔”) to faulty (“✘”). We focus on this
interval to isolate further differences.

Figure9 shows the narrowing process. We isolate the failure-
inducing state at some point in time between the locations
combineinstructionsand if thenelsecond, namely at the file
combine.cin line 1758: Here, thenewpatvariable points back
to link—the cause for the cycle and thus a faulty state. The
transition between intended and faulty state must have occurred
betweencombineinstructionsand line 1758.

Only two more narrowing steps are required: At line 4011,
HOWCOME again isolates an additionalPLUS node in theRTL

tree—an intended effect of the “+1.0” input (not faulty);6 at
line 4271, HOWCOME again finds a failure-inducingRTL cy-
cle (faulty). This isolates the transition down to lines 4013–
4019. In this piece of code, executed only in the failing

6Actually, HOWCOME reports thisPLUS node as being located at
undobuf.undos→next→next→next→next→next→next→next→next→next,
which indicates that finding the most appropriate denomination for a memory
location is an open research issue.
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Fig. 9

NARROWING DOWN RELEVANT EVENTS

run, theRTL code (MULT (PLUS a b) c) is transformed to
(PLUS (MULT a c1)(MULT b c2)) where c = c1 = c2
holds.7 Unfortunately,c1 and c2 are created asaliasesof c,
which causes the cycle in theRTL tree! To fix the error, one
should makec2 a true copy ofc1—and this is how the error was
fixed in GCC2.95.3.

Do we really need the programmer to narrow down the point
in time where the state becomes faulty? Not necessarily. First,
one could simply increase the granularity of the cause-effect
chain, and thus present more detailed information. Second (and
this is a research topic), one could attempt to isolatecause tran-
sitions automatically. For instance, the narrowing process as
shown above could also have been guided by the fact whether
theRTL tree differencePLUSis relevant or not—and would have
isolated the very same location. We are currently experimenting
with different heuristics (such as code being executed in one run
only) to automatically focus on events that are likely to be rele-
vant.

V. CASE STUDIES

A. GNU Programs

BesidesGCC, we have appliedHOWCOME to some moreGNU

programs to isolate cause-effect chains (TableIV):
• In thesampleexample from theGNU DDD manual, Delta De-
bugging quickly isolated a badshell sort call.8

• In the bison parser generator, a shift/reduce conflict in the
grammar input causes the variableshift table to be altered,
which in turn generates a warning.
• In thediff file comparison program, printing of differences is
controlled bychanges, whose value is again caused byfiles→
changedflag.
• Invoking thegdbdebugger with a different debuggee changes
18 variables, but only the change in the variablearg is relevant
for the actual debuggee selection.

In all cases, the resulting failure-inducing difference con-
tained only one relevant element (“Rel”); the number of tests
was at most 42.

B. Siemens Programs

In a second case study, we applied Delta Debugging on the
Siemens test suite [4], as summarized in TableV. Each pro-
gram version (“Version”) was altered by hand to introduce one

7This application of the distributive law allows for potential optimizations,
especially for addresses.

8A HOWCOME demonstration program for this example, is available online,
including sample Delta Debugging source code [3].

Event Edges Vertices Deltas Tests Rel
sampleatmain 26 26 12 4 1
sampleatshell sort 26 26 12 7 1
sampleatsample.c:37 26 26 12 4 1
cc1atmain 27139 27159 1 0 1
cc1atcombineinstructions 42991 44290 871 44 1
cc1at if thenelsecond 47071 48473 1224 15 1
bisonatopenfiles 431 432 2 2 1
bisonat initialize conflicts 1395 1445 431 42 1
diff atanalyze.c:966 413 446 109 9 1
diff atanalyze.c:1006 413 446 99 10 1
gdbatmain.c:615 32455 33458 1 0 1
gdbatexec.c:320 34138 35340 18 7 1

TABLE IV

SUMMARY OF GNU CASE STUDIES

single new failure [5]. Each version was subject to Delta De-
bugging between 6 and 191 times (“Runs”); the average number
of deltas between program states is shown in “Deltas”. The lo-
cations were automatically determined at 50%, 75%, and 90%
of the execution coverage; thetest function was determined au-
tomatically from the differing output (see SectionVII for details
how and why this is done). Overall, Delta Debugging had been
run 1995 times.

The number of relevant variables in the cause-effect chain
never exceeded 2; the average number is shown in the “Rele-
vant” column. The number of tests required to isolate the rele-
vant variables (“Tests”) is pretty much logarithmic with respect
to the number of deltas.

Note to reviewers: The final version will include a statement
on the effectiveness of the deltas—i.e. how well do the isolated
causes refer to statements that were altered to induce the error.

C. Lessons Learned

What we found most surprising about these experiments was
that one can alter program variables to more or less meaningless
values and get away with it. We made the following observa-
tions, all used by Delta Debugging:
• First, the altered values are not meaningless; they stem from
a consistent state, and it is only a matter of statistics (e.g. which
and how many variables are transferred) whether they induce an
inconsistent state. The chances for consistency can be increased
by grouping variables according to the program structure (which
HOWCOMEdoes not do yet).
• Second, the remainder of the program (and the finaltestfunc-
tion) acts as afilter: If anything happens that did not happen in
the two original runs, the test outcome becomes unresolved, and
the next alternative is sought. If variables have been altered and
the outcome is still similar to the original two runs, then these
variables are obviously irrelevant for the outcome. Precision can
be arbitrarily increased by making thetestfunction pickier about
similarity [1].
• Third, in a program with a good separation of concerns, only
a few variables should be responsible for a specific behavior,
including failures—and this small number makes Delta Debug-
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Name Version Runs Deltas Tests Relevant
print tokens 2 55 44.25 9.51 1.31
print tokens 3 7 52.14 15.00 1.71
print tokens 4 23 36.22 9.04 1.43
print tokens 5 2 59.00 16.00 2.00
print tokens 6 47 49.04 12.81 1.66
print tokens 7 11 59.00 6.55 1.00
print tokens2 1 36 12.33 4.86 1.28
print tokens2 2 22 19.86 6.77 1.27
print tokens2 3 51 14.41 5.71 1.35
print tokens2 4 32 27.75 6.03 1.28
print tokens2 5 54 14.13 5.85 1.44
print tokens2 6 33 16.42 6.76 1.42
replace 1 17 17.29 7.24 1.29
replace 2 16 21.88 9.12 1.31
replace 3 6 20.00 8.17 1.33
replace 7 39 16.97 4.72 1.08
replace 8 18 20.61 7.89 1.28
replace 9 12 20.17 7.67 1.25
schedule 1 21 46.24 6.29 1.05
schedule 3 20 85.50 9.75 1.10
schedule2 1 29 49.17 8.93 1.14
schedule2 2 56 42.62 7.46 1.16
schedule2 3 92 48.09 6.26 1.09
schedule2 4 35 67.71 6.57 1.11
schedule2 5 179 58.44 6.82 1.08
schedule2 6 191 62.24 5.82 1.02
schedule2 7 132 48.14 6.64 1.03
schedule2 8 187 58.42 6.35 1.01
schedule2 10 164 48.68 7.10 1.13
tcas 38 10 39.70 5.60 1.00
tcas 39 29 38.41 5.59 1.00
tcas 40 18 32.94 5.89 1.00
tcas 41 44 35.64 7.45 1.11
tot info 1 105 721.34 11.30 1.14
tot info 4 48 444.62 11.06 1.19
tot info 5 154 693.35 30.68 1.88

TABLE V

SUMMARY OF SIEMENS CASE STUDIES

ging efficient.
• Fourth and last, program state has astructureand can thus eas-
ily be decomposed. In contrast, decomposinginput as sketched
in SectionII requires the input syntax to be specified manually
for each new program. And, of course, isolating relevant states
is much more valuable than isolating input alone, since we can
actually look at what’s going on inside the program.

VI. L IMITS

Let us now discuss some general limits of Delta Debugging,
and how we can deal with them.

A. Alternate Runs

Delta Debugging always requires analternate runin order
to compare states and narrow down differences. However, “al-

ternate run” does not necessarily translate into “alternate invo-
cation”, at least not of the whole program. If one wants to to
isolate the cause-effect chain from somesubprogram,it suffices
to have multiple invocations of that subprogram within a single
program run. The only requirement is that each invocation can
be individually tested for success or failure.

For instance,GCC invokes combineinstructions for each
compiled procedure. Let us assume we have one single input for
cc1 that first includes the contents of"pass.i" and then the
contents of"fail.i" . We can compare the two invocations
of combineinstructionsjust like we compared the two invoca-
tions ofGCC—and find out how the difference propagates in the
cause-effect chain. We expect that many programs contain such
repetitive elementsthat can be exploited by Delta Debugging; in
fact,multiple repetitionssuch as loop traversals may turn out as
a nice source for regular behaviour.

If a program (or subprogram) fails under all conditions, there
is no way Delta Debugging (or any other automated process)
could make it work. Here, anomaly detection techniques (Sec-
tion VIII-B ) are probably a better choice.

B. State Transfer

In practice, transferring a program state (or parts thereof)
from one run to another run can be very tricky. Problems oc-
cur with bothinternalandexternalstate.

In the C language, the programmer has complete freedom to
organize dynamic memory, as long as he keeps track of memory
contents. Consequently, there is no general way

• to detect whether a pointer points to an element, an array, or
nothing,
• to determine the sizes of dynamically allocated arrays, or
• to find out which member of a union is currently being used.

In all these cases,HOWCOME relies onheuristicsthat query the
run-time library for current memory layout, or check for com-
mon conventions of organizing memory. These heuristics can
be wrong, which may or may not lead to unresolved test out-
comes. A better way would be to keep track of all memory
contents at run-time such that questions like the ones above can
be answered adequately. Fortunately, in languages other than C
(notably languages with garbage collection), such heuristics are
not required.

A program state may encompass more than just memory,
though. As an example, think of the state of a database. If we
have a query that works and a query that fails, should we include
the entire database in our state, and if so, at which abstraction
level?

As another example, think of file handles. We might be able
to transfer file handles from one state to another, but should we
really do so without considering the state of the file?

One can argue that every external state becomes part of inter-
nal memory as soon as it is accessed - databases and files are
read and written. But differences may also resideoutsideof the
program state—for instance, a file handle may have the same
value inr✘ andr✔, but be tied to a different file. We are working
on how to capture such external differences.
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C. False Positives

The states generated by Delta Debugging can make the pro-
gram fail in a number of ways. One must take care not to con-
found these with the “original” failure.

As an example, consider the following piece of code:

bool x := . . .;
bool y := x;
⇐ state is accessed here
if (x 6= y)

fail();
else if(x ∧ y)

fail();
fi

Let us assume that in a Delta Debugging run, we find the fol-
lowing configurations:

Run x y
c✔ false false
c✘ true true

Testedc false true

The tested configurationc causes the program to fail (thefail
function is invoked). However, the failure occurs at a different
invocation. Thus, the program fails in a way that is different
from the original failure.

A pragmatic way to handle with such false positives is to take
thebacktraceof the failure into account—the stack of functions
that were active at the moment of the failure. Thetest function
should return✘ if and only if the failure occurs at the same lo-
cation asr✘—that is, the program counter and the backtrace of
calling functions must be identical. This need not be a program
crash; one could also consider the backtrace of an output or exit
statement, for instance.

In the example above, the secondfail invocation results in a
different backtrace—test would return rather than✘.

Besides the backtrace, there are more things one can
consider—the execution time, for instance, the set of reached
functions, or the final state of the execution. If one requires a
higher similarity with the failing run, though, one will also ob-
tain a larger set of causes that is required to produce exactly this
similarity.

D. Infeasible Context

Each cause, as reported by Delta Debugging, consists of
two configurations (states)c′

✘ and c′
✔ such that the difference

1 = c′
✘ − c′

✔ is minimal. This difference1 between states de-
termines whether the outcome is✔ or ✘ and thus is an actual
failure cause.

However,1 is a failure cause only in a specificcontext—the
configurationc′

✔—and this context may or may not be related to
the original passing or failing runs.

Here’s a code example that exhibits this problem:

if (a ∧ ¬ b ∧ c) ∨ (c ∧ d))
fail();

fi

Let us assume that after a Delta Debugging run, we find the
following configurations:

Run a b c d
c✔ false false false false
c✘ true true true true

Foundc′
✔ false false true false

Foundc′
✘ true false true false

The difference ina betweenc′
✔ andc′

✘ is failure-inducing—a
is a failure cause, at least in the common context ofb, c, andd
being false, true, and false, respectively. But alteringa alone in
c✔ or c✘ does not change the outcome—one needs to change at
least one further variable of the context, too. This is no problem
if the common context is feasible, i.e. could be reached within
a program run. However, Delta Debugging does not guarantee
feasibility.

This example raises several questions. Does it harm ifa is
reported as a failure cause, although it is only part of a cause?
How do we deal with infeasible contexts? How can we relate
the isolated difference to the original runs? How likely is it that
such interferences occur? Such questions require much further
research and experience.

E. Differences vs. Faults

The chosen alternate run determines the causes Delta Debug-
ging can infer: A variablev can be isolated as a cause only if
it exists in both runs and if its value differs. However,v may
not be faulty at all; it may very well be thatv has exactly the in-
tended value. In theGCCexample, thePLUSnode in theRTL tree
was perfectly legal, although it eventually caused the failure.

In the absence of a specification, no automated process can
distiguish faulty from intended values. However, it may be hel-
ful to further understand how state differences cause a difference
in the later computation. For instance, if some variable like the
PLUS node causes specific pieces of the code to be executed
(which otherwise would not) or specific variables to be accessed
(which otherwise would not be), then it may be helpful to report
these differences as causes, too.

F. Multiple Causes

Delta Debugging as presented here isolates only one cause
from several potential causes—for instance,fail.c can be
changed in several ways besides removing “+1.0”, and so can
the induced states. Although Delta Debugging could easily be
extended to search for alternative causes—which is the most rel-
evant cause, then, to present to the programmer?

We are currently experimenting with indications for relevance
by analyzingmultiple runs. If a failure cause occurs in several
failing runs, it is more relevant than a cause that occurs only in
few failing runs—in other words, altering the “frequent” cause
fixes more failures than the “non-frequent” cause. Such mul-
tiple runs can either be given, or generated from random delta
configurations.

G. Efficiency

In our case studies, Delta Debugging was always efficient.
This is not necessarily the case, though. Suppose you have a
program, which, among other things, verifies a checksumc over
a messagem. Now let two runs differ by exactly these two items
c andm.
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Fig. 10

THE AskIgorPUBLIC DEBUGGING SERVER

Any applied delta invalidates the relationship between check-
sum and message—in fact, you can either have no delta or all
of them. Delta Debugging would nonetheless try to apply every
single delta individually. Assuming that there is a delta for every
single message character, there this requires a test run for each
character in the message.

A pragmatic solution would be to process in ahierarchical
fashion: Try to group all variables according to the object(s)
they apply to—for instance, apply all deltas related tom in a
group as long as possible, and break the group only when all
else fails. This way, even a premature termination of the search
process would at least return the differences inc andm, without
going into all the details ofm.

VII. A D EBUGGING SERVER

To further examine the limits and possible alternatives, we
have built adebugging servernamedAskIgor [6] where any-
one can submit failing programs via the Web to haveHOWCOME

compute a failure diagnosis. The main design issue inAskIgor
was to make the use of the service as easy as possible.

From a user’s perspective,AskIgorworks as follows:
1. The user invokesAskIgorat the Web address [6] (Figure10).
2. The user submits
• the executable to be debugged,
• an invocationr✘ where the program fails,
• an invocationr✔ where the program does not fail,
• (optionally) additional files required to make the program

run, such as input or configuration files.
3. After a few minuts, the user obtains a diagnosis on a separate

Web page, containing the cause-effect chain of the failure.

The user need not specify atest function; AskIgorautomat-
ically generates atest function based on the differing behavior
of the two given invocations; the criteria for✔ or ✘ include
the program output and the exit status. The user has the chance
to provide her owntest function by specifying alternate failure
symptoms.

By default, AskIgor computes a cause-effect chain at three
events: when 50%, 75%, and 90% of the functions executed in
the failing run have been covered. The rationale behind such
a coverage-based metric is that the likelihood of an error is
the same across the program code; hence, we choose coverage
rather than execution time as a metric base. The level of detail
increases at the end of the execution, since these events are more
likely to be relevant for the failure.

To narrow down errors interactively, as sketched in Sec-
tion IV, AskIgorprovides a “How did this happen” feature. For
every evente, the user can select to obtain a cause-effect chain
for the interval betweene and the previous event. This way,
the user can increase the granularity of the cause-effect chain as
desired.

On March 10, 2003, a total of 150 programs had been submit-
ted toAskIgor; more than two thirds of these programs could be
processed successfully. The current summary of submissions is
available to the public via the status page [6].

As AskIgorrequests feedback from its users, we will be able
to evaluate the effectiveness and usability of our diagnoses for a
large number of real-life case studies. We plan to extendAskIgor
to accomodate and combine a variety of services for program
comprehension, including program slicing and anomaly detec-
tion (Figure11).

In the future, services likeAskIgorwill be part of integrated
programming environments. Then, users would not have to sub-
mit their programs explicitly; instead, the cause-effect chain
would automatically be computed as soon as a test fails. This
way, users would not only learnthat their test has failed, but
alsowhy it failed—and all without the least bit of interaction.
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VIII. R ELATED WORK

A. Program Slicing

Program slicing[7], [8] facilitates debugging by focusing on
relevant program fragments. Aslice for a locationp in a pro-
gram consists of all other locations that could possibly influ-
encep (“all locations thatp depends upon”). As an example,
consider the code fragment

if p then x′ := x ∗ y fi

Here, the variablex′ is control dependent onp and data de-
pendent onx andy (butnoton, say,z); the slice ofx′ would also
include earlier dependencies ofp, x, andy. The slice allows the
programmer to focus on relevant statements; a slice also has the
advantage that it is valid forall possible program runsand thus
needs to be computed only once.

Dynamic slicing[9], [10], [11] is a variant of slicing that takes
a concrete program runinto account. The basic idea is that
within a concrete run, one can determine more accurate data
dependencies between variables, rather than summarizing them
as in static slicing. In the dynamic slice ofx′, as above,x′ is
dependent onx, y, andp only if p was found to be true.

In practice, slicing is not yet as useful as would be expected,
since each statement is quickly dependent on many other state-
ments. The end result is often a program slice which is not dra-
matically smaller than the program itself—the program depen-
dencies are too coarse [12]. Also, data and control-flow analysis
of real-life programs is non-trivial. For programs with pointers,
the necessary points-to analysis makes dependencies even more
coarse [13].

The GCC example also illustrates the limits of slicing. In
combineinstructions(SectionIII-C.2), we found 871 deltas be-
tween the passing and the failing run. Any slicing method, static
or dynamic, would have to incorporate these 871 variables in
the forward slice of the changed input. Although 871 variables
is just 2% of all variables, it is still a large number in absolute
terms.

In cause-effect chains, p, x, andy are the cause for the value
of x′ if and only if altering them also changes the value ofx′,
as proven by test runs. Ifx = 0 holds, for instance,p can
never be a cause for the value ofx′, becausex′ will never alter
its value;y cannot be a cause, either. Consequently, cause-effect
chains have a far higher precision than static or dynamic slices—
returning only 1 out of 871 changes as relevant for the failure.

On the other hand, cause-effect chains require several test
runs (which is possibly slower than analysis), apply to a sin-
gle program run only, and give no hints on the involved state-
ments. The intertwining of program analysis and experimenta-
tion promises several mutual advantages.

B. Detecting Anomalies

Dicing [14] determines thedifferenceof two program slices.
For instance, a dynamic dice could contain all the statements
that may have influenced a variablev at some location in a fail-
ing run r✘, but not in a passing runr✔. The dice is likely to
include the statement relevant for the value ofv.

Running several tests at once allows one to establishrelation-
shipsbetween the executed code and the test outcome. For in-

stance, one could isolate code that was only executed in failing
tests [15]. This differential approach would also have isolated
the erroneous code in ourGCCexample.

Dynamic invariants[16] can be used to detect anomalous pro-
gram behavior [17]. During execution, a tool checks the pro-
gram against a model that is continuously updated; invariant vi-
olations can be immediately reported. This approach has several
exciting uses; one related to our work is to check a failing run
against invariants obtained from a passing run.

As discussed in SectionIV, the idea that an automated process
could isolate “the” erroneous code automatically in the absence
of an oracle can only be based onheuristics,and this is what
these approaches provide—including the risk of being mislead-
ing. Nonetheless, a heuristic can be very good at isolating pos-
sible causes; and it can be even more helpful when guiding a
trial-and-error approach like Delta Debugging.

C. The Debugging Process

Algorithmic debugging[18] automates the debuggingpro-
cess.The idea is to isolate a failure-inducing clause in aPROLOG

program by querying systematically whether subclauses hold or
not. The query is resolved either manually by the programmer or
by an oracle relying on an external specification. This could eas-
ily be combined with our approach to narrow down the failure-
inducing code as discussed in SectionIV: “Is PLUS in theRTL

tree correct (y/n)?”

D. Testing for Debugging

Surprisingly, there are very few applications of testing for
purposes of debugging or program understanding. Our own con-
tributions [1] as well as inferring relationships between code and
tests [15] have already been mentioned.

Specifically related to ourGCC case study is the isolation of
failure-inducingRTL optimizations in a compiler, using simple
binary search over the optimizations applied [19]. An experi-
mental approach comparable to Delta Debugging ischange im-
pact analysis[20], identifying code changes that are relevant for
a failure.

IX. CONCLUSION AND CONSEQUENCES

Cause-effect chains explain the causes of program failures au-
tomatically and effectively. All that is required is an automated
test, two comparable program runs and access to the state of an
executable program. Although relying on several test runs to
prove causality, the isolation of cause-effect chains requires no
manual interaction and thus saves valuable developer time.

As the requirements are simple to satisfy, we expect that fu-
ture automated test environments will come with an automatic
isolation of cause-effect chains. Whenever a test fails, the cause-
effect chain could be automatically isolated, thus showing the
programmer not onlywhathas failed, but alsowhy it has failed.
Although fixing the program is still manual (and creative) work,
we expect that the time spent for debugging will be reduced sig-
nificantly.

All this optimism should be taken with a grain of salt, as there
is still much work to do. Our future work will address the limits
discussed in SectionVI , concentrating on the following topics:
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Optimization.As stated in SectionIII-D , HOWCOME could be
running faster by several orders of magnitude by bypassing
the GDB bottleneck and re-implementingHOWCOME in a com-
piled language. Regarding Delta Debugging, we are working on
grouping variablessuch that variables related by occurring in
the same function or module are changed together, rather than
having a random assignment of variables to subsets.
Program analysis.As hinted at in SectionVIII , the integration
of program analysis could make extracting cause-effect chains
much more effective. For instance, variables that cannot influ-
ence the failure in any way could be excluded right from the
start. Anomaly detection could help to guide the search towards
specific variables or specific events.
Greater state.Right now, our method only works on the state
that is accessible via the debugger. However, differences may
also resideoutsideof the program state—for instance, a file de-
scriptor may have the same value inr✘ andr✔, but be tied to a
different file. We are working on how to capture such external
differences.
A discipline of debugging.Notions like causes and effects and
approaches like running experiments under changed circum-
stances can easily be generalized to serve in arbitrary debug-
ging contexts. We are currently compiling atextbook[21] that
shows how debugging can be conducted as systematically and
as all other software engineering disciplines—be it manually or
automated.

Overall, we expect that debugging may become as automated
as testing—not only detectingthat a failure occurred, but also
why it occurred. And since computers were built to relieve hu-
mans from boring, monotonous tasks—let’s have them do the
debugging!

Acknowledgments. The concept of isolating cause-effect
chains was born after a thorough discussion with Jens Krinke
on the respective strengths and weaknesses of program slicing
and Delta Debugging. Tom Zimmermann implemented the ini-
tial memory graph extractor and the common subgraph algo-
rithms. Holger Cleve conducted the Siemens experiments. Hol-
ger Cleve, Stephan Diehl, Petra Funk, Kerstin Reese, Barbara
Ryder, and Tom Zimmermann provided substantial comments
on earlier versions of this paper. Many thanks go to the anony-
mous reviewers for their constructive and helpful comments.

More information on isolation of cause-effect chains, includ-
ing aHOWCOMEdemonstration program, is available at the Delta
Debugging web site [3].

Figure4 was generated byAT&T ’s DOT graph layouter; Fig-
ure6 is a screenshot of Tamara Munzner’sH3VIEWER.

Delta Debugging research is funded by Deutsche Forschungs-
gemeinschaft, grant Sn 11/8-1.

REFERENCES

[1] Andreas Zeller and Ralf Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Transactions on Software Engineering, vol. 28, no.
2, pp. 183–200, Feb. 2002.

[2] Thomas Zimmermann and Andreas Zeller, “Visualizing memory graphs,”
in Proc. of the International Dagstuhl Seminar on Software Visualization,
Stephan Diehl, Ed. 2002, vol. 2269 ofLNCS, pp. 191–204, Springer-
Verlag.

[3] “Delta debugging web site,”http://www.st.cs.uni-sb.de/
dd/ .

[4] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand, “Ex-
periments of the effectiveness of dataflow- and controlflow-based test ad-
equacy criteria,” inProceedings of the 16th International Conference on
Software Engineering. 1994, pp. 191–200, IEEE Computer Society Press.

[5] Gregg Rothermel and Mary Jean Harrold, “A safe, efficient regression
test selection technique,”ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 6, no. 2, pp. 173–210, 1997.

[6] “AskIgorweb site,”http://www.askigor.org/ .
[7] Frank Tip, “A survey of program slicing techniques,”Journal of Program-

ming Languages, vol. 3, no. 3, pp. 121–189, Sept. 1995.
[8] M. Weiser, “Programmers use slices when debugging,”Communications

of the ACM, vol. 25, no. 7, pp. 446–452, 1982.
[9] Hiralal Agrawal and Joseph R. Horgan, “Dynamic program slicing,” in

Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation (PLDI), White Plains, New York,
June 1990, vol. 25(6) ofACM SIGPLAN Notices, pp. 246–256.
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