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Isolating Cause-Effect Chains
from Computer Programs

Andreas ZellerMember, IEEE Computer Society

Abstract—Consider the execution of a failing program as a sequence of where the program state changed from “intended” to “faulty”.
program states. Each state induces the following state, up to the failure. This moment in time is when the piece of code was executed

Which variables and values of a program state are relevant for the failure? ; PE—
We show how theDelta Debuggingalgorithm isolates the relevant variables that caused the faUIty state (and thus the fa”ure)_that is, “the

and values by systematically narrowing the state difference between a pass-€rror” in the program to be examined.
ing run and a failing run—by assessing the outcome of altered executions  Qur approach also differs from program analysis in that it is

to determine wether a change in the program state makes a difference in ; ; o
the test outcome. Applying Delta Debugging to multiple states of the pro- purely eXpe”memaI It Only requires the ablllty to execute an

gram automatically reveals thecause-effect chaiaf the failure—that is, the ~ automated test and to access and alter program states. Knowl-

variables and values that caused the failure. edge or analysis of the program code is not required, although
In a case stud_y, our prototype implementation sgccessfgl_ly isolated the Kints on dependencies and anomalies can effectively guide the

cause-effect chain for a failure of theGNU C compiler: “Initially, the C . .

program to be compiled contained an addition of1.0; this caused an addi- eXpe”mental narrowing process.

tion operator in the intermediate RTL representation; this caused acyclein ~ Our prototype implementation is available as a public Web

the RTL tree—and this caused the compiler to crash.” The prototype im—_ service where anyone can submit programs to be debugged au-

plementation is available as a public Web service, where anyone can submit . . . .
programs to be debugged automatically. tomatically. The Web service only requires the executable in

Index Terms—automated debugging, program analysis, testing tools, question and the invocations of the differing runs; it then de-

combinatorial testing, diagnostics, tracing. termines a cause-effect chain for the entire run. Such a facility
could easily be integrated within an automated test suite, auto-
|. INTRODUCTION matically generating a precise diagnosis whenever a new failure

. occurs.
ROGRAM debugging is commonly understood as the pro- This paper is organized as follows. Sectibrrecapitulates

cess of |d¢nt|fy|ng ?”.d correcting errors in the Prograig, o isolate failure-inducing circumstances automatically, us-
code. Debugging is a difficult task, because normally, errg

v be detected indirectly by the fail h N aGcc failure as example. Sectidii shows how to access
can only be detected Indirectly by the faiures they cause. gram states and to isolate their difference, obtaining a cause-
let us assume we have some program test that fails. How

this failure come to be? ct chain for thescc failure. SectionV shows how to nar-

o . . . row down failure-inducing program code—that is, “the error” in
Traditionally, approaches to facilitate debugging have relied. . sectiony discusses further case studies, and Sectibn

on static or dynamic program analysis to detect anomalies QL. sses the current limits of our approach. In Sedtith, we

dependenmes in the source COd? and thus narrowed the Se}igl ss related work and Sectibh closes with conclusion and
potential erroneous code. In this paper, we propose a n0¥8hsequences

and very different approach. Rather than focusing on the source

code as potentiallerror cause, we concentratrogram states Il. 1 SOLATING RELEVANT INPUT

as they occur during program execution—especially, ordifie ) _ _ i i i
ferencebetween the program states of a run where the failure in/" this Section, we recapitulate our previous work on isolating

question occurs, and the states of a run where the failure d&liire-inducing inputf]. As an ongoing example, consider the
not oceur. fail.c program in Figurel. This program is interesting in one

Usingautomated testingve systematically narrow these ini-
tial differences down to a small set of variables: “The failurgoublemult(doubleZ], int n)
occurs if and only if variable has the valug (instead ofy’)".
That is,x =y is acausefor the failure: ifx is altered toy’, the  jntj, i;
failure no longer occurs. If we narrow down the relevant state

differences at multiple locations in the program, we automati- = 0_ N .
cally obtain acause-effect-chailisting the consecutive relevant or (i =0;j < !++) {
state differences—from the input to the failure: “Initially, vari- ' =1 + 1 + 1,

able v; was x1, thus variablev, becamex,, thus variablevs 4i] = Zi] = (0] + 1.0);
becamexs .. .and thus the program failed.” }
State differences are not only causes of failures, buteflso returnzn];
fects of the program code. By increasing the granularity df
the cause-effect chain, one can interactively isolate the moment
Fig. 1
Andreas Zeller is with Universit des Saarlandes, Lehrstuhir fSoft- THE fail.c pROGRAMgTHAT CRASHESGCC.

waretechnik, Postfach 151150, 66041 Saacken, Germany. E-mail:
zeller@computer.org.



2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ????

#_ GCC input - test assess the effects of the input. In fact, Tdbd®es not show the
1 doublemult(...){inti, j;i =0;for(...){...}...} t . .
2 0 narrowing process as conducted by a human, but the execution
3 goug:emu:tg...;{ } O of the Delta Debuggingalgorithm, an automatic experimental
4 oublemult(...) {inti, j;i =0; } O ; ;
5 doublemuit( ) [inti. j.i =0'for(.)(..) )} O method to |solat§ failure pauseE].[
6 doublemult(...) {inti, j:i =0:for( ){... } O Delta Debugging requires two program runsandr;—one
' : runrg where the failure occurs, and one minwhere the failure
18 2] = 2[i] * (0] + 1.0): g does not occur. Thelifferencebetween these two runs is de-
19 ... Z[i] = Z[i] % (0] ); 0 noted as; the difference can bappliedtory to produce -, or
20 o Zi] =7[i] % (Z[0] 1~0)§ ’; 8(rg) = rg. Formally,$ is a failure cause—the failure occurs if
21 s Al =21 0]+ 10 and only if is applied. The aim of Delta Debugging, though, is
TABLE | to produce a cause that is as precise as possible. We thus decom-
ISOLATING FAILURE-INDUCING GCCINPUT pose the original difference into a numberatdémicdifferences

§=68108p0---006p.
Let us illustrate these sets in o@cc example.ry is theGcc

) . run on the empty input, andg is the run on the failure-inducing
aspect: It causes thenu C compiler GCq) to crash—at least, input fail.c. We model the differencé betweerr; andry as a

when using version 2.95.2 on Intel-Linux with optimization €Nzt of atomic deltas;, where eachi; inserts thé-th C token of

abled: fail.c into the input. We further assume the existencetefsting
$ gcc—O fail.c function test that takes a set of atomic differences, applies the
gcc: Internal compiler error: differences ta, and returns the test outcomedi the test fails
program cc1 got fatal signal 11 (i.e. the expected failure occurs),if the test passes (the failure
$ doesnotoccur), and? in case the outcome imresolved—such
B as a non-expected failure.
If we say “fail.c causessccto crash”, what do we actually [ et us definec, = @ andc, = {81, 82, ..., 8y} as sets of

mean? Generally, theauseof any event is a preceding eveniatomic differences. By definitioriest(c,) = O holds (because

without which the event in question (tleéfec) would not have nochanges are applied te); test(c-) = O holds, too (because
occurred. Indeed, if we remove the contentdaif.c from the g|| changes are applied tg, changing it tar).

input—that is, we compile an empty file—gcc works fine.  |n ourcccexample test constructs the input from the given
These two experiments (the failing and the passing run) aciifranges and checks whether the failure occtars(c.,) applies
ally prove thaffail.c is a cause of the failure. no changes to the empty input and russc, the failure does

not occur.test(co) inserts all characters @il.c into the empty
input, effectively changing the input fail.c, and runsscg; the

In practice, we typically want a momgrecisecause than just failure would occur. Thetest function returnsd if and only
the contents ofail.c—that is, a smaller difference between thé the original failure occurs{ if the program exits normally,
failing and the passing experiment. For instance, we could tryaod? in all other cases.
isolate thesmallest possible differentetween twasccinputs. Given ¢y, ¢y, andtest, Delta Debugging now isolates two
This can be done using a simple “trial and error” method, &stsc, andc/, with ¢; < ¢ < ¢ C ¢, test(c,) = O, and
illustrated in Tabld. test(c,) = O. Furthermore, the set differen¢e = ¢/, — ¢/ is

In Step 1, we see the entire inffail.c, causing thesccfail-  1-minimal—that is, no singlg; € A can be removed frorg, to
ure (“0"). In Step 2, the contents dhil.c have been deleted; make the test pass or addedctoto make the test fail. Hence,
this empty input compiles fine (). In Step 3, we take away A is a precise cause for the failure.
only themult body. This input also compiles fine. Thus, we Applied to thecccinput, Delta Debugging executes exactly
have narrowed the failure-inducing difference to thelt body: the tests as illustrated in Table Delta Debugging first splits
“Something within thenultbody causesccto crash”. In Steps the input in two parts Compiling the header alone works fine
4 and 5, we have narrowed the cause toftindoop. (Step 3), and adding the initialization ofand j to the input

Continuing this “trial and error” method, we eventually nar(Step 4) does not yet make a difference. However, adding the
row down the cause to the character setl!0” in Steps “for”loop (Step 5) makescccrash. At this stages) is set up
18 and 19. This difference4#1.0” is minimal, as it can not as shown in Step 47 is set up as in Step 5, and their difference
be further reduced: Removing eithet™ or “1.0” would re- A = ¢/, —c/, is exactly the “for” loop—in other words, the “for”
sult in accc syntax error (Steps 20 and 21)—a third outcoml@op is a more precise cause of the failure.
besides failure and success, denoted her@asSo, we have  Continuing the narrowing process eventually leads/t@as
isolated “+1.0” is a minimal difference or precise cause for théhown in Step 18 and, as shown in Step 19: The remaining
cccfailure—accfails if and only if “4-1.0” is present irfail.c.  difference is exactly the addition of+'1.0". Steps 20 and 21

verify that each of these two remaining tokens is actually rel-

B. Delta Debugging evant for the failure. So, the remaining 1-minimal difference

The interesting thing about the “trial and error” process tor 10" is what Delta Debugging returns—after only 21 tests, or

isolate fqure—mducmg Input is th?.t it can mitomatee-all in this example, we assume a “smart” splitting function that splits input at C
one needs is a means to alter the input, and an automated testitaiters like parentheses, braces, or semicolons.

A. A “Trial and Error” Process
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Let + be the set of all differences (in input or state) between program rungekset 2+ — {0, 0, ?} be a testing function that determines for a configuration
¢ C + whether some given failure occurs)(or not (1) or whether the test is unresolve?) (

Now, letcy andcy be configurations witle; € ¢ € + such thattest(cn) = O A test(co) = [. ¢ is the “passing” configuration (typicallgn = ¢ holds)
andcq is the “failing” configuration.

The Delta Debugging algorithmid(cg, cn) isolates the failure-inducing difference betwegnandcq. It returns a pain(c’D s C/D) = dd(cq, co) such that
co € ¢ € ¢ € cp, test(c) = O, andtest(c;) = O hold andcf; — ¢/ is 1-minimai—that is, no single circumstance df can be removed frony, to make
the failure disappear or addeddg to make the failure occur.

The dd algorithm is defined add(cp, co) = dd2(cq, ¢, 2) with

dda(cy, c; U A, 2) if 3 e{1,...,n}- test(ch UA) =0
dda(c, — Aj, ¢}, 2) if 3 e {1,..., n} - test(ch— Aj) =0
dda(ch UAj, cp, maxn—1,2)) elseifdi € {1,...,n}- test(ch UAj) =0
dda(cf, ¢f — Aj, max(n — 1,2)) elseifdi € {1,...,n}- test(ch — Aj) =0
dda(cl, ¢, min(2n, |A]) elseifn < |A|

(ch.ch) otherwise

ddy(ch, ch,n) =

whereA = ¢/, — ¢/, = AU A U--- U Ap with all Aj pairwise disjoint, an&A; - |Aj| = (JA| /n) holds.
The recursion invariant fofidy is test(c;) = O A test(c) = DA N < |A].

Fig. 2
THE DELTA DEBUGGING ALGORITHM IN A NUTSHELL . THE FUNCTION dd ISOLATES THE FAILURE-INDUCING DIFFERENCE BETWEEN TWO SETS
Co AND cg. FOR A FULL DESCRIPTION OF THE ALGORITHM AND ITS PROPERTIESSEE[1].

roughly 2 second$. Let us assume that an automated test dkft hand side, the program processes some input. Only a part
ready exists (for instance, as part of thectest suite); also, let of the input is relevant for the failure—that is, a difference like
us assume we have a simple scanner to decompose the inptitH{h0” between an input that is failure-inducing and an input
10-minute programming assignment). Then, finding the caubat is not. This difference in the input causes a difference in
in any GCcC input comes at virtually no cost, compared to thiater program states, up to the difference in the final state that
manual editing and testing &il.c. determines whether there is a failure or not.

The actual algorithm is summarized in Figite The num- The problem, though, is, that even a minimized difference in
ber of required tests grows with the number of unresolved test input may well become a large difference in the program
outcomes. In the worst case, nearly all outcomes are unresolvsidte. Yet, only some of these differences are relevant for the
then, the number of teststis= |c,|?+-3|c|. However, this worst failure. So, weapply Delta Debugging on program statiesor-
case never occurs in practice, because in case of unresolved d&it-to isolate the variables and values that are relevant for the
comes, the Delta Debugging algorithm has been designed toftijure; these isolated variables constitute these-effect chain
runs more similar t@; andcy. The central assumption is thatthat leads from the root cause to the failure. This is the contri-
the closer we are to the original runs, the lesser are the changéson of this paper: a fully automatic means to narrow down
of unresolved test outcomes—an assumption backed by a nygregram states and program runs to the very small fraction that
ber of case studied]. In the best case, we have no unresolveld actually relevant for the given failure.
test outcomes; all tests are either passing or failing. Then, the
number of tests is limited byt < log,(|cq|)—basically, we A. Accessing and Comparing States

obtain a binary search. ) ] )
Our requirements are easy to satisfy; all we need is an or-

[1l. | SOLATING RELEVANT STATES dinary debugger tool that allows us to retrieve and alter vari-
. . o ables and their values. Let us initiate tveaC runs: a runrg
_Letus recon5|dgrthe isolated caugel.0". Al.thOUQh FEMOV= o fail.c and a rurry on pass.¢ wherefail.c and pass.cdiffer
ing “+1.0” from fail.c makes thescc failure disappear, this is only by “+1.0”. Using the debugger, we interrupt both runs at
not the way to fix the error once and for all; we rather want to fi e same locatiofr: then. we retrieve’eaahccstate as a set of
theccccode instead. Unfortunately, processing such ar'thmeE\(fariabIe, value pa{irs. A:s a mental experiment, let us assume
operations is scattered all over the compiler code. Nonethelelﬁ '

during th lati 40" v ind 2t all variables have identical valuesrin andr, except for
uring the compilation process;+1.0" eventually induces a . ¢o.r variables in Tablg.

faulty ccce state which manifests itself as a failure. How does Obviously, this difference in the program state is the differ-

" ” H ’)
. +1.0" eventually cause the failure? And how do we get to theence which eventually causes the failure: If we set the differing
involved program code?

A . .. N variables inr; to the values found in; and resume execution,
Thg basic idea qf this paper is illustrated in F!gGren the thenacc should behave as in, and fail.
following page, which depicts a program execution as a serie :
e can use Delta Debugging to narrow down the cause. Now,

of program states-that is, variables and their values. On th . )
prog 'tahe deltas; becomdifferences between variable valuepply-

2All times were measured on a LINUX PC with a 500 MHz Pentium |11 pro—'ng asi inrp me.ans setting theth Fﬂffermg Va”abl_e Inrg to
Ccessor. the value found img. Thetest function executes, interrupts
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m variables é

Variablem

A

o GOF @0 - @\ |

Input 2 Variable 2
Narrowing Differences Narrowing Differences Narrowing Differences Narrowing Differences
in Program Input in State 1 in State 2 in State n

n program states

Fig. 3
NARROWING A CAUSE -EFFECT CHAIN . IN EACH STATE, OUT OF M VARIABLES, ONLY FEW ARE RELEVANT FOR THE FAILURE THESE CAN BE ISOLATED
BY NARROWING THE STATE DIFFERENCE BETWEEN A WORKING RUN AND A FAILING RUN

51 32 83 84 feasible. However, our state model is insufficient: We must
regrtx-no cucinsnuid firstloop.storeinsn lastlinenum test also takederivedvariables into account—that is, all memory
o 32 74 Ox81fc4e4 150 locations being pointed to or otherwise accessible from the base
rg 31 70 0x81fc4a0 14 O variables.
TABLEII B. Memory Graphs

DIFFERING VARIABLES IN TWO GCCRUNS .
To fetch theentirestate, we capture the state of a program as a

memory graphi2]. A memory graph contains all values and all

# regrtxno curinsnuid firstloop_storeinsn lastlinenum test variables of a program, but represents operations like variable
1 32 74 Ox81fc4al 14 0 access, pointer dereferencing, struct member access, or array
2 32 74 Ox81fc4ed 14 ? element access by edges.
3 32 74 0x81fc4a0 15 O As an example, consider Figudeon pages, depicting a sub-
graph of theccc memory graph. The immediate descendants
TABLE Il of the (RooY vertex are the base variables of the program. The
ISOLATING FAILURE-INDUCING VARIABLES variablefirst loop_store.insn for instance, is found by following

the leftmost edge fronfRooy. The dereferenced value is found
following the edge labele®()>—a record with three members
valug fld[0].rtx, andfld[1].rtx. The latter points to another
execution al, applies the given deltas, resumes execution apgkord which is also referenced by tirek variable.
determines the test outcome. Memory graphs are obtained by querying the base variables
As an example, considey and s, from Tablell. To test f 3 program and by systematically unfolding all data structures
81 andd; means to executBCC on pass.qrunro), 1 INterrupt  gneountered: if two values share the same type and address, they
itat L, to setregrtx-no to 32 andcur.insnuid to 74, and t0 516 merged to a single vertex. (More details on memory graphs,
resume execution. If we actually do that, it tums out @€ je1yding formal definitions and extraction methods, are avail-
runs just fine—test retgrnsD and we have narrowed the failureypo P].) Memory graphs give us access to the entire state of a
cause by these two differences. , program and thus avoid problems due to incomplete comparison
Unfortunately, things are not so simple. If we continue thgs hogram states. They also abstract from concrete memory ad-
narrowing process using Delta Debugging, we end up in trojfresses and thus allow for comparing and altering pointer values
ble, as shown in Tablel . Step 1 is the application ¢f andsz, 4 propriately.
as discussed before—everything fine so far. In Step 2, thoughyyqever, memory graphs also indicate another problem: The
we would apply the changés, setting the pointer variable get ot yariables itself magiffer in the two states to be compared.

first loop_storeinsn to the address found in;. This would As an example, consider Figusen the next page. In the upper
cause an immediate core dump of the compiler—not really s ft corner, you can see two memory graghs and G, ob-

prising, considering that an address frogprobably has little tained from the two runs, andr.,. As a human, you can quickly

meaning I . _ see that, to chang®,, into G, one must insert element 15 into
In Step 3, we can excludastlinenumas a cause and thus

?ﬁeCt_'Vely .|50|ate fwsLIoop,storemsn_ as remaining failure- 3Each variable name is constructed from the incoming edge, where the place-
inducing difference, so we can easily see that our processdsier() stands for the name of the parent.
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DETERMINING STRUCTURAL DIFFERENCES BETWEEN MEMORY GRAPHS . ANY NODE NOT CONTAINED IN THE COMMON SUBGRAPH(DOTTED LINES)
IS EITHER INSERTED OR DELETED(TOP LEFT). APPLYING 815 ON Iy CREATES THE LIST ELEMENTL5, APPLYING 850 DELETES LIST ELEMENT20.
APPLYING BOTH DELTAS (BOTTOM RIGHT) TRANSFORMSI TO (8150 820) (rg) = .

the list and delete element 20. To detect this automatically fGr Isolating the GCC Cause-Effect Chain
arbitrary data structures, one must computemmon subgraph

of Gy andGg: Any vertex that is not in the common subgrapt%u
of G andGg has either been inserted or deleted. Large co
mon subgraphs can be computed effectivelypbyallel traver-
salalong matching edgeg]

Let us now put all these building blocks together. We have
ilt a prototype callediowcomethat relies on the&Nu debug-

er (GDB) to extract the program state; eafhis associated with
appropriatesbB commands that alter the state.

From Sectioril, we already know the failure-inducing differ-

In Figure 5, we have determined the largest common sunce in the input, namely the token sequen¢&.0”, which is
graph, drawn using dotted lines asnaatchingbetweenG, presentirfail.c, but not inpass.c HOWCOMES test function is
andG..* Itis plain to see that element 15 @&, has no match also set up as discussed in Sectilan
in Gy; likewise, element 20 i, has no match 6. At which locations do we compare executions? For technical

) ) reasons, we requireomparablestates—since we cannot alter

For our purposes, we translate these differences into atorg set of |ocal variables, the current program counter and the
deltas that create or delete new variables—one delta for eaghyrace of the two locations to be compared must be identical.
non-matched variable. In this example, we obtain a d&la From the standpoint of causality, though, any location during
that creates the list element 15 and a déjtethat deletes list el- oy acution is as causal as any other.

ement 20. Both deltas can be applied independently (upper righf,,covethus starts with a sample of three events, occurring
and lower left). Altogether, we thus obtain deltas that Cha”ﬂ?both the passing run and the failing run:

:/r?;tasirV;:tJ:SS’triitil:Z;Ched in Sectltn, as well as deltas 1. After the program start (in our case, wheacs subprocess
' cclreaches the functiomain)

2. Inthe middle of the program run (whexlreaches the func-

tion combineinstructiong

3. Shortly before the failure (whencl reaches the function

An edge is part of the matching (= the common subgraph) if its vertice .
gersp g ( graph) it thenelsecondfor the 95th time—a call that never returns)

match; there is no such edge in this example.
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first_loop_store_insn \ link

0x81fcded

0x820e23c

().code | ().fld[0].rtx 0.fld[1].rtx

SET ’ ‘0X81fc494’ 0x820e23c

Fig. 6
THE GCCGp MEMORY GRAPH

O.code | O-fidfO].rix 0-fdf1].rx altered variables is small enough to maet pass (Figurd on

‘ LUS ‘ 0x820e230’ ‘0x820e224‘ the facing page)_. Eve_ntuall_y, aft_er only 44 tes{sWC_OME has
narrowed the failure-inducing difference to one single vertex,
created with the&sDB commands
Fig. 4

set variable$m9 = (struct rtxdef *)malloc(12)

set variable$m9— code = PLUS

set variable$m9—mode = DFmode

set variable$m9—jump =0

set variable$m9— fld[0].rtx = loop_mems[0].mem

C.1 Atmain set variable$m9—fld[1].rtx = $m10

set variable firsioop_storeinsn—fld[1].rtx —
fld[1].rtx —fld[3].rtx —fld[1].rtx = $m9

A SIMPLE MEMORY GRAPH . POINTERS REFERENCE RECORDBEACH
REFERENCING ITS MEMBERS

HOWCOME starts by capturing the two program states of
andr; in main Both graphsG; and G, have 27139 vertices
and 27159 edges (Figuf®; to squeeze them through tie®B
command-line bottleneck requires 15 minutes each.

After 12 secondsHOWCOME determines that exactly one
vertex is different inG; and Gp—namely argv2], which is h
"fail.i" inry and"pass.i" inrg. These are the names oft1
the preprocessed source files as passed1idy theccc com-
piler driver. This difference is minimal, so we do not need 8 3 Atif thenelsecond
Delta Debugging run to narrow it further. ' -

That is, the failure-inducing difference is now the insertion of
a node in therTL tree containing #LUSoperator—the proven
effect of the initial change+1.0” from pass.do fail.c. Each of

e tests required about 20 to 27 secondsa/cCOMEtime, and
second ofscctime.

o ] At this last eventHOwCOME captured the graph&; with
C.2 Atcombineinstructions 47071 vertices and 48473 edges as welGaswith 47313 ver-

As combineinstructionsis reached,gcc has already gen- tices and 48744 edges. The common subgrapB0find G
erated the intermediate code (calletL for “register transfer has 46605 vertices; 1224 vertices have been either added in
list”) which is now optimized.HowcoME quickly captures the or deleted inGp.
graphsGp with 42991 vertices and 44290 edges as welGas  Again, HowcoME runs Delta Debugging on the deltas of the
with 43147 vertices and 44460 edges. The common subgrapll 24 differing vertices (Figur8 on the next page). As every
Gp andGp has 42637 vertices; thus, we have 871 vertices thsdicond test fails, the difference narrows quickly. After 15 tests,
have been added i@ or deleted inG. HOWCOME has isolated a minimal failure-inducing difference—

The deltas for these 871 vertices are now subject to Delta Resingle pointer adjustment, created with ¢ command
bugging, which begins by setting 48@&cvariables in the pass-
ing run to the values from the failing ruis(;). This obviously  set variable link>fld[0].rtx — fld[0].rtx = link
is a rather insane thing to do, asdcimmediately aborts with
an error message complaining about inconsistent state. Changrhis final difference is the difference that causesc to
ing the other half of variables does not help either. After thegail: It creates a cycle in th&TL tree—the pointedink —
two unresolved outcomes, Delta Debugging increases granufadfO].rtx — fld[0].rtx points back tdink! The RTL tree is no
ity and alters only 218 variables. After a few unsuccessful dbnger a tree, and this causes endless recursion in the function
tempts (with various uncommascc messages), this number ofif_thenelsecond eventually crashingcl
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Fig. 7
NARROWING AT combineinstructions

D. The GCC Cause-Effect Chain

The total cause-effect chain focl, as reported byOWCOME,
looks like this:

Cause-effect chain for "./gcc/ccl’
Arguments are -O fail.finstead of -O pass.i)
therefore atmain argv[2] = "fail.i” (instead of "pass.i”)
therefore atcombineinstructions
*first_loop_storeiinsn—fld[1].rtx —fld[1].rtx —
fld[3].rtx—fld[1].rtx = (new variablé
therefore aff _thenelsecond
link—fld[0].rtx —fld[0].rtx = link (instead of ildest)
therefore the run fails.

Delta Debugging Log
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Fig. 8
NARROWING AT if_thenelsecond

For the programmer, though, these fixesmoeequivalent—
obviously, we need a fix that not only prevents the failure in
guestion, but also prevents similar failures, while preserving the
existing functionality. The programmer must thus choose the
best place to break the cause-effect chain—a piece of code com-
monly referred to as “the error”. Typically, this piece of code
is found by determining theansitionbetween aintendedpro-
gram state and faulty program state. In the absence of an ora-
cle, we must rely on the programmer to make this distinction: A
cause can be determined automatically; the fault is in the eye of
the beholder.

Nonetheless, cause-effect chains can be an effective help for
the programmer to isolate the transition: All the programmer

With this output, the programmer can easily follow the causgas to do is to decide whether the isolated state in the fail-
effect chain from the root cause (the passed arguments) vigi@f run is intended or not. In thecc example, the states at
intermediate effect (a new node in tReL tree) to the final ef- main and atcombineinstructionsare intended; th&TL cycle
fect (a cycle in therTL tree). The whole run was generated augt if_thenelsecond obviously is not. So, somewhere between

tomatically; no manual interaction was requireshwCOME re-

combineinstructionsandif_thenelsecond the state must have

quired 6 runs to extraacc state (each taking 15-20 minuteskhanged from intended (") to faulty (“1"). We focus on this
and 3 Delta Debugging runs (each taking 8-10 minutes) to isaterval to isolate further differences.

late the failure-inducing differencés.

Figure9 shows the narrowing process. We isolate the failure-

It should be noted again that the output above is producediigycing state at some point in time between the locations
a fully automatic fashion. All the programmer has to specifyompineinstructionsand if_thenelsecond namely at the file
is the program to be examined as well as the passing and faiimpine.dn line 1758: Here, theewpatvariable points back
ing invocations of the automated test. Given this informatiog, |ink—the cause for the cycle and thus a faulty state. The
HowcoMmE then automatically produces the cause-effect chaiynsition between intended and faulty state must have occurred

as shown above.

IV. | SOLATING THE ERROR

betweercombineinstructionsand line 1758.
Only two more narrowing steps are required: At line 4011,
HOWCOME again isolates an addition®ILUS node in therTL

The ultimate aim of debugging is to break the cause-eff@gge—an intended effect of thet1.0” input (not faulty)® at
chain such that the failure no longer occurs. Our cause-effgge 4271, HowcomE again finds a failure-inducingTL cy-
chain forGcc lists some possibilities: One could prevent an irgje (faulty). This isolates the transition down to lines 4013—

put of “+1.0”, avoid PLUS operators irrTL or break cycles in 4019,

In this piece of code, executed only in the failing

the RTL tree. Again, from the standpoint of causality, each of

these fixes is equivalent in preventing the failure.

6Actually, HOWCOME reports thisPLUS node as being located at
undobufundos— next— next> next— next— next— next— next-> next-next

5A non-prototypical implementation could speed up state access by 1-3 matyich indicates that finding the most appropriate denomination for a memory

nitudes by bypassing the GDB command line.

location is an open research issue.
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main  combine_instructions if_then_else cond  Evyent

Edges Vertices Deltas Tests Rel
combine.c: 1758 sampleat main 26 26 12 4 1

combine.c:4011

combine.c:4271 sampleat shellsort 26 26 12 7 1
| 1 sampleatsample.37 26 26 12 4 1
|o o |o ol o 0| cclatmain 27139 27159 1 0 1
_ cclatcombineinstructions 42991 44290 871 44 1
Execution time .
cclatif_thenelsecond 47071 48473 1224 15 1
Fig. 9 bisonatopenfiles 431 432 2 2 1
NARROWING DOWN RELEVANT EVENTS bisonatinitialize_conflicts 1395 1445 431 42 1
diff atanalyze.966 413 446 109 9 1
diff atanalyze.c1006 413 446 99 10 1
gdbatmain.c615 32455 33458 1 0 1
run, therTL code (MULT (PLUS a b) c) is transformed to gdbatexec.c320 34138 35340 18 7 1
(PLUS (MULT a ¢))(MULT b ©)) wherec = ¢c1 = ¢
holds! Unfortunately,c; andc, are created aaliasesof c, TABLE IV

which causes the cycle in therL tree! To fix the error, one
should makes; a true copy oft;—and this is how the error was
fixed inGcc2.95.3.

Do we really need the programmer to narrow down the point
in time where the state becomes faulty? Not necessarily. Fiigijgle new failure §]. Each version was subject to Delta De-
one could simply increase the granularity of the cause-effdstgging between 6 and 191 times (“Runs”); the average number
chain, and thus present more detailed information. Second (ardieltas between program states is shown in “Deltas”. The lo-
this is a research topic), one could attempt to isatatese tran- cations were automatically determined at 50%, 75%, and 90%
sitions automatically. For instance, the narrowing process aéthe execution coverage; thest function was determined au-
shown above could also have been guided by the fact whettmmnatically from the differing output (see Sectivii for details
therTL tree differencé’LUSis relevant or not—and would havehow and why this is done). Overall, Delta Debugging had been
isolated the very same location. We are currently experimentingn 1995 times.
with different heuristics (such as code being executed in one ruriThe number of relevant variables in the cause-effect chain
only) to automatically focus on events that are likely to be releever exceeded 2; the average number is shown in the “Rele-
vant. vant” column. The number of tests required to isolate the rele-
vant variables (“Tests”) is pretty much logarithmic with respect
to the number of deltas.

SUMMARY OF GNU CASE STUDIES

V. CASE STUDIES

A. GNU Programs Note to reviewers: The final version will include a statement
Sesidessc, we have apliedonconeto some morany 1 1€ Secvenessof he detas e, how wel do e ol

programs to isolate cause-effect chains (Talle ’

« In the sampleexample from thesNu DDD manual, Delta De- C. Lessons Learned

bugging quickly isolated a bashellsort call 2 '

« In the bison parser generator, a shift/reduce conflict in the What we found most surprising about these experiments was
grammar input causes the varialgaifttable to be altered, thatone can alter program variables to more or less meaningless
which in turn generates a warning. values and get away with it. We made the following observa-

« In thediff file comparison program, printing of differences igions, all used by Delta Debugging:

controlled bychangeswhose value is again caused tilgs— , First, the altered values are not meaningless; they stem from
changedflag. a consistent state, and it is only a matter of statistics (e.g. which

« Invoking thegdbdebugger with a different debuggee changegd how many variables are transferred) whether they induce an
18 variables, but only the change in the variadig is relevant inconsistent state. The chances for consistency can be increased

for the actual debuggee selection. by grouping variables according to the program structure (which
In all cases, the resulting failure-inducing difference comowcome does not do yet).

tained only one relevant element (“Rel”); the number of tesfsSecond, the remainder of the program (and the festfunc-

was at most 42. tion) acts as dilter: If anything happens that did not happen in

the two original runs, the test outcome becomes unresolved, and

the next alternative is sought. If variables have been altered and

In a second case study, we applied Delta Debugging on tihe outcome is still similar to the original two runs, then these

Siemens test suited], as summarized in Tablg¢. Each pro- variables are obviously irrelevant for the outcome. Precision can

gram version (“Version”) was altered by hand to introduce ore arbitrarily increased by making ttesstfunction pickier about
o _ o similarity [1]

esgehé;ﬁ‘ffc)llrcgggrnegégé distributive law allows for potential optimizations, Third, in a program with a good sc_eparation of co_n_cerns, or_lly
8A HOWCOME demonstration program for this example, is available onlin& few variables should be responsible for a specific behavior,

including sample Delta Debugging source co8le [ including failures—and this small number makes Delta Debug-

B. Siemens Programs
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Name Version Runs Deltas Tests Relevant ternate run” does not necessarily translate into “alternate invo-
print_tokens 2 55 4425 951 1.31 cation”, at least not of the whole program. If one wants to to
print_tokens 3 7 5214 15.00 1.71 isolate the cause-effect chain from sosubprogramit suffices
print_tokens 4 23  36.22 9.04 1.43 to have multiple invocations of that subprogram within a single
print_tokens 5 2 59.00 16.00 2.00 program run. The only requirement is that each invocation can
print_tokens 6 47 49.04 1281 1.66 be individually tested for success or failure.
print_tokens 711 59.00 6.55 1.00 " For instance,Gce invokes combineinstructions for each
print_tokens2 1 36 1233 4.86 1.28 compiled procedure. Let us assume we have one single input for
print_tokens2 2 22 1986 6.77 1.27 cc1that first includes the contents tass.i*  and then the
print_tokens2 3 51 1441 571 1.35 contents of'fail.i" . We can compare the two invocations
print tokens2 4 32 2775 6.03 1.28 of combineinstructionsjust like we compared the two invoca-
print_tokens2 5 54 1413 585 1.44 tions ofccc—and find out how the difference propagates in the
print_tokens2 6 33 1642  6.76 1.42" cause-effect chain. We expect that many programs contain such
replace 1 17 1729 7.24 1.29 yepetitive elementthat can be exploited by Delta Debugging; in
replace 2 16 2188 912 1.31 fact, multiple repetitionssuch as loop traversals may turn out as
replace 3 6 2000 817 1.33 a nice source for regular behaviour.
rep:ace ! 39 5327 4.2 1.08 If a program (or subprogram) fails under all conditions, there
replace 8 18 61 7.89 1.28 is no way Delta Debugging (or any other automated process)
replace 9 12 20.17  7.67 1.25 . . ;
could make it work. Here, anomaly detection techniques (Sec-

schedule L 21 4624 6.29 1.05 tion VIII-B ) are probably a better choice
schedule 3 20 8550 9.75 1.10 '
schedule2 1 29 49.17 8.93 1.14
schedule2 2 56 42.62 7.46 1.16 B. State Transfer
schedule2 3 92 48.09 6.26 1.09 _ )
schedule2 4 35 67.71 657 111 In practice, transferring a program statg (or parts thereof)
schedule2 5 179 5844 6.82 1.08 from one run to another run can be very tricky. Problems oc-
schedule2 6 191 6224 582 1.02 cur with bothinternalandexternalstate.
schedule2 7 132 48.14 6.64 1.03 Inthe C language, the programmer has complete freedom to
schedule2 8 187 5842 6.35 1.01 organize dynamic memory, as long as he keeps track of memory
schedule2 10 164 4868 7.10 1.13 contents. Consequently, there is no general way
tcas 38 10 39.70  5.60 1.00 , {5 detect whether a pointer points to an element, an array, or
tcas 39 29 3841 559 1.00 nothing,
tcas 40 18 3294 589 1.00 | {5 determine the sizes of dynamically allocated arrays, or
tcas 41 44 3564 7.45 111 | {0 find out which member of a union is currently being used.
tot.info 1 105 721.34 11.30 1.14
tot.info 4 48 444.62 11.06 1.19 In all these casesjowcoME relies onheuristicsthat query the
tot.info 5 154 693.35 30.68 1.88 run-time library for current memory layout, or check for com-

TABLE v mon conventions of organizing memory. These heuristics can

be wrong, which may or may not lead to unresolved test out-
comes. A better way would be to keep track of all memory
contents at run-time such that questions like the ones above can
be answered adequately. Fortunately, in languages other than C
(notably languages with garbage collection), such heuristics are
ging efficient. not required.

. Fourth and last, program state haﬂralcturggnd canthuseas- p program state may encompass more than just memory,
ily be decomposed. In contrast, decomposimitas sketched ,5gh. As an example, think of the state of a database. If we

in Sectionll requires the input syntax to be specified manually, e 5 query that works and a query that fails, should we include

for each new program. And, of course, isolating relevant staigs, entire database in our state, and if so, at which abstraction
is much more valuable than isolating input alone, since we cgRe|?

actually look at what's going on inside the program.

SUMMARY OF SIEMENS CASE STUDIES

As another example, think of file handles. We might be able
to transfer file handles from one state to another, but should we
really do so without considering the state of the file?

Let us now discuss some general limits of Delta Debugging, one can argue that every external state becomes part of inter-
and how we can deal with them. nal memory as soon as it is accessed - databases and files are
read and written. But differences may also residésideof the
program state—for instance, a file handle may have the same

Delta Debugging always requires afternate runin order value inrg andrg, but be tied to a different file. We are working
to compare states and narrow down differences. However, “ahk how to capture such external differences.

VI. LIMITS

A. Alternate Runs



10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ??, ????

C. False Positives Run a b c d
cy; false false false false

Cy true true true true
Foundc, false false true false
Foundc,, true false true false

The states generated by Delta Debugging can make the pro-
gram fail in a number of ways. One must take care not to con-
found these with the “original” failure.

As an example, consider the following piece of code:

The difference ira betweerc/, andc/, is failure-inducing—a

Egg:); : x is a failure cause, at least in the common contexti,af, andd

« state is accessed here being false, true, and false, respectively. But altedrajone in

if (x £ ) Cy Or ¢; does not ch{:mge the outcome—one ne.ed.s to change at
fail(); !east one further varlabl_e of th_e context, too. Thisis no prople_m

else if(x A y) if the common context is feasible, i.e. cquld be reached within
fail (); a program run. However, Delta Debugging does not guarantee

fi feasibility.

_ _ . This example raises several questions. Does it haranisf
Let us assume that in a Delta Debugging run, we find the fekported as a failure cause, although it is only part of a cause?

lowing configurations: How do we deal with infeasible contexts? How can we relate
RUn X y the isolated difference to the original runs? How likely is it that
c, false false such interferences occur? Such questions require much further
c, true true research and experience.

Testedc  false true E. Differences vs. Faults

The tested configuratiomcauses the program to fail (tffiel
function is invoked). However, the failure occurs at a different

. . . . . . |
invocation. Thus, the program fails in a way that is dn‘fererﬁ exists in both runs and if its value differs. Howevermay

from the original failure. not be faulty at all; it may very well be thathas exactly the in-
A pragmatic way to handle with such false positives is to take y ' y very ) y

. . . tended value. In theccexample, th&LUSnode in therTL tree

thebacktraceof the failure into account—the stack of functions

that were active at the moment of the failure. The& function wa}s pt)ﬁrfe(;)tly legal, falthoughf_lt e:(entually c?use(il tge failure.
should returrd if and only if the failure occurs at the same lo- n the absence ot a Specification, no automated process can

cation ag—that is, the program counter and the backtrace g*sz'c?]y'ft?];?uI%zgg;n;igdegt;?;ude.fsfég?]\g::i; ';r::)é%z:ﬁée
calling functions must be identical. This need not be a prograt“” u u w ! u '

crash: one could also consider the backtrace of an output or %he later computation. For instance, if some variable like the
stater;]ent for instance Snode causes specific pieces of the code to be executed
In the e;<ample abové the secofadl invocation results in a (which otherwise would not) or specific variables to be accessed

different backtrace—test would return? rather thartl. (which otherwise would not be), then it may be helpful to report

Besides the backtrace, there are more things one égﬁse differences as causes, too.
conS{der—the exgcutlon time, for mstange, the set of re_acr\‘f‘fdMuItiple Causes
functions, or the final state of the execution. If one requires a _ _
higher similarity with the failing run, though, one will also ob- Delta Debugging as presented here isolates only one cause

tain a larger set of causes that is required to produce exactly fiign several potential causes—for instandejl.c can be

The chosen alternate run determines the causes Delta Debug-
ng can infer: A variables can be isolated as a cause only if

similarity. changed in several ways besides removind.0”, and so can
the induced states. Although Delta Debugging could easily be
D. Infeasible Context extended to search for alternative causes—which is the most rel-

Each cause, as reported by Delta Debugging, consists€YfNt cause, then, to present to the programmer?
two configurations (states), and ¢/, such that the difference We are currently experimenting with indications for relevance
A = ¢, — ¢, is minimal. This differencer between states de-by analyzingmultipleruns. If a failure cause occurs in several
termines whether the outcomelis or [ and thus is an actual failing runs, it is more relevant than a cause that occurs only in
failure cause. few failing runs—in other words, altering the “frequent” cause

However,A is a failure cause only in a specifiontexi—the fixes more failures than the “non-frequent” cause. Such mul-
configurationt,—and this context may or may not be related t§P!€ runs can either be given, or generated from random delta
the original passing or failing runs. configurations.

Here’s a code example that exhibits this problem: G. Efficiency

if@ A =bnac)vicnad) In our case studies, Delta Debugging was always efficient.

fi fail(); This is not necessarily the case, though. Suppose you have a
program, which, among other things, verifies a checkswer
Let us assume that after a Delta Debugging run, we find thenessagm. Now let two runs differ by exactly these two items
following configurations: candm.
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b ==l Askigor - Automated Debugging Service - Mozilla {Build 1D: 2002072204} -0 X Web page, Containing the cause-effect chain of the failure.
. File Edit ¥iew Go Bookmarks Tools MWindow Help Debug QA |
Q0 O QO [Emnwasroy o] [Esawm) & The user need not specifytast function; Asklgorautomat-
ically generates aest function based on the differing behavior
, | of the two given invocations; the criteria far or O include
Jéﬁ S J\/) v the program output and the exit status. The user has the chance
to provide her owntest function by specifying alternate failure
Cuery Status Ahout Asklgor Sym ptoms.
What is your program file? (L P exacutablos oy e o) By default, Askigor computes a cause-effect chain at three
rie: omerzelierabrce Browse | events: when 50%, 75%, and 90% of the functions executed in
How do you invoke your program such that It falls?  (aore i) the failing run have been covered. The rationale behind such
Em: [ecT -0 fail a coverage-based metric is that the likelihood of an error is
How do you invoke it such the failure does nof OCCUF? _ (iore info..) the same across the program code; hence, we choose coverage
G focT -0 pass rather than execution time as a metric base. The level of detail
e f“er:gng;‘:l‘;'r‘;j:f‘;‘;s’f““"e additional files'? ‘E"r":;j‘“"i increases at the end of the execution, since these events are more
o 2. [romezelrTpubal | likely to be relevant for the failure.
e 3 ] T To narrow down errors interactively, as sketched in Sec-
If rore than three Tles are required, please upload them in an archive . R . J
tion IV, Asklgorprovides a “How did this happen” feature. For
W every eveng, the user can select to obtain a cause-effect chain
N T for the interval betweem and the previous event. This way,
FAQ- Usage - Forum - Terms of service the user can increase the granularity of the cause-effect chain as
[0 = &F EJ | Document: Done (0,664 secs) ﬂl&gﬁ des|red
On March 10, 2003, a total of 150 programs had been submit-
Fig. 10

ted toAsklgor, more than two thirds of these programs could be
processed successfully. The current summary of submissions is
available to the public via the status page [

THE AsklgorPuBLIC DEBUGGING SERVER

As Asklgorrequests feedback from its users, we will be able
Any applied delta invalidates the relationship between chedR-evaluate the effectiveness and usability of our diagnoses for a
sum and message—in fact, you can either have no delta orlatge number of real-life case studies. We plan to extesidgor
of them. Delta Debugging would nonetheless try to apply evei§ accomodate and combine a variety of services for program
single delta individually. Assuming that there is a delta for evegpmprehension, including program slicing and anomaly detec-
single message character, there this requires a test run for digh(Figurell).

character in the message. In the future, services likAsklgorwill be part of integrated

A pragmatic solution would be to process irhirarchical programming environments. Then, users would not have to sub-
fashion: Try to group all variables according to the object(jit their programs explicitly; instead, the cause-effect chain
they apply to—for instance, apply all deltas relatedrtan a ou|d automatically be computed as soon as a test fails. This
group as long as possible, and break the group only when\glly users would not only learthat their test has failed, but

else fails. This way, even a premature termination of the seaiqBowhyit failed—and all without the least bit of interaction.
process would at least return the differences @amdm, without

going into all the details afn.

VII. A D EBUGGING SERVER | Web Interface (Askigor) |
\|/Tesx \I/Debuggee /|\ Diagnosis
To further examine the limits and possible alternatives, v | Diagnosis (Igor) |
have built adebugging servenamedAskligor [6] where any- A cause Effect Chain VAL LNAL
one can submit failing programs via the Web to hawsvcoME | Exraction of Cause-Efec fl\“a'"s (Honcome) | :
. . . . . . B Bug Relevant Deltas
compute a failure diagnosis. Th_e main design |ssu¢skllgor Database | Isolation of Relevant States (Delta Debugging) | i .
was to make the use of the service as easy as possible. T oo e i boiare AR
From a user’s perspectivAsklgorworks as follows: e| Test | | State Extraction and Comparison | Obfas :
1. The user invoke#sklgorat the Web address][(Figure 10). | 1 Erccuion staus 1 sae |
. Debugger (GDB) H
2. The user submits 7 T T

« the executable to be debugged, | Debuggee

« an invocatiorr; where the program fails,
« an invocatiorry where the program does not fail,
. (optionally) additional files required to make the program Fig- 11
run, such as input or configuration files. THE ASkIGQOTARCHITECTURE
3. After a few minuts, the user obtains a diagnosis on a separate
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VIIl. RELATED WORK stance, one could isolate code that was only executed in failing
tests [L5]. This differential approach would also have isolated
the erroneous code in ogicc example.

Program slicing[ 7], [8] facilitates debugging by focusing on - pynamic invariant§16] can be used to detect anomalous pro-
relevant program fragments. glice for a locationp in & pro- gram hehavior 17]. During execution, a tool checks the pro-
gram consists of all other locations that could possibly inflam against a model that is continuously updated; invariant vi-
encep (“all locations thatp depends upon”). As an exampleg|ations can be immediately reported. This approach has several
consider the code fragment exciting uses; one related to our work is to check a failing run
against invariants obtained from a passing run.

As discussed in Sectidi, the idea that an automated process

Here, the variablel’ is control dependent op and data de- could isolate “the” erroneous code automatically in the absence
pendent orx andy (butnoton, sayz); the slice ofx’ would also Of an oracle can only be based bauristics,and this is what
include earlier dependenciespfx, andy. The slice allows the these approaches provide—including the risk of being mislead-
programmer to focus on relevant statements; a slice also hasifige Nonetheless, a heuristic can be very good at isolating pos-
advantage that it is valid fall possible program runand thus Sible causes; and it can be even more helpful when guiding a
needs to be computed only once. trial-and-error approach like Delta Debugging.

Dynamic slicind 9], [10], [11] is a variant of slicing that takes
a concrete program rurinto account. The basic idea is thafc: The Debugging Process

within a concrete run, one can determine more accurate dathIgorithmic debugging 18] automates the debuggingo-

dependencies between variables, rather than summarizing the®®s The idea is to isolate a failure-inducing clause PRBOLOG

as in static slicing. In the dynamic slice Bf, as abovex’is program by querying systematically whether subclauses hold or

dependent o, y, andp only if p was found to be true. not. The query is resolved either manually by the programmer or
In practice, slicing is not yet as useful as would be expectag, an oracle relying on an external specification. This could eas-

since each statement is quickly dependent on many other sta{ene combined with our approach to narrow down the failure-

ments. The end result is often a program slice which is not diggucing code as discussed in Sectivn “Is PLUSIn the RTL
matically smaller than the program itself—the program depegiee correct (y/n)?”

dencies are too coars&. Also, data and control-flow analysis
of real-life programs is non-trivial. For programs with pointersy. Testing for Debugging

the necessary points-to analysis makes dependencies even more . . o .
coarse {3, Surprisingly, there are very few applications of testing for

The Gccc example also illustrates the limits of slicing. InPUrPOSES of debugging or program understanding. Our own con-

combineinstructions(Sectionlll-C.2), we found 871 deltas be- tributions [1] as well as inferring relationships between code and

tween the passing and the failing run. Any slicing method, staffeSts L5 have already been mentioned. S
Specifically related to ouscc case study is the isolation of

or dynamic, would have to incorporate these 871 variables in

the forward slice of the changed input. Although 871 variabld&!lure-inducingrTL optimizations in a compiler, using simple
is just 2% of all variables, it is still a large number in absolutginary search over the optimizations applied][ An experi-
terms. mental approach comparable to Delta Debugginthenge im-

In cause-effect chaing, x, andy are the cause for the valuePact analysig20], identifying code changes that are relevant for

of x' if and only if altering them also changes the valuexgf & failure.
as proven by test runs. K = 0 holds, for instancep can
never be a cause for the valuexdf because’ will never alter
its value;y cannot be a cause, either. Consequently, cause-effeaCause-effect chains explain the causes of program failures au-
chains have a far higher precision than static or dynamic slicesematically and effectively. All that is required is an automated
returning only 1 out of 871 changes as relevant for the failuretest, two comparable program runs and access to the state of an
On the other hand, cause-effect chains require several tgtcutable program. Although relying on several test runs to
runs (which is possibly slower than analysis), apply to a siprove causality, the isolation of cause-effect chains requires no
gle program run only, and give no hints on the involved stateranual interaction and thus saves valuable developer time.
ments. The intertwining of program analysis and experimenta-As the requirements are simple to satisfy, we expect that fu-
tion promises several mutual advantages. ture automated test environments will come with an automatic
isolation of cause-effect chains. Whenever a test fails, the cause-
effect chain could be automatically isolated, thus showing the
Dicing [14] determines thelifferenceof two program slices. programmer not onlyhathas failed, but alsevhyit has failed.
For instance, a dynamic dice could contain all the stateme#hough fixing the program is still manual (and creative) work,
that may have influenced a variahl@t some location in a fail- we expect that the time spent for debugging will be reduced sig-
ing runrg, but not in a passing runy. The dice is likely to nificantly.
include the statement relevant for the value of All this optimism should be taken with a grain of salt, as there
Running several tests at once allows one to estaldigition- is still much work to do. Our future work will address the limits
shipsbetween the executed code and the test outcome. Fordiscussed in Sectiovil, concentrating on the following topics:

A. Program Slicing

if pthen X' :=xxy fi

IX. CONCLUSION AND CONSEQUENCES

B. Detecting Anomalies
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9 y 9 y byp 9 equacy criteria,” inProceedings of the 16th International Conference on

the GDB bottleneck and _re'implementi”@WCOME ina com- Software Engineeringl994, pp. 191-200, IEEE Computer Society Press.
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grouping variablessuch that variables related by occurring in test selection techniqueACM Transactions on Software Engineering and

: Methodology (TOSEMVol. 6, no. 2, pp. 173-210, 1997.
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having a random assignment of variables to subsets. [71 Frank Tip, “A survey of program slicing techniqueg@urnal of Program-

; ; ; ; ; ; ming Languagesvol. 3, no. 3, pp. 121-189, Sept. 1995.
Program analysis.As hinted at in SectioVIll, the integration (8] M. Weiser, “Programmers use slices when debuggi@pmmunications

of program analysis could make extracting cause-effect chains of the ACM vol. 25, no. 7, pp. 446452, 1982.
much more effective. For instance, variables that cannot infl[@} Hiralal Agrawal and Joseph R. Horgan, “Dynamic program slicing,” in

: ; ; Proceedings of the ACM SIGPLAN 1990 Conference on Programming
ence the failure in any way could be excluded right from the Language Design and Implementation (PLDIyhite Plains, New York,

start. Anomaly detection could help to guide the search towards Jjune 1990, vol. 25(6) ACM SIGPLAN Noticesp. 246—256.
specific variables or specific events. [10] Tibor Gyimbthy, Arpad Besides, and Is&n Fordics, “An efficient rel-

; evant slicing method for debugging,” roc. ESEC/FSE’'99 — 7th Eu-
Greater state.Right now, our method only works on the state ropean Software Engineering Conference / 7th ACM SIGSOFT Sympo-

that is accessible via the debugger. However, differences may sjum on the Foundations of Software Engineerifaulouse, France, Sept.
also resideutsideof the program state—for instance, a file de- 1999, vol. 1687 oL NCS pp. 303-321, Springer-Verlag.

; ; ; [11] Bogdan Korel and Janusz Laski, “Dynamic slicing of computer programs,”
scriptor may have the same valuerinandr, but be tied to a The Journal of Systems and Softwarel. 13, no. 3, pp. 187—195, Nov.

different file. We are working on how to capture such external 1990,

differences. [12] Daniel Jackson and Eugene J. Rollins, “A new model of program depen-
T . . . dences for reverse engineering,” fmoc. 2nd ACM SIGSOFT symposium

A discipline Of debugg_lngNO'(IOns like causes and effects _and on the Foundations of Software Engineering (FSEN®w Orleans, Lou-

approaches like running experiments under changed circum- siana, Dec. 1994, pp. 2-10.

stances can easily be generalized to serve in arbitrary debﬁl@l- Michael Hind and Anthony Pioli, “Which pointer analysis should | use?,”

. e in Proc. ACM SIGSOFT International Symposium on Software Testing and
ging contexts. We are currently compilingextbook{21] that Analysis (ISSTA)Portland, Oregon, Aug. 2000, pp. 113-123.

shows how debugging can be conducted as systematically @agl J. R. Lyle and M. Weiser, “Automatic program bug location by program
as all other software engineering disciplines—be it manua”y or Sslicing,” in 2nd International Conference on Computers and Applications

Peking, 1987, pp. 877-882, IEEE Computer Society Press, Los Alamitos,
automated. California.

Overall, we expect that debugging may become as automalfidl James A Jones, Mary Jean tfarrold, and Jlorl‘ggéazs'ggé]fwsua"zaﬁon of
. . . est Information to assist rfault localization,” In
as testing—not only detectingat a failure occurred, but also [16] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin,

whyit occurred. And since computers were built to relieve hu- ~ “Dynamically discovering likely program invariants to support program

mans from boring, monotonous tasks—let's have them do the eVO'ftigg"'F"iEZEOETnsaC“O”S on Software Engineedingl. 27, no. 2,
pp. 1-25, Feb. 2001.

debugging! [17] Sudheendra Hangal and Monica S. Lam, “Tracking down software bugs
. . using automatic anomaly detection,” In ICSE 2002][
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