Position Paper: Dynamically Inferred Types for
Dynamic Languages

Jong-hoon (David) An!, Avik Chaudhuri?, Jeffrey S. Foster®, and
Michael Hicks?

L EPIC, Madison, WI, USA
2 Advanced Technology Labs, Adobe Systems, San Jose, CA, USA
3 University of Maryland, College Park, USA

Over the past few years we have been developing Diamondback Ruby (DRuby),
a tool that brings static type inference to Ruby, a dynamically typed object-
oriented language. Developing DRuby required creating a Ruby front-end, which
was extremely challenging: like other dynamic languages, Ruby has a complex,
yet poorly documented syntax and semantics, which we had to carefully reverse-
engineer. Writing our front-end took well over a year, and now that Ruby 1.9 is
available, we are faced with the daunting prospect of significant additional effort
to discover how the language has changed, and to extend our front-end accord-
ingly. We suspect that maintaining a static analysis system for other dynamic
languages, such as Perl or Python, is similarly daunting.

To remedy this situation, we recently introduced a new program analysis
technique for dynamic languages: constraint-based dynamic type inference, which
uses information gathered from dynamic runs to infer static types [1]. More pre-
cisely, at run-time we introduce type variables for fields, method arguments, and
method return values. As values are passed to those positions, we dynamically
wrap them in proxy objects to track the associated type variables. We also allow
trusted type annotations for methods, which are stored in Class objects. As
wrapped values are used, we generate subtyping constraints on the associated
type variables. We solve those constraints at the end of one or more program
runs, which produces a satisfying type assignment, if one exists. Importantly,
despite relying on dynamic runs, we can prove a soundness theorem: if the dy-
namic runs from which types are inferred cover every path in the control-flow
graph (CFG) of every method of a class, then the inferred types for that class’s
fields and methods are sound for all possible runs. Note this coverage criterion
is in contrast to requiring that every program path is covered.

We have implemented this technique for Ruby, as a tool called Rubydust
(where “dust” stands for dynamic unraveling of static types). An important
property of Rubydust is that it requires no front-end; in fact, it is a Ruby library
that is loaded at run-time just like any other library. To operate, Rubydust uses
Ruby’s rich introspection features to wrap objects, intercept method calls, and
store and retrieve any type annotations supplied by the programmer. Thus far,
we have run Rubydust on a number of small programs, and have found that
Rubydust produces correct, readable types.

We believe that it is worth exploring whether constraint-based dynamic type
inference is a practical means to adding static typing support to dynamic lan-



guages. In particular, we believe that users will often want to develop their
scripts without types at first, and then might like to add types (as checked an-
notations) later. Constraint-based dynamic type inference could be quite useful
for discovering possible annotations automatically. We would hope that Ruby-
dust’s approach, made practical, could be applied to other dynamic languages
such as Python or Perl, and to gradually typed languages such as ActionScript.

Before we can claim victory, however, there are a number of challenges that
require further research. We list a few here. First, Rubydust’s performance over-
head is significant: an instrumented program can be as much as 1000x slower
than the uninstrumented original. We are not entirely sure why things are so
much slower, but one possibility is that wrapping primitive objects (like those
representing numbers, strings, and arrays) blocks fast paths in the interpreter.
Second, Rubydust’s inference is currently limited to nominal and structural
types involving unions; Rubydust cannot infer intersection or polymorphic types,
though it can understand such types in annotations. Our experience with DRuby
gives us reason to believe that inferring intersection and polymorphic types would
be very useful, but it makes the inference problem significantly harder. Third,
inference relies on instrumenting the running program, but some type-relevant
events escape instrumentation. In particular, we know of no way to intercept
calls to blocks (i.e., closures), nor do we yet know how to reinstrument a pro-
gram after it has called eval to create new code or definitions. (We suspect this
might be accomplished by redefining eval, though we have not worked out the
details.) Finally, we wish to understand the practical benefits of types. Once we
have them, what do we do with them? One possibility is to check them, e.g., at
method call boundaries. This would permit reporting errors earlier, and the re-
sults might be more informative. Another question is whether our form of types
is particularly helpful: should they be more expressive, to convey richer prop-
erties, or perhaps less expressive, to be easier to read? When are programmers
most interested in types, e.g., during maintenance, or during initial develop-
ment? Many of these questions require careful human studies, which we plan to
undertake once we have worked out some technical issues.

References

1. Jong hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dy-
namic Inference of Static Types for Ruby. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), Austin, TX, USA, January 2011.
To appear.



