
Formal Analysis of
Dynamic, Distributed File-System Access Controls

Avik Chaudhuri1 and Martı́n Abadi1,2

1 Computer Science Department, University of California, Santa Cruz
2 Microsoft Research, Silicon Valley

Abstract. We model networked storage systems with distributed, cryptographi-
cally enforced file-access control in an applied pi calculus. The calculus contains
cryptographic primitives and supports file-system constructs, including access re-
vocation. We establish that the networked storage systems implement simpler,
centralized storage specifications with local access-control checks. More specif-
ically, we prove that the former systems preserve safety properties of the latter
systems. Focusing on security, we then derive strong secrecy and integrity guar-
antees for the networked storage systems.

1 Introduction

Storage systems are typically governed by access-control policies, and the security
of those systems depends on the sound enforcement of the necessary access-control
checks. Unfortunately, both the policies and their enforcement can be surprisingly prob-
lematic, for several reasons. In particular, the policies may be allowed to change over
time, often via interactions with the file-system environment; it is then crucial to prevent
unauthorized access-control administration, and to guarantee that authorized access-
control administration has correct, prompt effects. Another source of substantial diffi-
culties is distribution. In networked, distributed storage systems, file access is often not
directly guarded by access-control checks. Instead, file access is guarded by the inspec-
tion of capabilities; these capabilities certify that the relevant access-control checks
have been done elsewhere in the past. Yet other difficulties result from the scale and
complexity of systems, which present a challenge to consistent administration.

In this paper, we aim to simplify security analyses for storage systems. Specifically,
we model network-attached storage (NAS) systems [7, 15, 11]. We prove that NAS sys-
tems are as safe (from the point of view of passing tests [14]) as corresponding central-
ized storage systems with local access-control enforcement. In other words, reasoning
about the safety of the centralized storage systems can be applied for free to the sig-
nificantly more complicated NAS systems. As important special cases, we derive the
preservation of secrecy and integrity guarantees.

The systems that we study include distributed file-system management across a
number of access-control servers and disks on the network; they also include dynamic
administration of access control. At the same time, we avoid commitments to certain
specific choices that particular implementations might make—on file-operation and
policy-administration commands, algorithms for file allocation over multi-disk arrays,
various scheduling algorithms—so that our results remain simple and apply broadly.

We describe those systems and analyze their security properties in an applied pi calcu-
lus [3]. This calculus includes cryptographic primitives and supports file-system con-
structs. It also enables us to incorporate a basic but sufficient model of time, as needed
for dynamic administration.

Background and related work. Various cryptographic implementations of distributed
access control have been proposed as part of the security designs of NAS protocols
[6, 8, 7, 15, 11, 17]. However, the security analyses of these implementations have been
at best semi-formal. Some exceptions are the work of Mazières and Shasha on data
integrity for untrusted remote storage [10], and Gobioff’s security analysis of a NAS
protocol using belief logics [7].

In a recent paper [5], we consider a restricted class of NAS systems, with fixed
access-control policies and a single network-attached disk interface. We show that those
systems are fully abstract with respect to centralized file systems. Full abstraction [12]
is a powerful criterion for the security of implementations [1]: it prohibits any leakage
of information. It is also fairly fragile, and can be broken by many reasonable imple-
mentations in practice. In particular, capability revocation and expiry (more broadly,
dynamic administration, as we study it here) give rise to counterexamples to full ab-
straction that appear impossible to avoid in any reasonable implementation of NAS. We
discuss these issues in detail in Section 5. In sum, the systems that we study in this pa-
per are considerably more general and complex than those we consider in our previous
work, so much so that we cannot directly extend our previous full-abstraction result.
Fortunately, however, we can still obtain strong secrecy and integrity guarantees while
retaining the simplicity of our specifications.

We employ a variation of may-tests to observe the behaviour of systems. Proofs
based on may-testing for safety and security properties have also been studied else-
where (e.g., [14, 4]). Our treatment of secrecy is also fairly standard (e.g., [4]). On the
other hand, our treatment of integrity properties is not. We formalize integrity properties
via “warnings”. Warnings signal violations that can be detected by monitoring system
execution. In this way, our approach to integrity is related to enforceable mechanisms
for security policies [16]. Warnings can also indicate the failure of correspondences be-
tween events, and hence may be used to verify correspondence assertions (e.g., [9]). On
the other hand, it does not seem convenient to use standard correspondence assertions
directly in implementation proofs such as ours.

Outline of the paper. In the next section we give an overview of the applied pi calculus
that serves as our modeling language. In Section 3, we present a simple storage specifi-
cation based on a centralized file system with local access-control checks. In Section 4,
we show a NAS implementation that features distributed file-system management and
cryptographic access-control enforcement. Then, in Section 5, we extract specifications
from NAS systems, state our main theorem (safety preservation), and derive some im-
portant security consequences. We conclude in Section 6.

2 The applied pi calculus

We use a polyadic, synchronous, applied pi calculus [13, 3] as the underlying language
to describe and reason about processes. The syntax is standard. We use the notation ϕ̃

to mean a sequence ϕ1, . . . , ϕk, where the length k of the sequence is given by |ϕ̃|.

M,N ::= terms
m,n, . . . name
x, y, . . . variable
f(M̃) function application

The language of terms contains an infinite set of names and an infinite set of variables;
further, terms can be built from smaller ones by applying function symbols. Names can
be channel names, key names, and so on. Function symbols are drawn from a finite
ranked set F , called the signature. This signature is equipped with an equational theory.
Informally, the theory provides a set of equations over terms, and we say that F ` M =
N for terms M and N if and only if M = N can be derived from those equations.

For our purposes, we assume symbols for shared-key encryption {·}· and message
authentication mac(·, ·), and list the only equations that involve these symbols below.
The first equation allows decryption of an encrypted message with the correct key; the
second allows extraction of a message from a message authentication code.

decrypt({x}y, y) = x message(mac(x, y)) = x

We also assume some standard data structures, such as tuples, numerals, and queues,
with corresponding functions, such as projection functions proj`. Several function
symbols are introduced in Sections 3 and 4. Next we show the language of processes.

P,Q ::= processes
M〈Ñ〉. P output
M(x̃). P input
P |Q composition
(νn) P restriction
0 nil
!P replication
if M = N then P else Q conditional

Processes have the following informal semantics.

– The nil process 0 does nothing.
– The composition process P |Q behaves as the processes P and Q in parallel.
– The input process M(x̃). P can receive any sequence of terms Ñ on M , where
|Ñ | = |x̃|, then execute P{Ñ/x̃}. The variables x̃ are bound in P in M(x̃).P . The
notation {M̃/x̃} represents the capture-free substitution of terms M̃ for variables x̃.
The input blocks if M is not a name at runtime.

– The synchronous output process M〈Ñ〉.P can send the sequence of terms Ñ on M ,
then execute P . The output blocks if M is not a name at runtime; otherwise, it waits
for a synchronizing input on M .

– The replication process !P behaves as an infinite number of copies of P running in
parallel.

– The restriction process (νn) P creates a new name n bound in P , then executes P .
This construct is used to create fresh, unguessable secrets in the language.

– The conditional process if M = N then P else Q behaves as P if F ` M = N ,
and as Q otherwise.

We elide F ` in the sequel. The notions of free variables and names (fv and fn) are
as usual; so are various abbreviations (e.g., Π and Σ for indexed parallel composition
and internal choice, respectively). We call terms or processes closed if they do not
contain any free variables. We use a commitment semantics for closed processes [13,
4]. Informally, a commitment reflects the ability to do some action, which may be output
(n), input (n), or silent (τ). More concretely,

– P
n−→ (νm̃) 〈M̃〉. Q means that P can output on name n the terms M̃ that contain

fresh names m̃, and continue as Q.
– P

n−→ (x̃).Q means that P can input terms on n, bind them to x̃ in Q, and continue
as Q instantiated.

– P
τ−→ Q means that P can silently transition to Q.

3 Specifying a simple centralized file system

In this section, we model a simple centralized file system. The model serves as a spec-
ification for the significantly more complex distributed file-system implementation of
Section 4. We begin with a summary of the main features of the model.

– The file system serves a number of clients who can remotely send their requests
over distinguished channels. The requests may be for file operations, or for admin-
istrative operations that modify file-operation permissions of other clients.

– Each request is subject to local access-control checks that decide whether the re-
quested operation is permitted. A request that passes these checks is then processed
in parallel with other pending requests.

– Any requested modification to existing file-operation permissions takes effect only
after a deterministic, finite delay. The delay is used to specify accurate correctness
conditions for the expiry-based, distributed access-control mechanism of Section 4.

We present a high-level view of this “ideal” file system, called IFS, by means of a
grammar of control states (see below). IFS can be coded as a process (in the syntax of
the previous section), preserving its exact observable semantics. An IFS control state
consists of the following components:

– a pool of threads, where each thread reflects a particular stage in the processing of
some pending request to the file system;

– an access-control policy, tagged with a schedule for pending policy updates;
– a storage state (or “disk”); and
– a clock, as required for scheduling modifications to the access-control policy.

IFS-Th ::= file-system thread
Reqk(op, n) file-operation request
App(op, n) approved file operation
Ret(n, r) return after file operation
PReqk(adm, n) administration request

∆ ::= thread pool
∅ empty
IFS-Th,∆ thread in pool

IFS-Control ::= file-system control state
∆ : RH : ρ : Clk threads: tagged access policy: disk state: clock

The threads are of four sorts, explained below: Reqk(op, n), App(op, n), Ret(n, r),
and PReqk(adm, n). The clock Clk is a monotonically increasing integer. The storage
state ρ reflects the state maintained at the disk (typically file contents; details are left
abstract in the model). The access-control policyR decides which subjects may execute
operations on the storage state, and which administrators may make modifications to the
policy itself. The schedule H contains a queue of pending modifications to the policy,
with each modification associated with a clock that says when that modification is due.

LetK be a set of indices that cover both the subjects and the administrators of access
control. We assume distinguished sets of channel names {βk |k ∈ K} and {αk |k ∈ K}
on which the file system receives requests for file operations and policy modifications,
respectively. A file-operation request consists of a term op that describes the operation
(typically, a command with arguments, some of which may be file names) and a channel
n for the result. When such a request arrives on βk, the file system spawns a new thread
of the form Reqk(op, n). The access-control policy then decides whether k has permis-
sion to execute op on the storage state. If not, the thread dies; otherwise, the thread
changes state to App(op, n). The request is then forwarded to the disk, which executes
the operation and updates the storage state, obtaining a result r. The thread changes
state to Ret(n, r). Later, r is returned on n, and the thread terminates successfully.

A policy-modification request consists of a term adm that describes the modifica-
tion to the policy and a channel n for the acknowledgment. When such a request arrives
on αk, the file system spawns a thread of the form PReqk(adm, n). Then, if the policy
does not allow k to do adm , the thread dies; otherwise, the modification is queued to the
schedule and an acknowledgment is returned on n, and the thread terminates success-
fully. At each clock tick, policy modifications that are due in the schedule take effect,
and the policy and the schedule are updated accordingly.

Operationally, we assume functions may, execute, schedule, and update that sat-
isfy the following equations. (We leave abstract the details of the equational theory.)

– may(k, op,R) = yes (resp. may(k, adm,R) = yes) if the policy R allows
k to execute file operation op (resp. make policy modification adm), and = no
otherwise.

– execute(op, ρ) = 〈ρ′, r〉, where ρ′ and r are the storage state and the result,
respectively, obtained after executing file operation op on storage state ρ.

– schedule(adm,H,Clk) = H′, where H′ is the schedule after queuing an entry of
the form adm@Clk′ (with Clk′ ≥ Clk) to schedule H. The clock Clk′, determined
by adm , H, and Clk, indicates the instant at which adm is due in the new schedule.

– update(RH,Clk) = R′H′
, where R′ is the policy after making modifications to

policy R that are due at clock Clk in schedule H, and H′ is the schedule left.

Further, we assume a function lifespan such that lifespan(k, op,H,Clk) ≥ 0 for
all k, op, H, and Clk. Informally, if lifespan(k, op,H,Clk) = λ and the file oper-

(Op Req)

∆ : RH : ρ : Clk
βk−→

(x, y). Reqk(x, y), ∆ : RH : ρ : Clk

(Op Deny)
may(k, op,R) = no

Reqk(op, n), ∆ : RH : ρ : Clk
τ−→ ∆ : RH : ρ : Clk

(Op Ok)
may(k, op,R) = yes

Reqk(op, n), ∆ : RH : ρ : Clk
τ−→

App(op, n), ∆ : RH : ρ : Clk

(Op Exec)
execute(op, ρ) = 〈ρ′, r〉

App(op, n), ∆ : RH : ρ : Clk
τ−→

Ret(n, r), ∆ : RH : ρ′ : Clk

(Op Res Ret)

Ret(n, r), ∆ : RH : ρ : Clk
n−→

〈r〉. ∆ : RH : ρ : Clk

(Adm Req)
∆ : RH : ρ : Clk

αk−→
(x, y). PReqk(x, y), ∆ : RH : ρ : Clk

(Adm Deny)
may(k, adm,R) = no

PReqk(adm, n), ∆ : RH : ρ : Clk
τ−→

∆ : RH : ρ : Clk

(Adm Ok Ack)
may(k, adm,R) = yes

schedule(adm,H, Clk) = H′

PReqk(adm, n), ∆ : RH : ρ : Clk
n−→

〈〉. ∆ : RH′
: ρ : Clk

(Tick)
update(RH, Clk) = R′H′

∆ : RH : ρ : Clk
τ−→ ∆ : R′H′

: ρ : Clk + 1

Fig. 1. Semantics of a file system with local access control

ation op is allowed to k at Clk, then op cannot be denied to k before Clk + λ. For-
mally, we extend schedule to sequences by letting schedule(∅,H,Clk) = H and
schedule(adm ′ãdm,H,Clk) = schedule(ãdm, schedule(adm ′,H,Clk),Clk); we
require that if lifespan(k, op,H,Clk) = λ then there do not exist (possibly empty) se-
quences of policy-modification commands ãdmClk, ãdmClk+1, . . . , ãdmClk+λ and pol-
icy RClk such that the following hold at once:

– may(k, op,RClk) = yes
– HClk = H
– ĤClk′ = schedule(ãdmClk′ ,HClk′ ,Clk′) for each Clk′ ∈ Clk . . .Clk + λ

– RHClk′+1

Clk′+1 = update(R
bHClk′
Clk′ ,Clk′) for each Clk′ ∈ Clk . . .Clk + λ− 1

– may(k, op,RClk+λ) = no

For instance, lifespan(k, op,H,Clk) can return a constant delay λc for all k, op, H,
and Clk, and schedule(adm,H,Clk) can return [H; adm@Clk+λc] for all adm . When
λc = 0, any requested modification to the policy takes effect at the next clock tick.

The formal semantics of the file system is shown as a commitment relation in Fig-
ure 1. The relation describes how the file system spawns threads, how threads evolve,
how access control is enforced and administered, how file operations are serviced, and
how time goes by, in terms of standard pi-calculus actions.

We assume a set of clients {Ck | k ∈ K} that interact with the file system. We
provide macros to request file operations and policy modifications; clients may use
these macros, or explicitly send appropriate messages to the file system on the channels
{αk, βk | k ∈ K}.

Definition 1 (Macros for IFS clients).

File operation on port k: A file operation may be requested with the macro
fileopk op/x; P , which expands to (νn) βk〈op, n〉. n(x). P , where n /∈ fn(P).

Administration on port k: A policy modification may be requested with the macro
admink adm; P , which expands to (νn) αk〈adm, n〉. n(). P , where n /∈ fn(P).

We select a subset of clients whom we call honest; these clients may be arbitrary pro-
cesses, as long as they use macros on their own ports for all interactions with the file
system. Further, as a consequence of Definitions 2 and 3 (see below), no other client
may send a request to the file system on the port of an honest client.

Definition 2. A set of honest IFS clients indexed by I ⊆ K is a set of closed processes
{Ci | i ∈ I}, so that each Ci in the set has the following properties:

– all macros in Ci are on port i,
– no name in {αi′ , βi′ | i′ ∈ I} appears free in Ci before expanding macros.

Let J = K \ I. We impose no restrictions on the “dishonest” clients Cj (j ∈ J),
except that they may not know the channels {αi, βi | i ∈ I} initially. In fact, we assume
that dishonest clients are part of an arbitrary environment, and as such, leave their code
unspecified. The restriction on their initial knowledge is expressed by leaving them
outside the initial scope of the channels {αi, βi | i ∈ I}.

Definition 3. An ideal storage system denoted by IS(CI ,R, ρ, Clk) is the closed pro-
cess (νi∈I αiβi) (Πi∈ICi |∅ : R∅ : ρ : Clk), where

– CI = {Ci | i ∈ I} is a set of honest IFS clients indexed by I,
– ∅ : R∅ : ρ : Clk is an initial IFS control state, and {αi, βi | i ∈ I}∩fn(R, ρ) = ∅.

4 An implementation of network-attached storage

In this section, we model a distributed file system based on network-attached storage
(NAS). A typical network-attached file system is distributed over a set of disks that are
“attached” to the network, and a set of servers (called managers). The disks directly
receive file-operation requests from clients, while the managers maintain file-system
metadata and file-access permissions, and serve administrative requests. In simple tra-
ditional storage designs, access-control checks and metadata lookups are done for every
request to the file system. In NAS, that per-request overhead is amortized, resulting in
significant performance gains. Specifically, a client who wishes to request a file op-
eration first contacts one of the managers; the manager does the relevant checks and
lookups, and returns a cryptographically signed capability to the client. The capability
is a certification of access rights for that particular operation, and needs to be obtained
only once. The client can then request that operation any number of times at a disk,
attaching to its requests the capability issued by the manager. The disk simply verifies
the capability before servicing each of those requests. NAS implementations are fur-
ther optimized by allocating different parts of the file system to different managers and
disks. This kind of partitioning distributes load and increases concurrency.

Perhaps the most challenging aspect of NAS’s access-control mechanism, and in-
deed of distributed access controls in general, is the sound enforcement of access revo-
cation. In particular, whenever some permissions are revoked, all previous capabilities
that certify those permissions must be invalidated. On the other hand, when issuing a ca-
pability, it is impossible to predict when a permission certified by that capability might
be revoked in the future. It is possible, in theory, to simulate immediate revocation by
communicating with the disks: the disks then maintain a record of revoked permissions
and reject all capabilities that certify those permissions. However, this “solution” re-
duces the performance and distribution benefits of NAS.

A sound, practical solution exists if we allow a deterministic finite delay in revoca-
tion. Informally, a capability is marked with an unforgeable timestamp that declares its
expiry, beyond which it is always rejected—and any revocation of the permissions cer-
tified by that capability takes effect only after the declared expiry. By letting the expiry
depend on various parameters, this solution turns out to be quite flexible and effective.

Following the design above, we model a fairly standard network-attached file sys-
tem, called NAFS. Much as in Section 3, we present the file system using a grammar
of control states and a semantics of commitments. A NAFS control state consists of the
following components:

– a pool of threads distributed between the managers and the disks;
– the local access-control policy and modification schedule at each manager;
– the local storage state at each disk; and
– a global clock shared between the managers and the disks.

NAFS-Th-Servera ::= thread at ath manager
AReqa.k(op, c) capability request
PReqa.k(adm, n) administration request

NAFS-Th-Diskb ::= thread at bth disk
Reqb(κ, n) authorized file-operation request
Appb(op, n) approved file operation
Ret(n, r) return after file operation

∆̈ ::= distributed thread pool
∅ empty
NAFS-Th-Servera, ∆̈ ath-manager thread in pool
NAFS-Th-Diskb, ∆̈ bth-disk thread in pool

NAFS-Control ::= distributed file-system control state
∆̈ : R̃H : ρ̃ : Clk threads: tagged policies: disk states: clock

Let A (resp. B) index the set of managers (resp. disks) used by the file system. For
each a ∈ A, we assume a distinguished set of names {αa.k | k ∈ K} on which the
ath manager receives requests for policy modifications. A request on αa.k is internally
forwarded to the manager a′ allocated to serve that request, thereby spawning a thread
of the form PReqa′.k(adm, n). This thread is then processed in much the same way
as PReqk(adm, n) in Section 3. At each tick of the shared clock, due modifications to
each of the local policies at the managers take effect.

Next, we elaborate on the authorization and execution of file operations. For each
a ∈ A and b ∈ B, we assume distinguished sets of names {α◦a.k | k ∈ K} and

{βb.k | k ∈ K} on which the ath manager and the bth disk receive requests for autho-
rization and execution of file operations, respectively. An authorization request consists
of a term op that describes the file operation and a channel c to receive a capability for
that operation. Such a request on α◦a.k is internally forwarded to the manager a′ allo-
cated to serve that request, thereby spawning a thread of the form AReqa′.k(op, c). If
the access-control policy at a′ does not allow k to do op, the thread dies; otherwise,
a capability κ is returned on c, and the thread terminates successfully. The capability,
a term of the form mac(〈op, T, b〉,Kb), is a message authentication code whose mes-
sage contains op, an encrypted timestamp T , and the disk b responsible for executing
op. The timestamp T , of the form {〈m,Clk〉}Kb

, indicates the expiry Clk of κ, and ad-
ditionally contains a unique nonce m. (The only purpose of the nonce is to make the
timestamp unique.) A secret key Kb shared between the disk b and the manager is used
to encrypt the timestamp and sign the capability. (In concrete implementations, differ-
ent parts of the key may be used for encryption and signing.) The rationale behind the
design of the capability is discussed in Section 5. Intuitively, the capability is unforge-
able, and verifiable by the disk b; and the timestamp carried by the capability is unique,
and unintelligible to any other than the disk b.

An execution request consists of a capability κ and a return channel n. On receiving
such a request on βb.k, the disk b spawns a thread of the form Reqb(κ, n). It then extracts
the claimed operation op from κ (if possible), checks that κ is signed with the key Kb

(thereby verifying the integrity of κ), and checks that the timestamp decrypts under Kb

to a clock no earlier than the current clock (thereby verifying that κ has not expired).
If these checks fail, the thread dies; otherwise, the thread changes state to Appb(op, n).
This thread is then processed in much the same way as App(op, n) in Section 3.

Operationally, we assume a function manager (resp. disk) that allocates file op-
erations and policy modifications to managers (resp. file operations to disks). We also
assume functions maya, executeb, schedulea, and updatea for each a ∈ A and
b ∈ B, with the same specifications as their analogues in Section 3. Further, we assume
a function expirya for each a ∈ A with the following property (cf. the function lifes-
pan, Section 3): if expirya(k, op,H,Clk) = Clke, then Clke ≥ Clk and there do not
exist sequences of policy-modification commands ãdmClk, ãdmClk+1, . . . , ãdmClke and
policy RClk such that the following hold at once:

– manager(ãdmClk′) = a for each Clk′ ∈ Clk . . .Clke

– maya(k, op,RClk) = yes
– HClk = H
– ĤClk′ = schedulea(ãdmClk′ ,HClk′ ,Clk′) for each Clk′ ∈ Clk . . .Clke

– RHClk′+1

Clk′+1 = updatea(R
bHClk′
Clk′ ,Clk′) for each Clk′ ∈ Clk . . .Clke − 1

– maya(k, op,RClke) = no

In Section 5, we show how the functions expirya and lifespan are related: informally,
the lifespan of a permission can be defined as the duration between the current clock
and the expiry of any capability for that permission.

The formal semantics of NAFS is shown in Figure 2. Next we provide macros for
requesting file-operation capabilities and policy modifications at a manager, and autho-
rized file operations at appropriate disks.

At the ath manager:

(Auth Req)

∆̈ : gRH : eρ : Clk
α◦

a.k−→
(op, c). AReqa.k(op, c), ∆̈ : gRH : eρ : Clk

(Auth Deny)
manager(op) = a maya(k, op,Ra) = no

AReqa.k(op, c), ∆̈ : gRH : eρ : Clk
τ−→

∆̈ : gRH : eρ : Clk

(Auth Ok Cap)
manager(op) = a maya(k, op,Ra) = yes disk(op) = b

{〈m, expirya(k, op,Ha, Clk)〉}Kb = T for fresh m mac(〈op, T, b〉, Kb) = κ

AReqa.k(op, c), ∆̈ : gRH : eρ : Clk
c−→ (νm) 〈κ〉. ∆̈ : gRH : eρ : Clk

(Adm Req)
∆̈ : gRH : eρ : Clk

αa.k−→
(adm, n). PReqa.k(adm, n), ∆̈ : gRH : eρ : Clk

(Adm Deny)
manager(adm) = a maya(k, adm,Ra) = no

PReqa.k(adm, n), ∆̈ : gRH : eρ : Clk
τ−→

∆̈ : gRH : eρ : Clk

(Adm Ok Ack)
manager(adm) = a maya(k, adm,Ra) = yes

schedulea(adm,Ha, Clk) = H′
a ∀a′ 6= a : H′

a′ = Ha′

PReqa.k(adm, n), ∆̈ : gRH : eρ : Clk
n−→ 〈〉. ∆̈ : gRH′ : eρ : Clk

Across managers:

(Auth Fwd)
manager(op) = a′ 6= a

AReqa.k(op, c), ∆̈ : gRH : eρ : Clk
τ−→

AReqa′.k(op, c), ∆̈ : gRH : eρ : Clk

(Adm Fwd)
manager(adm) = a′ 6= a

PReqa.k(adm, n), ∆̈ : gRH : eρ : Clk
τ−→

PReqa′.k(adm, n), ∆̈ : gRH : eρ : Clk

(Tick)

∀a : updatea(Ra
Ha , Clk) = R′

a
H′

a

∆̈ : gRH : eρ : Clk
τ−→ ∆̈ : R̃′H′ : eρ : Clk + 1

At the bth disk:

(Exec Req)

∆̈ : gRH : eρ : Clk
βb.k−→

(κ, n). Reqb(κ, n), ∆̈ : gRH : eρ : Clk

(Op Ok)
κ = mac(〈op, T, b〉, Kb)

decrypt(T, Kb) = 〈m, Clk′〉 Clk ≤ Clk′

Reqb(κ, n), ∆̈ : gRH : eρ : Clk
τ−→ Appb(op, n), ∆̈ : gRH : eρ : Clk

(Exec Deny)
6 ∃op, T, m, Clk′ s.t. mac(〈op, T, b〉, Kb) = κ,decrypt(T, Kb) = 〈m, Clk′〉, and Clk ≤ Clk′

Reqb(κ, n), ∆̈ : gRH : eρ : Clk
τ−→ ∆̈ : gRH : eρ : Clk

(Op Exec)
executeb(op, ρb) = 〈ρ′b, r〉 ∀b′ 6= b : ρ′b′ = ρb′

Appb(op, n), ∆̈ : gRH : eρ : Clk
τ−→ Ret(n, r), ∆̈ : gRH : eρ′ : Clk

(Op Res Ret)

Ret(n, r), ∆̈ : gRH : eρ : Clk
n−→

〈r〉. ∆̈ : gRH : eρ : Clk

Fig. 2. Semantics of a network-attached file system with distributed access control

Definition 4 (Macros for NAFS clients).
Authorization on port k: Authorization may be requested with authk x for op; P ,

which expands to (νc) α◦a.k〈op, c〉. c(x). P , for some a ∈ A, and c /∈ fn(P).
The variable x gets bound to a capability at runtime.

File operation using κ on port k: An authorized file operation may be requested with
fileopauthk κ/x; P , which expands to (νn) βb.k〈κ, n〉. n(x). P , where n /∈ fn(P),
proj3(message(κ)) = b, and b ∈ B. (Recall that for a capability κ that autho-
rizes op, the third component of message(κ) is the disk responsible for op.)

Administration on port k: Administration may be requested with admink adm; P ,
which expands to (νn) αa.k〈adm, n〉. n(). P , for some a ∈ A, and n /∈ fn(P).

As in Section 3, we select a subset of clients whom we call honest; these can be any
processes with certain static restrictions on their interactions with the file system. In
particular, an honest client uses macros only on its own port for sending requests to
the file system; each file-operation request is preceded by a capability request for that
operation; a capability that is obtained for a file operation is used only in succeeding ex-
ecution requests for that operation; and finally, as a consequence of Definitions 5 and 6,
no other client may send a request to the file system on the port of an honest client.

Definition 5. A set of honest NAFS clients indexed by I ⊆ K is a set of closed processes
{C̈i | i ∈ I}, so that each C̈i in the set has the following properties:

– all macros in C̈i are on port i,
– no name in {α◦a.i′ , αa.i′ , βb.i′ | i′ ∈ I, a ∈ A, b ∈ B} appears free in C̈i before

expanding macros,
– for each subprocess in C̈i that is of the form authi κ for op; P , the only uses of κ

in P are in subprocesses of the form fileopauthi κ/x; Q,
– every subprocess Q in C̈i that is of the form fileopauthi κ/x; Q is contained in some

subprocess authi κ for op; P , such that no subprocess of P that strictly contains Q
binds κ.

Dishonest clients C̈j (j ∈ J) are, as in Section 3, left unspecified. They form part of
an arbitrary environment that does not have the names {Kb, α

◦
a.i, αa.i, βb.i | i ∈ I, a ∈

A, b ∈ B} initially.

Definition 6. A NAS system denoted by NAS(C̈I , R̃, ρ̃,Clk) is the closed process
(νi∈I,a∈A,b∈B α◦a.iαa.iβb.i) (Πi∈IC̈i | (νb∈B Kb) (∅ : R̃∅ : ρ̃ : Clk)), where

– C̈I = {C̈i | i ∈ I} is a set of honest NAFS clients indexed by I,
– ∅ : R̃∅ : ρ̃ : Clk is an initial NAFS control state, and {Kb, α

◦
a.i, αa.i, βb.i | i ∈

I, a ∈ A, b ∈ B} ∩ fn(R̃, ρ̃) = ∅.

5 Safety and other guarantees for network-attached storage

We now establish that IFS is a sound and adequate abstraction for NAFS. Specifically,
we show that network-attached storage systems safely implement their specifications as
ideal storage systems; we then derive consequences important for security.

In our analyses, we assume that systems interact with arbitrary (potentially hostile)
environments. We refer to such environments as attackers, and model them as arbitrary
closed processes. We study the behaviour of systems via quizzes. Quizzes are similar to
tests, more specifically to may-tests [14], which capture safety properties.

Definition 7. A quiz is of the form (E, c, ñ, M̃), where E is an attacker, c is a name, ñ is
a vector of names, and M̃ is a vector of closed terms, such that ñ ⊆ fn(M̃) \ fn(E, c).

Informally, a quiz provides an attacker that interacts with the system under analysis,
and a goal observation, described by a channel, a set of fresh names, and a message
that contains the fresh names. The system passes the quiz if it is possible to observe the
message on the channel, by letting the system evolve with the attacker. As the following
definition suggests, quizzes make finer distinctions than conventional tests, since they
can specify the observation of messages that contain names generated during execution.

Definition 8. A closed process P passes the quiz (E, c, ñ, M̃) iff E | P
τ−→

? c−→
(νñ) 〈M̃〉. Q for some Q.

Intuitively, we intend to show that a NAS system passes a quiz only if its specification
passes a similar quiz. Given a NAS system, we “extract” its specification by translating
it to an ideal storage system. (The choice of specification is justified by Theorem 2.)

Definition 9. Let NAS(C̈I , R̃, ρ̃,Clk) be a network-attached storage system. Then its
specification is the ideal storage system ΦNAS(dC̈Ie, R̃, ρ̃,Clk), with d.e as defined
in Figure 3, and with the IFS functions may, execute, schedule, update, and
lifespan derived from their NAFS counterparts as shown in Figure 3.

Next, we map quizzes designed for NAS systems to quizzes that are “at least as potent”
on their specifications. Informally, the existence of this map implies that NAFS does not
“introduce” any new attacks, i.e., any attack that is possible on NAFS is also possible on
IFS. We present the map by showing appropriate translations for attackers and terms.

Definition 10. Let E be an attacker (designed for NAS systems). Then ΦE is the code

E | (νb∈BKb) (Παa.j∈fn(E)!αa.j(adm, n). αj〈adm, n〉
| Πβb.j∈fn(E)!βb.j(κ, n). Σβb.j′∈fn(E)βj′〈proj1(message(κ)), n〉
| Πα◦

a.j∈fn(E)!α◦a.j(op, c). Σb∈B(νm) c〈mac(〈op, {m}Kb
, b〉,Kb)〉)

Informally, E is composed with a “wrapper” that translates between the interfaces of
NAFS and IFS. Administrative requests on αa.j are forwarded on αj . A file-operation
request on βb.j , with κ as authorization, is first translated by extracting the operation
from κ, and then broadcast on all βj′ . Intuitively, κ may be a live, valid capability
that was issued in response to an earlier authorization request made on some α◦a.j′ ,
and a request must now be made on βj′ to pass the same access-control checks. (This
pleasant correspondence is partly due to the properties of lifespan.) Finally, authoriza-
tion requests on α◦a.j are “served” by returning fake capability-like terms. Intuitively,
these terms are indistinguishable from NAFS capabilities under all possible computa-
tions by E. To that end, fake secret keys replace the secret NAFS keys {Kb | b ∈ B}; the

IFS functions derived from NAFS functions:

manager(op) = a

may(k, op, eR) = maya(k, op,Ra)

manager(adm) = a

may(k, adm, eR) = maya(k, adm,Ra)

disk(op) = b ∀b′ 6= b : ρ′b′ = ρb′

〈ρ′b, r〉 = executeb(op, ρb)

execute(op, eρ) = 〈eρ′, r〉
manager(adm) = a ∀a′ 6= a : H′

a′ = Ha′

H′
a = schedulea(adm,Ha, Clk)

schedule(adm, eH, Clk) = fH′

∀a : R′
a
H′

a = updatea(Ra
Ha , Clk)

update(eR eH, Clk) = fR′
fH′

manager(op) = a

lifespan(k, op, eH, Clk) = expirya(k, op,Ha, Clk)− Clk

Honest IFS-client code derived from honest NAFS-client code:

d0e = 0 d(νn) P e = (νn) dP e du(ex). P e = u(ex). dP e du〈fM〉. P e = u〈fM〉. dP e

dP |Qe = dP e | dQe d!P e =!dP e dif M = N thenP elseQe = if M = N thendP eelsedQe
dadmini adm; P e = admini adm; dP e dauthi κ for op; P e = dP e

dfileopauthi κ/r; P e = fileopi proj1(message(κ))/r; dP e

Fig. 3. Abstraction of NAS systems

disk b is non-deterministically “guessed” from the finite set B; and an encrypted unique
nonce replaces the NAFS timestamp. Notice that the value of the NAFS clock need not
be guessed to fake the timestamp, since by design, each NAFS timestamp is unique and
unintelligible to E.

We now formalize the translation of terms (generated by NAFS and its clients). As
indicated above, the translation preserves indistinguishability by attackers, which we
show by Proposition 1.

Definition 11. Let m range over names not in {Kb | b ∈ B}, and M range over se-
quences of terms. We define the judgment M ` � by the following rules:

∅ ` �
M ` �

M,m ` �
M ` � f is a function symbol M̃ ⊆M

M, f(M̃) ` �
M ` � {〈m, 〉}Kb

/∈M op ∈M
M,mac(〈op, {〈m,Clk〉}Kb

, b〉,Kb), {〈m,Clk〉}Kb
` �

We say that M is valid if M ` �, and define Φ on terms in a valid sequence:

Φm = m Φf(M̃) = f(Φ̃M) Φ{〈m,Clk〉}Kb
= {m}Kb

Φmac(〈op, {〈m,Clk〉}Kb
, b〉,Kb) = mac(〈Φop, {m}Kb

, b〉,Kb)

Proposition 1. Let M,M ′ belong to a valid sequence. Then M = M ′ iff ΦM = ΦM ′

(where = is equational, and not merely structural, equality).

Our main result, which we state next, says that whenever a NAS system passes a quiz,
its specification passes a quiz that is meaningfully related to the former:

Theorem 1 (Implementation soundness). Let NAS be a network-attached storage
system. If NAS passes some quiz (E, c, ñ, M̃), then M̃ belong to a valid sequence,
and ΦNAS passes the quiz (ΦE, c, ñ, Φ̃M).

The converse of this theorem does not hold, since ΦE can always return a capability-
like term, while NAFS does not if an access check fails. Consequently, full abstraction
breaks. In [5], where the outcome of any access check is fixed, we achieve full ab-
straction by letting the file system return a fake capability whenever an access check
fails. (The wrapper can then naı̈vely translate execution requests, much as in here.)
However, it becomes impossible to translate attackers when dynamic administration is
allowed (even if we let NAFS return fake capabilities for failed access checks). Intu-
itively, ΦE cannot consistently guess the outcome of an access check when translating
file-operation requests at runtime—and for any choice of ΦE given E, this problem can
be exploited to show a counterexample to full abstraction.

Full abstraction can also be broken by honest clients, with the use of expired ca-
pabilities. One can imagine more complex client macros that check for expiry before
sending requests. (Such macros require the NAFS clock to be shared with the clients.)
Still, the “late” check by NAFS (after receiving the request) cannot be replaced by any
appropriate “early” check (before sending the request) without making additional as-
sumptions on the scheduling of communication events over the network.

One might of course wonder if the specifications for NAS systems are “too weak”
(thereby passing quizzes by design), so as to make Theorem 1 vacuous. The following
standard completeness result ensures that this is not the case.

Theorem 2 (Specification completeness). Let two systems be distinguishable if there
exists a quiz passed by one but not the other. Then two ideal storage systems IS1 and IS2

are distinguishable only if there are distinguishable network-attached storage systems
NAS1 and NAS2 such that ΦNAS1 = IS1 and ΦNAS2 = IS2.

It follows that every quiz passed by an ideal storage system can be concretized to a quiz
passed by some NAS system with that specification.

Several safety properties can be expressed as quiz failures. Next we show two
“safety-preservation” theorems that follow as corollaries to Theorem 1. The first one
concerns secrecy; the second, integrity. We model the initial knowledge of an attacker
with a set of names, as in [2]; let S range over such sets.

Definition 12. Let S be a set of names. An attacker E is a S-adversary if fn(E) ⊆ S.

We may then express the hypothesis that a system keeps a term secret by claiming that
it fails any quiz whose goal is to observe that term on a channel that is initially known
to the attacker.

Definition 13. A closed process P keeps the closed term M secret from a set of names
S if P does not pass any quiz (E, s, ñ, M) where E is an S-adversary and s ∈ S.

We now derive preservation of secrecy by NAS implementations. For any S modeling
the initial knowledge of a NAS attacker, let ΦS be an upper bound on S, as follows:

ΦS = S ∪ {αj , α
◦
j′ , βj′′ | αa.j , α

◦
a.j′ , βb.j′′ ∈ S, a ∈ A, b ∈ B}

Note that for any S-adversary E, ΦE is a ΦS-adversary. Further, note that the inclusion
of the name αa.j (resp. α◦a.j′ , βb.j′′) in S suggests that E knows how to impersonate the
NAFS client C̈j for requesting policy modifications (resp. capabilities, file operations);
the corresponding inclusion of the name αj (resp. α◦j′ , βj′′) in ΦS allows the abstract
attacker ΦE to impersonate the IFS client Cj . Thus, the following result says that a
secret that may be learnt from a NAS system may be also be learnt from its specification
with comparable initial knowledge; in other words, a NAS system protects a secret
whenever its specification protects the secret.

Corollary 1 (Secrecy preservation). Let NAS be a network-attached storage system,
S a finite set of names, and M a closed term that belongs to a valid sequence. Then
NAS keeps M secret from S if ΦNAS keeps ΦM secret from ΦS.

Next we derive preservation of integrity by NAS implementations. In fact, we treat
integrity as one of a larger class of safety properties whose violations may be detected
by letting a system adequately monitor itself, and we derive preservation of all such
properties in NAS. For this purpose, we hypothesize a set of monitoring channels that
may be used to communicate warnings between various parts of the system, and to
signal violations on detection; we protect such channels from attackers by construction.
In particular, clients can use monitoring channels to communicate about begin- and
end-events, and to warn whenever an end-event has no corresponding begin-event (thus
indicating the failure of a correspondence assertion [9]).

Definition 14. A name n is purely communicative in a closed process P if any occur-
rence of n in P is in the form n(x̃). Q or n〈M̃〉. Q. Let S be a finite set of names. Then
the set of names W monitors a closed process P under S if W ∩ S = ∅ and each
w ∈ W is purely communicative in P .

Any message on a monitoring channel may be viewed as a warning.

Definition 15. Let W monitor P under S. Then S causes P to warn on W if for some
S-adversary E and w ∈ W , P passes a quiz of the form (E,w, ñ, M̃).

The following result says that whenever an attack causes a warning in a NAS system,
an attack with comparable initial knowledge causes that warning in its specification.
In other words, since a specification may contain monitoring for integrity violations, a
NAS system protects integrity whenever its specification protects integrity.

Corollary 2 (Integrity preservation). Let W monitor an abstracted network-attached
storage system ΦNAS under ΦS. Then S does not cause NAS to warn on W if ΦS does
not cause ΦNAS to warn on W .

6 Conclusion

In this paper we study networked storage systems with distributed access control. In par-
ticular, we relate those systems to simpler centralized storage systems with local access
control. Viewing the latter systems as specifications of the former ones, we establish
the preservation of safety properties of the specifications in the implementations. We
derive the preservation of standard secrecy and integrity properties as corollaries. We

expect that such results will be helpful in reasoning about the correctness and the secu-
rity of larger systems (which may, for example, include non-trivial clients that rely on
file storage). In that context, our results imply that we can do proofs using the simpler
centralized storage systems instead of the networked storage systems. In our current
work, we are developing proof techniques that leverage this simplification.

Acknowledgments We thank Cédric Fournet and Ricardo Corin for helpful comments.
This work was partly supported by the National Science Foundation under Grants
CCR-0204162, CCR-0208800, and CCF-0524078, and by Livermore National Labora-
tory, Los Alamos National Laboratory, and Sandia National Laboratory under Contract
B554869.

References
1. M. Abadi. Protection in programming-language translations. In ICALP’98: International

Colloquium on Automata, Languages and Programming, pages 868–883. Springer-Verlag,
1998.

2. M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic pro-
grams. Journal of the ACM, 52(1):102–146, 2005.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
POPL’01: Principles of Programming Languages, pages 104–115. ACM, 2001.

4. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1–70, 1999.

5. A. Chaudhuri and M. Abadi. Formal security analysis of basic network-attached storage. In
FMSE’05: Formal Methods in Security Engineering, pages 43–52. ACM, 2005.

6. G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E. Feinberg, H. G. C. Lee, B. Ozceri,
E. Riedel, and D. Rochberg. A case for network-attached secure disks. Technical Report
CMU–CS-96-142, Carnegie Mellon University, 1996.

7. H. Gobioff. Security for a High Performance Commodity Storage Subsystem. PhD thesis,
Carnegie Mellon University, 1999.

8. H. Gobioff, G. Gibson, and J. Tygar. Security for network-attached storage devices. Techni-
cal Report CMU-CS-97-185, Carnegie Mellon University, 1997.

9. A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communication proto-
cols. Theoritical Computer Science, 300(1-3):379–409, 2003.

10. D. Mazières and D. Shasha. Building secure file systems out of byzantine storage. In
PODC’02: Principles of Distributed Computing, pages 108–117. ACM, 2002.

11. E. L. Miller, D. D. E. Long, W. E. Freeman, and B. Reed. Strong security for network-
attached storage. In FAST’02: File and Storage Technologies, pages 1–13. USENIX, 2002.

12. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,
4(1):1–22, 1977.

13. R. Milner. The polyadic pi-calculus: a tutorial. In Logic and Algebra of Specification, pages
203–246. Springer-Verlag, 1993.

14. R. D. Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Com-
puter Science, 34(1–2):83–133, 1984.

15. B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E. Long. Authenticating network-attached
storage. IEEE Micro, 20(1):49–57, 2000.

16. F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security, 3(1):30–50, 2000.

17. Y. Zhu and Y. Hu. SNARE: A strong security scheme for network-attached storage. In
SRDS’03: Symposium on Reliable Distributed Systems, pages 250–259. IEEE, 2003.

