
Language-Based Security on Android

Avik Chaudhuri
University of Maryland at College Park

avik@cs.umd.edu

Abstract
In this paper, we initiate a formal study of security on An-
droid: Google’s new open-source platform for mobile de-
vices. Specifically, we present a core typed language to de-
scribe Android applications, and to reason about their data-
flow security properties. Our operational semantics and type
system provide some necessary foundations to help both
users and developers of Android applications deal with their
security concerns.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection—Access controls, Verifi-
cation; D.3.3 [Programming Languages]: Language Con-
structs and Features—Control constructs

General Terms Security, Languages, Verification

Keywords data-flow security, hybrid type system, mobile
code, certified compilation

1. Introduction
Android [3] is Google’s new open-source platform for mo-
bile devices. Designed to be a complete software stack, it
includes an operating system, middleware, and core applica-
tions. Furthermore, it comes with an SDK [1] that provides
the tools and APIs necessary to develop new applications
for the platform in Java. Interestingly, Android does not dis-
tinguish between its core applications and new applications
developed with the SDK; in particular, all applications can
potentially interact with the underlying mobile device and
share their functionality with other applications. This design
is very encouraging for developers and users of new appli-
cations, as witnessed by the growing Android “market” [2].
At the same time, it can be a source of concern—what do we
understand about security on Android?

Indeed, suppose that Alice downloads and installs a new
application, developed by Bob, on her Android-based phone.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’09 June 15, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-645-8/09/06. . . $10.00

Say this application, wikinotes, interacts with a core applica-
tion, notes, to publish some notes from the phone to a wiki,
and to sync edits back from the wiki to the phone. Of course,
Alice would not like all her notes to be published, and would
not like all her published notes to be edited; for instance, her
notes may include intermediate results of her ongoing lab
experiments. How does she know whether it is safe to run
the application? Can she trust the application to safely ac-
cess her data? If she cannot, is there still a way to safely
run the application? These concerns are important for Alice,
because she realizes that running a malicious application on
her phone can be disastrous; for instance, it may compro-
mise the records of her experiments. Conversely, it is Bob’s
concern to be able to convince Alice that his application can
be run safely on her phone.

This paper initiates an effort to help Alice and Bob deal
with these related concerns, through a unified formal un-
derstanding of security on Android. To this end, we envi-
sion a recipe inspired by PCC [11]: Bob constructs a safety
proof for his application by some conservative analysis of
the associated Java code, and Alice verifies the proof before
installing the application. Such a recipe requires (at least)
two ingredients: (1) a formal operational semantics for ap-
plication code in an Android environment—this includes, in
particular, formal specifications of the APIs provided by the
SDK; (2) a static safety analysis for application code based
on this semantics—in particular, this analysis may be for-
malized as a security type system for applications, and a
soundness proof for such a system should provide the neces-
sary safety proofs for well-typed applications. We take some
initial steps towards composing such a recipe in this paper.
• We design a core formal language to describe and reason

about Android applications abstractly. For now, we fo-
cus only on constructs that are unique to Android, while
ignoring the other usual Java constructs that may appear
in Android applications. This simplification allows us to
study Android-specific features in isolation. Still, to rea-
son about actual Android applications we must consider
the usual Java features in combination with these fea-
tures, and we plan to extend our language to include those
features in the future.
• We present an operational semantics for our language.

Our semantics exposes the sophisticated control flows



that underlie Android’s constructs. Indeed, while the of-
ficial documentation provides only a vague idea of what
these constructs mean, a formal understanding of their
semantics is crucial for reasoning correctly about the be-
havior of Android applications. We test our semantics by
running our own applications on an Android emulator
(included in the SDK).
• We present a type system for security in this language.

Our system exploits the access control mechanisms al-
ready provided by Android, and enforces “best practices”
for developing secure applications with these mecha-
nisms. We develop some new technical concepts, in-
cluding a special notion of stack types, for this purpose.
The resulting guarantees include standard data-flow se-
curity properties for well-typed applications described
in our language. We expect that these guarantees can be
preserved without significant difficulty by extending our
type system to handle other usual Java constructs.

As future work, we plan to extend our analysis so that it
can handle application code in Java, and implement it us-
ing existing static analysis tools [10, 12, 7]. As envisioned
above, certified installation of Android applications based on
such an implementation should help both users and devel-
opers deal with their security concerns. More ambitiously,
we believe that this setting provides an ideal opportunity
to bring language-based security to the mainstream. Indeed,
Android applications are usually small and structured, so we
expect type inference to scale well on such applications; fur-
thermore, the idea of certified installation should certainly
be attractive to a growing and diverse Android community.

The rest of the paper is organized as follows. In Section 2
we present an overview of Android, focusing on the applica-
tion model and security mechanisms. In Section 3 we present
our formal language for Android applications. In Section 4,
we present our security type system for this language, and
outline key properties of typing. Finally, in Section 5, we
discuss some related work and conclude.

2. Overview of Android
2.1 The application model
In Android’s application model [1], an application is a pack-
age of components, each of which can be instantiated and run
as necessary (possibly even by other applications). Compo-
nents are of the following types:

Activity components form the basis of the user interface;
usually, each window of the application is controlled by
some activity.

Service components run in the background, and remain ac-
tive even if windows are switched. Services can expose
interfaces for communication with other applications.

Receiver components react asynchronously to messages
from other applications.

Provider components store data relevant to the application,
usually in a database. Such data can be shared across
applications.

Consider, e.g., a music-player application for an Android-
based phone. This application may include several compo-
nents. There may be activities for viewing the songs on the
phone, and for editing the details of a particular song. There
may be a service for playing a song in the background. There
may be receivers for pausing a song when a call comes in,
and for restarting the song when the call ends. Finally, there
may be a provider for sharing the songs on the phone.

Component classes and methods The Android SDK pro-
vides a base class for each type of component (Activity,
Service, Receiver, and Provider), with methods (call-
backs) that are run at various points in the life cycle of the
associated component. Each component of an application is
defined by extending one of the base classes, and overriding
the methods in that class. In particular:

• The Activity class has methods that are run when some
activity calls this activity, or returns to this activity.
• The Service class has a method that is run when some

component binds to this service.
• The Receiver class has a method that is run when a

message is sent to this receiver.
• The Provider class has methods to query and update the

data stored by this provider.

2.2 Security mechanisms
As mentioned above, it is possible for an application to
share its data and functionality across other applications,
by letting such applications access its components. Clearly,
these accesses must be carefully controlled for security. We
now describe the key access control mechanisms provided
by Android [1].

Isolation The Android operating system builds on a Linux
kernel, and as such, derives several protection mechanisms
from Linux. Every application runs in its own Linux process.
Android starts the process when any of the application’s
code needs to be run, and stops the process when another
application’s code needs to be run. Next, each process runs
on its own Java VM, so the application’s code runs in iso-
lation from the code of all other applications. Finally, each
application is assigned a unique Linux UID, so the applica-
tion’s files are not visible to other applications.

That said, it is possible for several applications to arrange
to share the same UID (see below), in which case their files
become visible to each other. Such applications can also
arrange to run in the same process, sharing the same VM.

Permissions Any application needs explicit permissions
to access the components of other applications. Crucially,
such permissions are set at install time, not at run time.



The permissions required by an application are declared
statically in a manifest. These permissions are set by the
package installer, usually via dialogue with the user. No
further decisions are made at run time; if the application’s
code needs a permission at run time that is not set at install
time, it blocks, and its resources are reclaimed by Android.

Enforcing permissions can prevent an application from
calling certain activities, binding to certain services, sending
messages to certain receivers, and receiving messages from
other applications or the system, and querying and updating
data stored by certain providers.

Signatures Finally, any Android application must be signed
with a certificate whose private key is held by the developer.
The certificate does not need to be signed by a certificate au-
thority; it is used only to establish trust between applications
by the same developer. For example, such applications may
share the same UID, or the same permissions.

3. Language
We now proceed to design a core formal language to de-
scribe Android applications. To narrow our focus, we do not
model general classes and methods; instead, we treat com-
ponent classes and methods as primitive constructs. Further-
more, we ignore isolation and signatures, since permissions
suffice to model the effects of those mechanisms in Android.

3.1 Syntax
We assume a lattice w of permissions (e.g., PERMS). In An-
droid, this lattice is implemented over sets. Components are
identified by names. In Android, components are accessed
through intents; an intent simply pairs the name of the com-
ponent to access (action) and a value (parameter) to be
passed to the component. Values include names n, variables
x and a constant void. Our syntax of programs is as follows.

Program syntax

v ::= n | x | void value
i ::= (n, v) intent
t ::= code

call(i) call activity
return(v) return from activity
bind(i, λx.t) bind to service
register(SEND, λx.t) register new receiver
send(RECEIVE, i) send to receiver
!n read from provider
n := v write to provider
let x = t in t′ evaluate
� t fork
t+ t′ choice
v result

We describe the meanings of programs informally below;
a formal operational semantics appears in Section 3.2.

A program runs in an environment that maps names to
component definitions. In Android, such an environment is
derived from the set of applications installed on the system.

Application syntax

d ::= definition
activity(CALL, PERMS, λx.t, λx.t′) activity
service(BIND, PERMS, λx.t) service
receiver(SEND, PERMS, λx.t) receiver
provider(READ, WRITE, v) provider

D ::= ∅ | D,n 7→ d hash of definitions

Furthermore, a program runs with a permission (context).
In general, the program may be run on a stack of windows
(produced by calls to activities), or in a pool of threads
(produced by forks). Exceptions are call or return programs,
which can only be run on the stack.

• The program call((n, v)) checks that n is mapped to an
activity of the form activity(CALL, PERMS, λx.t, λx.t′),
and that the current context has permission CALL. A new
window is pushed on the stack, and the program t is run
with permission PERMS and with x bound to v.
• Dually, return(v) pops the current window off the stack

and returns control to the previous activity; if that activity
is of the form shown above, the program t′ is run with
permission PERMS and with x bound to v.
• The program bind((n, v), λx.t′) checks that n is mapped

to a service of the form service(BIND, PERMS, λx.t), and
that the current context has permission BIND. The pro-
gram t is run with permission PERMS and with x bound to
v, and the result v′ is passed back to the current context;
then, t′ is run with x bound to v′ in the current context. In
Android, v′ is typically an interface to some functional-
ity exposed by the service. Below, we encode away such
services with receivers.
• The program register(SEND, λx.t) creates a fresh name
n, maps it to the receiver receiver(SEND, PERMS, λx.t)
in the environment, and returns n; here, PERMS is the
permission of the current context.
• Dually, send(RECEIVE, (n, v)) checks that n is mapped

to a receiver of the form receiver(SEND, PERMS, λx.t),
that the current context has permission SEND, and that
PERMS includes RECEIVE. The program t is run with
permission PERMS, and with x bound to v.
• The program !n checks that n is mapped to a provider of

the form provider(READ, WRITE, v), and that the current
context has permission READ; the value v is returned.
• Dually, n := v checks that n is mapped to a provider

of the form provider(READ, WRITE, v′), and that the cur-
rent context has permission WRITE; n is then mapped to
provider(READ, WRITE, v) in the environment.
• The program let x = t in t′ evaluates t, and then evaluates
t′ with x bound to the result.
• The program � t forks a thread that runs t.
• The program t + t′ evaluates either t or t′. In Android,

such choices arise in the user interface.



Local reduction D; e;E → D′; e′;E′

(Red let-distr) D; [PERMS] let x = t in t′;E → D; let x = [PERMS] t in [PERMS] t′;E

(Red let-eval)
D; e;E → D′; e′;E′

D; let x = e in [PERMS] t;E → D′; let x = e′ in [PERMS] t;E′

(Red let-return) D; let x = [PERMS′] v in [PERMS] t;E → D; [PERMS] t{v/x};E

(Red fork)
E′ = E, [PERMS] t

D; [PERMS] � t;E → D; [PERMS] void;E′

(Red read)
D(n) = provider(READ, , v) PERMS w READ

D; [PERMS] !n;E → D; [PERMS] v;E

(Red write)
D(n) = provider(READ, WRITE, ) PERMS w WRITE D′ = D[n 7→ provider(READ, WRITE, v)]

D; [PERMS] n := v;E → D′; [PERMS] void;E

(Red register)
n fresh D′ = D,n 7→ receiver(SEND, PERMS, λx.t)

D; [PERMS] register(SEND, λx.t);E → D′; [PERMS] n;E

(Red send)
D(n) = receiver(SEND, PERMS′, λx.t) PERMS w SEND PERMS

′ w RECEIVE

D; [PERMS] send(RECEIVE, (n, v));E → D; [PERMS′] t{v/x};E
(Red choice-l) D; [PERMS] t+ t′;E → D; [PERMS] t;E

(Red choice-r) D; [PERMS] t+ t′;E → D; [PERMS] t′;E

Global reduction D;S;E −→ D′;S;E′

(Red local)
D; e;E → D′; e′;E′

D; 〈e, λx.e′′〉 :: S;E −→ D′; 〈e′, λx.e′′〉 :: S;E′

(Red call)
D(n) = activity(CALL, PERMS′, λx.t, λx.t′) PERMS w CALL S′ = 〈[PERMS] void, λx.e〉 :: S

D; 〈[PERMS] call((n, v)), λx.e〉 :: S;E −→ D; 〈[PERMS′] t{v/x}, λx.[PERMS′] t′〉 :: S′;E

(Red return)
S = 〈[PERMS′] void, λx.e′〉 :: S′

D; 〈[PERMS] return(v), λx.e〉 :: S;E −→ D; 〈e′{v/x}, λx.e′〉 :: S′;E

(Red thread)
D; e;E → D′; e′;E′

D;S;E, e −→ D′;S;E′, e′

Figure 1. Small-step operational semantics

3.2 Semantics
We now present a formal small-step operational semantics.

Since services can be encoded with receivers (as follows),
we do not consider services any further in our development.

Encodings

service(BIND, PERMS, λx.t) , receiver(BIND, PERMS, λx.t)

bind((n, v), λx.t) , let x = send(⊥, (n, v)) in t

Next, we introduce some internal syntactic categories to
describe intermediate states of an Android system. Recall
that a program runs with a permission, and may be run on a
stack of windows or in a pool of threads.

An expression denotes code running with a particular
permission (context). A thread is simply an expression. A
window is of the form 〈e, λx.e′〉, where e is the expression
currently running in the window, and λx.e′ is the callback
invoked when a window returns control to this window.

Internal syntax

e ::= expression
[PERMS] t encapsulate
let x = e in e′ evaluate

E ::= ∅ | E, e pool of threads
S ::= ε | 〈e, λx.e′〉 :: S stack of windows

Now, a state is a tuple D;S;E, where D is an environ-
ment, S is a stack of windows, and E is a pool of threads.

Figure 1 shows reduction rules that formalize the seman-
tics explained in Section 3.1. A global reduction relation,
−→, describes the reduction of states. This relation depends
on a local reduction relation, →, that describes the reduc-
tion of expressions under an environment and a pool of
threads. In particular, call and return programs reduce un-
der −→, and all other code reduces under →. Of specific
interest are (Red let-return), (Red send), (Red call), and
(Red return), that can cause data flows across contexts.



A typical initial configuration of the system is of the
form D; 〈e, λx.e〉; ∅, where D is the environment defined
by the set of installed applications, x is fresh, and e is of the
form [>] t; for example, t may be a choice of calls to the
main activities of the installed applications, modeling code
running in the “home” window of an Android-based phone.

4. Type system
Next, we present a system of security types for our language.

Types

τ ::= data type
Any(READ, WRITE) any
Activity(CALL, τ → τ ′ ⇒ τ ′′) activity
Receiver(SEND, τ → T ) receiver
Provider(READ, WRITE) provider
Stuck stuck

T ::= type
τ data type
τ ⇒ τ ′ stack type

Roughly, the type Any(READ, WRITE) is given to data that
may flow from contexts with at most permission WRITE to
contexts with at least permission READ. This type is the ba-
sis for security specifications in the language (see Theo-
rem 4.2). For example, Any(>,>) types secret trusted data,
Any(⊥,>) types public trusted data, and Any(⊥,⊥) types
public tainted data.

Next, we have types for each component class, that are
given to names bound in the environment. The meanings of
these types are given in the rules for well-formed environ-
ments below. Besides typing information, these types record
the permissions required to access the associated compo-
nents, so that programs that block due to access control can
be identified. Such programs are vacuously safe, and are
given the type Stuck. The treatment of Stuck closely follows
previous work [8], and we omit the details in the sequel.

Finally, we introduce stack types. A stack type τ ⇒ τ ′ is
given to an expression running at the top of a stack; values
returned by any window to this window have type τ , and
values returned by this window have type τ ′. Note that the
code run by an activity must have a stack type, since it is
always run on a stack; in contrast, the code run by a receiver
may or may not have a stack type.

4.1 Typing rules
Let Γ be a list that associates names and variables to unique
typing hypotheses, such as n : τ or x : τ . We have the fol-
lowing subtyping rule, that captures safe data flows. (Other
subtyping rules are not shown here.)

Subtyping Γ ` T <: T ′

(Sub any)
READ

′ w READ WRITE w WRITE
′

Γ ` Any(READ, WRITE) <: Any(READ′, WRITE′)

Well-typed code Γ `PERMS t : T

(Typ read)
Γ `PERMS n : Provider(READ, WRITE)

Γ `PERMS !n : Any(READ, WRITE)

(Typ write)

Γ `PERMS n : Provider(READ, WRITE)
Γ `PERMS v : Any(READ, WRITE)

Γ `PERMS n := v : Any(⊥,>)

(Typ register)

Γ, x : τ `PERMS t : T
T ′ = Receiver(SEND, τ → T )

Γ `PERMS register(SEND, λx.t) : T ′

(Typ send)

Γ `PERMS n : Receiver( , τ → T )
Γ `PERMS v : τ

Γ `PERMS send(RECEIVE, (n, v)) : T

(Typ let)
Γ `PERMS t : τ Γ, x : τ `PERMS t′ : T

Γ `PERMS let x = t in t′ : T

(Typ fork)
Γ `PERMS t : τ

Γ `PERMS � t : Any(⊥,>)

(Typ choice)
Γ `PERMS t : T Γ `PERMS t′ : T

Γ `PERMS t+ t′ : T

(Typ val-hyp)
v : τ ∈ Γ

Γ `PERMS v : τ

(Typ val-void) Γ `PERMS void : Any(⊥,>)

(Typ call)

Γ `PERMS n : Activity(CALL, τ → ⇒ τ ′)
Γ `PERMS v : τ

Γ ` [PERMS] call((n, v)) : τ ′ ⇒

(Typ return)
Γ `PERMS v : τ

Γ ` [PERMS] return(v) : ⇒ τ

Well-formed environment Γ ` D

(Typ activity)

D(n) = activity(CALL, PERMS, λx.t, λx.t′)
Γ, x : τ `PERMS t : τ ′ ⇒ τ ′′

Γ, x : τ ′ `PERMS t′ : τ ′ ⇒ τ ′′

Γ, n : Activity(CALL, τ → τ ′ ⇒ τ ′′) ` D

(Typ receiver)

D(n) = receiver(SEND, PERMS, λx.t)
Γ, x : τ `PERMS t : T

Γ, n : Receiver(SEND, τ → T ) ` D

(Typ provider)

D(n) = provider(READ, WRITE, v)
Γ ` v : Any(READ, WRITE)

Γ, n : Provider(READ, WRITE) ` D

Well-typed expression, stack Γ ` e : T , Γ ` S : τ ⇒ τ ′

(Typ encap)
Γ `PERMS t : T

Γ ` [PERMS] t : T

(Typ eval)
Γ ` e : τ Γ, x : τ ` e′ : T

Γ ` let x = e in e′ : T

(Typ stack)

Γ ` e : τ ⇒ τ ′ Γ, x : τ ` e′ : τ ⇒ τ ′

Γ ` S : τ ′ ⇒
Γ ` 〈e, λx.e′〉 :: S : τ ⇒ τ ′

Figure 2. Security type system



Figure 2 shows some of our typing rules. (The con-
text PERMS is carried around to derive Stuck types, using
rules that are not shown here. We also omit a subtyping
rule for Stuck types, which allows us to infer any type
for a stuck program.) We elaborate only on (Typ call) and
(Typ return); the remaining rules rely on standard ideas,
and should not be difficult to follow. A program of the form
call((n, )) is given a stack type of the form τ ′ ⇒ whenever
the type of programs that may be run in a window launched
by n is of the form ⇒ τ ′; indeed, values returned by such a
window are passed back to the window running call((n, )).
Dually, the stack type of return(v) is of the form ⇒ τ
whenever v is of type τ .

By (Typ stack), stack types are chained to type a stack of
windows. (We assume that ε can be given any stack type.)

Finally, we define well-typed states.

DEFINITION 4.1. A state D;S;E is well-typed if there is Γ
such that Γ ` D, Γ ` S : , and Γ ` e : for each e ∈ E.

4.2 Properties of typing
Our main theorem is the following data-flow security prop-
erty for any sequence of reductions of a well-typed state.

THEOREM 4.2. Let D;S;E be a well-typed state such
that provider(READ, WRITE,m) ∈ rng(D) for some fresh
name m. Suppose that D;S;E −→? D′;S′;E′, such that
provider(READ′, WRITE′,m) ∈ rng(D′).

Then READ′ w READ and WRITE w WRITE′.

Informally, this theorem guarantees that a value can flow
from provider n to provider n′ only if readers of n′ may
already read n, and writers of n may already write n′. The
theorem follows from a standard subject reduction lemma.

4.3 Untyped code
Theorem 4.2 holds only for well-typed states; in particular,
it assumes that all components in the environment are well-
typed. In practice, this requirement may be too strict—we
may wish to consider the possibility of safely running an
application even if it does not typecheck.

It turns out that such applications can indeed be run safely
with permission ⊥. Technically, we include a vacuous sys-
tem of rules in the type system that can only be applied in
a ⊥ context; these rules consider Any(⊥,⊥) as a dynamic
type, and allow previously untyped code with permission
⊥ to typecheck. Conversely, we require all occurrences of
PERMS in Figure 2 to be non-⊥, so that our core discipline
cannot be bypassed.

However, this alone is not enough to recover Theorem
4.2. Typed code can still interact with previously untyped
code, and we need to control such interactions. In particular,
it should not be possible for previously untyped code to con-
sume values of type Any(READ, ) or produce values of type
Any( , WRITE) if READ or WRITE are non-⊥. Fortunately, a
simple set of constraints in our core discipline (omitted here)

suffice to eliminate such flows. Theorem 4.2 now holds for
this augmented system.

Finally, we should point out that ⊥ does not necessarily
equate to “no permission” at run time. In fact, the lattice in
the type system may be any order-preserving abstraction of
the lattice in the operational semantics.

5. Discussion
In Section 1, we point out several possible security concerns
of users (such as Alice) and developers (such as Bob) of
Android applications. We now outline how our approach
can quell those concerns. Indeed, Alice can safely run any
well-typed application on her phone. By Theorem 4.2, any
such application is guaranteed to preserve the secrecy and
integrity of her data. If such an application does not conform
to our core discipline, it necessarily runs with permission ⊥,
so Alice can still safely run such an application. Conversely,
the only way Bob can convince Alice that his application is
safe to run on her phone is by typechecking his application.

The only other study of Android security we are aware
of is [9]. It reports a logic-based tool, Kirin, for determin-
ing whether the permissions declared by an application sat-
isfy a certain global safety invariant. Typically, this invariant
bans permissions that may result in data flows across appli-
cations. However, Kirin does not track data flows inside an
application; thus, its analysis is necessarily less precise than
ours. In particular, for an application that has several com-
ponents, each of which require a disjoint set of permissions,
Kirin conservatively considers the union of those permis-
sions when deciding the safety of the application. In contrast,
we track precise dependencies among the components, and
thus may recognize the application to be safe even if Kirin
cannot. This precision is important in the presence of signa-
tures, which allow possibly unrelated applications to share
the same set of permissions.

The approach in this paper is similar to our previous work
on formalizing security on Windows Vista [8]. However,
while in [8] we merely aim for a formal understanding of
Windows Vista’s security design, in this setting we can be
much more ambitious, as discussed in Section 1. We plan
to extend our analysis to application code in Java, and im-
plement a certified installer for Android applications based
on our analysis; we expect existing static analysis tools for
Java, such as ESC/Java [10], Soot [12], and WALA [7] to
provide a convenient foundation for such an implementa-
tion. Furthermore, our project bears several similarities with
other existing projects for mobile code security, such as Mo-
bius [5], Jif [4], and S2MS [6]. We expect that as we begin
implementing our analysis, we will benefit from tools and
techniques developed in the context of such projects.

In conclusion, we initiate a formal language-based study
of security on Android in this paper. We believe that it
is worthwhile to put in the necessary effort into bringing
language-based security to the mainstream via this setting.



Acknowledgments
This research is supported in part by DARPA under grant
ODOD.HR00110810073.

References
[1] Android developers. http://developer.android.com/

index.html.

[2] Android market. http://www.android.com/market/.

[3] Android project. http://source.android.com/.

[4] The Jif project. http://www.cs.cornell.edu/jif/.

[5] The Mobius project. http://mobius.inria.fr/twiki/

bin/view/Mobius.

[6] The S3MS project. http://www.s3ms.org/index.jsp.

[7] WALA. http://wala.sourceforge.net/wiki/index.

php/Main_Page.

[8] A. Chaudhuri, P. Naldurg, and S. Rajamani. A type system
for data-flow integrity on Windows Vista. In PLAS’08:
Programming Languages and Analysis for Security, pages
89–100. ACM, 2008.

[9] W. Enck, M. Ongtang, and P. McDaniel. Understanding
Android security. IEEE Security & Privacy Magazine,
7(1):10–17, 2009.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for
Java. In PLDI’02: Programming Language Design and
Implementation, pages 234–245. ACM, 2002.

[11] G. C. Necula. Proof-carrying code. In POPL’97: Principles
of Programming Langauges, pages 106–119. ACM, 1997.

[12] R. V. Rai. Soot: A Java bytecode optimization framework.
Master’s thesis, McGill University, 2000.


