Foundations of Access Control for Secure Storage

Thesis Proposal

Avik Chaudhuri

Computer Science Department
University of California, Santa Cruz

avik@cs.ucsc.edu

Abstract

Formal techniques have played a significant role in the study of secure communication in recent years.
Specifically, there has been much research in developing process calculi, type systems, logics, and other
foundations for the rigorous design and analysis of secure communication protocols. In comparison, the
study of secure storage has received far less formal attention. Yet, over the years storage has assumed a
pervasive role in modern computing. Now storage is a fundamental part of most networked computer
systems that we rely on—and understanding secure storage is as important as understanding secure com-
munication.

One might wonder whether the foundations of secure communication already provide those of secure
storage—after all, storage is a form of communication. Certainly it would be nice if techniques developed
for the study of secure communication can also be applied to study secure storage. We propose to make
these connections explicit. On the other hand, some distinctive features of storage pose problems for
security that seem to go beyond those explored in the context of communication protocols. Perhaps the
most striking of these features is access control. Indeed, storage systems typically feature access control
on store operations, for various reasons that are informally linked with security. We see an intriguing and
challenging research opportunity in understanding the foundations of access control for security in such
systems.

Therefore we propose a thorough investigation of formal techniques for the purposes of specifying, im-
plementing, verifying, and exploiting access control in storage systems. We envisage two complementary
lines of work: one that focuses on correctness proofs for various implementations of access control, and
another that assumes correct “black-box” access control in proofs of end-to-end security properties. More
specifically, we are interested in articulating and justifying precise security properties of several complex
cryptographic access controls that appear in a variety of distributed storage designs. We are also inter-
ested in proof techniques that combine access control with static analysis for more concrete guarantees
like secrecy and integrity. We report some preliminary work along these lines and outline related ongoing
work. We also discuss work that remains to be done within the scope of this thesis—including work on
consolidating and organizing the state of the art—and sketch a tentative plan of action that roughly spans
the next two years. Finally, we summarize what we expect to be the main contributions of this thesis, and
speculate on its likely impact on system security.

Contents

1 Introduction 2
1.1 Thesisstatement L e e e 3
1.2 Outlineoftheproposal 3

2 Preliminary results 4
2.1 On provable implementations of accesscontrol 4
2.1.1 Reduction analysis of distributed access controls in networked storage 4

2.1.2 Automated proofs for key-based access controls in untrusted storage 6

2.1.3 Automatic logical analysis of label-based access controls in an operating system 9

214 Relatedwork 10

2.2 Onaccess control and types forsecurity 10
2.2.1 Permissions and secrecy types in a file system environment 10

2.2.2 Dynamic access control and polymorphic types in a concurrent object calculus 13

2.2.3 Labels and integrity types in an operating system environment 15

224 Relatedwork 16

3 Towards defense of the thesis 17
3.1 Discussion on preliminary results and remainingwork 17
32 Timeline 18

4 Conclusion 18

1 Introduction

Formal techniques have played a significant role in the study of secure communication in recent years.
Specifically, there has been much research in developing process calculi, type systems, logics, and other
foundations for the rigorous design and analysis of secure communication protocols [10, 7, 4, 46, 39, 47,
25, 3]. In comparison, the study of secure storage has received far less formal attention. Yet, over the
years storage has assumed a pervasive role in modern computing. Now storage is a fundamental part of
most networked computer systems that we rely on—and understanding secure storage is as important as
understanding secure communication.

One might wonder whether the foundations of secure communication already provide those of secure
storage—after all, storage is a form of communication. Indeed, one can think of a file f with contents M
as a channel f that is ready to send message M; then f may be read by receiving a message on f and
then sending the message back on f; and f may be written by receiving a message on f and sending
back a new message M’ on f. Certainly it would be nice if techniques developed for the study of secure
communication can also be applied to study secure storage. In particular, previous work on asymmetric
channels (channels with separate read and write capabilities) may be particularly useful [4, 18]. Moreover
the use of cryptography for secure communication on untrusted channels is close to its use for secure
storage on untrusted servers [55]. In general one might expect verification concepts and tools developed
for the analysis of communication systems to be useful, perhaps with some suitable adaptations, for the
analysis of storage systems as well. One must of course be careful about carrying the analogies too far. For
example, some notions of forward secrecy in communication via channels may not apply in communication
via storage. Undoubtedly there are other examples. We propose to make the connections between secure
communication and secure storage explicit where possible.

On the other hand, some distinctive features of storage pose problems for security that seem to go be-
yond those explored in the context of communication protocols. Perhaps the most striking of these features
is access control. Indeed, storage systems typically feature access control on store operations, for various
reasons that are informally linked with security. Several aspects of access control do not arise in typical

communication protocols. For example, channel communication seldom relies on dynamic access control
(such as revocation of permissions). Not surprisingly, such aspects of access control have been largely ig-
nored in formal studies of secure communication. At the same time, access control is indispensable for
security in a typical storage design. Perhaps the primary reason for this dependence is the potential role of
access control as a flexible runtime mechanism for enforcing dynamic usage specifications. Indeed it is only
realistic to expect a storage unit (such as a file or memory location) to have various uses over its lifetime. We
see an intriguing and challenging research opportunity in understanding the foundations of access control
for security in such systems.

Therefore we propose a thorough investigation of formal techniques for the purposes of specifying, im-
plementing, verifying, and exploiting access control in storage systems. We envisage two complementary
lines of work: one that focuses on correctness proofs for various implementations of access control, and
another that assumes correct “black-box” access control in proofs of end-to-end security properties. More
specifically, we are interested in articulating and justifying precise security properties of several complex
cryptographic access controls that appear in a variety of distributed storage designs. We are also inter-
ested in proof techniques that combine access control with static analysis for more concrete guarantees like
secrecy and integrity.

1.1 Thesis statement
Our thesis is the following.

A formal understanding of the foundations of access control in storage systems can significantly help in
articulating, justifying, and enhancing the security of such systems.

Broadly, we propose to show that formal techniques can be applied to specify and verify security properties
of a variety of storage systems. We expect some of those techniques to be adapted from existing ones de-
veloped for the study of secure communication. On the other hand, the study of secure storage poses some
new problems, and we expect some of those problems to require the development of new techniques. Fo-
cusing on the foundations of access control for secure storage, we propose to explain the formal connections
between various security properties and access control in storage systems via these techniques.

1.2 Outline of the proposal

As mentioned above, we envisage two complementary lines of work: one that focuses on the correctness of
access controls in a variety of storage systems, and another that exploits correct access control in proofs of
concrete end-to-end security properties. The motivation for the first line of work stems from the complexity
of various access-control implementations in storage systems. There are various underlying assumptions
and guarantees in those systems. The complexity of the implementations can be often attributed to the
distributed nature of those systems and other complex design features for practical utility. Verifying the
correctness of these implementations is typically not straightforward; we expect that the formal exercise
can help understand the nuances of these implementations, uncover potential flaws, and articulate their
precise properties. Going further, we expect that access control as a mechanism can be effective in achieving
concrete security guarantees like secrecy and integrity. This consideration motivates the second line of
work. We see the possibility of applying language-based techniques that relax conventional static analyses
based on type systems by integrating dynamic access control in those analyses.

The outline of the remainder of the proposal is as follows. In Section 2 we report preliminary work
along the proposed lines [28, 29, 30, 27] and outline related ongoing work. In Section 3 we discuss work
that remains to be done within the scope of this thesis—including work on consolidating and organizing the
state of the art—and sketch a tentative plan of action that roughly spans the next two years. We conclude
in Section 4.

2 Preliminary results

In this section we review preliminary and ongoing work along the lines proposed in Section 1.2. Some of
the material presented here appears in conference proceedings [28, 29, 30, 27].

2.1 On provable implementations of access control

We present some initial work on proving implementations of access control in networked storage systems.
Specifically, we consider capability-based access controls in a file system with distributed storage, key-
based access controls in a file system with untrusted storage, and label-based access controls in an operating
system. The implementations rely on various delicate protocols based on cryptography and trust. We
explore various techniques for their analysis.

2.1.1 Reduction analysis of distributed access controls in networked storage

Our first case study is a storage design that decouples file-system management from disk access. The design
is popularly known as network-attached storage (NAS) [42], since disks are directly attached to the network
(instead of being indirectly interfaced through the file system). Clients can request operations directly at
the disks; such requests are guided by previous communication with file managers. The key advantage of
such a scheme over conventional centralized storage is that each disk-access request need not pass through
a file manager; information provided by the file managers can be reused for multiple disk-access requests.
Not surprisingly, the scheme leads to remarkable improvements in performance.

However, decoupling file-system management from disk access makes analysis difficult. In particular,
access control lists provide some obvious guarantees in conventional centralized storage, and it is not im-
mediately clear whether those guarantees hold in the distributed architecture of NAS. We approach this
problem by studying NAS as an implementation of “ideal” storage. More precisely, we prove that NAS
systems preserve certain security properties of their abstractions as ideal storage systems. As a side effect,
we simplify reasoning over NAS systems—since reasoning over the simpler specifications can suffice.

We analyze a basic NAS protocol using the reduction technique outlined above. Consider NAS systems
with clients C;, Cj, .. ., a file manager M, and a disk D. Let op range over disk operations and K and K’ be
secret keys shared between M and D. The protocol is sketched in the following diagram.

G — M : op (1)

M — C; : mac((i,op),K) (2) ifaccess(i,op) = allow
M — C; : mac({iop),K') (2) ifaccess(i,op) =deny
¢ — D (op’, xc) (3)

D — r (4) if x = mac((_,0p'),K)

In the protocol,
1. C; communicates to M its intent to request op.

2. M issues an appropriate capability if i has access to op. The capability is a message authentication
code that contains the permission (i,op) signed with K; informally, it serves as an unforgeable proof
of authorization for op to D. On the other hand, if i does not have access to op then M issues a fake
“capability” that uses K’ instead of K.

3. C; requests D to service op’ and sends as proof of authorization.

4. D replies if « is a correct capability for op’.

We model this protocol in an applied pi calculus [7]. Clients C;,Cj,... are modeled as processes in the
calculus, that communicate with the special processes M and D on distinct authentication channels ;, j,
and B;, Bj, A NAS system is specified as a process

(vit) (viezai, Bi) ([;czCi | (vK) (M| D))
Here
e v is a binder that, intuitively, generates fresh names or keys.
e | is parallel composition.
e T indexes clients that participate “honestly” in the protocol.

Other, possibly dishonest clients are left unspecified; we assume them to be part of an arbitrary attacker.
Now consider simpler, ideal storage systems with clients C/, C]’«, ... and a file system S. The protocol is
as follows.
G — s o (1)

S — C]{ : r (2) ifaccess(j,op') = allow
In the protocol,

1. Cj requests S to service op’.

2. Sreplies if j has access to op’.

As above, C/, C]’-, ... are modeled as processes that communicate with the special process S on distinct au-
thentication channels §;, B, . . .; an ideal storage system is specified as a process

(vn) (Viefﬁi) (|igfcz/' |'S)

where 7 indexes clients that participate “honestly” in the protocol.

We reduce NAS systems to ideal storage systems and show that the former systems are fully abstract
with respect to the latter ones. We define a simple syntactic translation [-] from honest clients in NAS to
honest clients in ideal storage (e.g., C; is translated to C]’-). We lift this translation to systems:

[(vit) (viezai, Bi) (;ezCi | (vK) (M| D)) = (vit) (viezBi) (liez[Cil | S)
We observe behaviors via tests. A test is itself a process, and can use a special channel w. A process P

passes a test E if P | E —*—", that is, if the parallel composition of P and E may eventually output on
w. P is testing equivalent to another process Q (written P ~ Q) if P and Q pass the same tests. Intuitively,
P ~ (Q means that P and Q cannot be distinguished by any environment. Several security properties are
defined in terms of indistinguishability. We prove that NAS systems preserve all such properties of their
specifications.

Theorem 2.1 (Full abstraction). For any pair of NAS systems N1 and Np: Ny ~ Ny if and only if [N7] ~ [Ny].

Full abstraction [64] has been studied as a powerful concept for implementing secure systems [2]; it has
also been used for establishing security properties of various communication mechanisms [9, 8]. Intuitively,
an implementation is fully abstract if it preserves observable information. For example, fake capabilities
need to be issued to preserve observable information on static access control in NAS. Not surprisingly,
full abstraction is fairly fragile, and can be broken by many reasonable implementations in practice. In
particular, dynamic access control in NAS gives rise to counterexamples to full abstraction that appear
impossible to avoid given any reasonable storage specification.

We briefly explain the previous comment. Suppose that a NAS client C communicates to the file man-
ager M its intent to request op. M must then return an appropriate capability that depends non-trivially on

dynamic permissions. Indeed, M must communicate some information on those permissions to the disk
D via that capability. Now consider whether the capability leaks any information to the environment. If
it does, then we need a reliable way of simulating this leak in the specification. For such a simulation to
exist, the file system specification S must communicate similar information on dynamic permissions to the
environment; moreover such communication must not modify the storage state, yet influence decisions for
future service to correctly simulate future uses of the capability in NAS. Clearly such a specification does
not remain “ideal”. On the other hand, if the capability does not leak any information to the environment,
then C cannot know whether the capability “works” without requesting D to service op and sending that
capability as proof of authorization. Now we need a reliable way of simulating the capability’s failures.
Once again, the necessary specification does not remain “ideal”.

In the latter case, however, it is possible to conservatively approximate such failures with a reasonably
ideal storage specification. Fortunately, this approximation does not affect the preservation of a large class
of safety properties that include security properties like secrecy and integrity. We now observe behaviors
via quizzes. Quizzes distinguish finer than tests—a quiz is a test with a term and a set of names that occur

(i) ()

“fresh” in the term. A process P passes a quiz (E,u,7n) if P | E —* —— ', that is, if the parallel compo-
sition of P and E may eventually output # on w with the names # fresh in u. Secrecy and integrity can be
defined in terms of quiz failure. We prove that NAS systems preserve quiz failures of their specifications.
Here [E]| composes E with a “wrapper” process, and [-] on terms preserves static equivalence.

Theorem 2.2 (Safe refinement). For any NAS system N: if N passes (E,u, 1) then [N'] passes ([E], [u], 7).

2.1.2 Automated proofs for key-based access controls in untrusted storage!

Our next case study is a storage design that does not rely on storage servers to provide confidentiality. Con-
tents of files are cryptographically secured, and keys for writing and reading those contents are managed
by the owners of those files. Moreover, the protocol is designed for economic key distribution and cryptog-
raphy in the presence of dynamic access control by file owners. The special schemes introduced for these
purposes complicate the protocol and its security properties. Implementations of (variants of) the protocol
can be found in several file systems with untrusted storage [55, 61].

In the basic protocol, principals are qualified as owners, writers, and readers of files. The owner of a file
generates and distributes keys for writing and reading contents of the file. The write-key is used to encrypt
and sign contents; the read-key is used to verify and decrypt those contents. The keys can be revoked by the
owner to dynamically control access to the file; a new write-key and a new read-key are then generated and
distributed appropriately. The new write-key is used for subsequently writing the file. Notably, the file is
not immediately secured with the new write-key. As such, the previous read-key can be used to verify and
decrypt the contents of the file until the file is re-written. This scheme, called lazy revocation, aims to prevent
redundant cryptography and is justified by the following observations. Firstly, since the existing contents
of the file come from the previous writers, signing those contents with the new write-key wrongly indicates
that they come from the new writers. Secondly, encrypting the contents with the new write-key cannot
guarantee secrecy from the previous readers, since the contents may be known to those readers before the
revocation.

Further, the new readers can derive the previous read-key from the new read-key. This scheme, called
key rotation, complements lazy revocation and aims to prevent redundant key distribution. Indeed, the
new readers should be able to read the existing file contents, and key rotation relieves those readers from
maintaining the previous read-key for that purpose. On the other hand, the previous write-key cannot be
derived from the new write-key. (In any case, such a derivation does not appear to have any obvious use.)

We study the basic protocol and its properties in ProVerif [19], a tool designed by Bruno Blanchet for
automatic verification of security protocols?. In the model, we abstract several cryptographic constructs
and their properties with a few function symbols and term equations. Specifically, we use function symbols

IThe material presented here is part of ongoing work that has not yet been published.
2We build a few optimizations into the tool for this particular enterprise.

pkgen and skgen to construct the correct write-key and read-key from a version number and a secret owner
key; we model encryption and signing with a constructor write; we model verifying and decryption with
a deconstructor read and the equation

reduc read(f,write(f,x,pkgen(v,sk)),skgen(v,sk)) = x.

We define a binary predicate geq that implements > over version numbers. We write principals as
applied pi-calculus processes with events [46]. Specifically, we define generic processes for owners, honest
and dishonest readers, and honest and dishonest writers, and define an oracle for unwinding read-keys.
(Honest principals are those that follow protocol; dishonest ones are those that go corrupt.) The code is
sketched in Figure 1.

Properties of the protocol are written as correspondence queries over events [78, 46]. We automatically
prove the following queries.

query let mx = m;

attacker:mx ==>
ev:isreader(skx, rx, vx)
ev:corrupt (rx,vx)
ev:iswriter(skx, wx, vy)
ev:puts(wx, mx, vy)
geq:vx,vy.

PR

query ev:gets(rx, mx, vx) ==>
ev:isreader(skx, rx, vx)
& ev:iswriter(skx, wx, vx)
& ev:puts(wx, mx, vx)

ev:isreader(skx, rx, vx)
& ev:iswriter(skx, wx, vx)
& ev:corrupt (wx,vx).

The queries formalize the main security properties of the protocol. The first is a secrecy property. Informally,

If the attacker gets a term intended to be secret, then that term must have been written by an honest writer,
and a reader must have gone corrupt after that term was written.

The second is an integrity property. Informally,

If an honest reader gets a term, then that term must have been written by an honest writer, or a writer
must have just gone corrupt.

The protocol is implemented in the file system Plutus with RSA cryptography. Unfortunately, the imple-
mentation is not faithful to the model above. In particular, terms that correspond to read-keys can be
derived from other terms that are available to both readers and writers. Consequently, writers can become
readers. We expect a weaker secrecy property in this model. Informally,

If the attacker gets a term intended to be secret, then that term must have been written by an honest writer,
and a reader or a writer must have gone corrupt after that term was written.

However proving this theorem for a detailed model of the Plutus implementation in ProVerif appears to be
difficult. Specifically, overloading several primitive cryptographic equations in the model appears to cause
termination problems. However we can prove this theorem for a model of an abstract implementation in
ProVerif. We expect to manually prove the preservation of security properties of interest for this reduction,
as in Section 2.1.1.

let

processOwner =
(* owner creates a new group and serves requests for that group *)
new sk;
... 1 (* initializes version to zero *)
v (* revokes keys, increments version *)
|
(!

(* if r is not a revoked reader and if the current version is not less than v *)
event isreader(sk, r, v);
(* returns read-key (skgen(v, sk), v) to reader r on a secure channel *)

)
|
(!
(x if w is not a revoked writer and if the current version is not less than v *)
event iswriter(sk, w, Vv);
(* returns write-key (pkgen(v, sk), v) to writer r on a secure channel *)
)
).
let processHonestReader =
(*x reader r obtains a read-key (rkey,v) and uses key to read file *)
in(f,crypt);
let n = read(f,crypt,rkey) in
event gets(r, n, v).
let processDishonestReader =
(* reader r obtains a read-key (rkey,v) and leaks key to the attacker *)
event corrupt(r,v);
out(c, rkey).
let processHonestWriter =
(* writer w obtains a write-key (wkey,v) and uses key to write file *)
nev m;
event puts(w, m, v);
! out(f,write(f,m,wkey)).
let processDishonestWriter =
(*x writer w obtains a write-key (wkey,v) and leaks key to the attacker *)
event corrupt(w,v);
out(c, wkey).
let processUnwind =
(* unwinds a read-key to a read-key for a previous version *)
process

((! processQOwner)
| (! processHonestReader) | (! processDishonestReader)
| (! processHonestWriter) | (! processDishonestWriter)
| (! processUnwind)
)
Figure 1: Principals as applied pi calculus processes in ProVerif

8

2.1.3 Automatic logical analysis of label-based access controls in an operating system>

Next we outline a study of a commercial operating system with dynamic label-based access control. There
are access control models that guarantee protection against information flow vulnerabilities by design.
These include the multi-level security (MLS) models of Bell-La Padula [16] for confidentiality and Biba [17]
for integrity. In these models, processes and resources are associated with immutable markers called labels.
Labels denote trust levels as well as protection boundaries, and form a lattice—the simplest such lattice
has two elements LO and HI. Processes and resources created by trusted users are given the label HI, and
those created by untrusted users are given the label LO. Access control policies based on labels are enforced
throughout the system. For instance, a strict MLS policy mandates that a HI process can only read, write
and execute HI resources, and a LO process can only read, write and execute LO resources, so that bad
information flows are prevented by design. However conventional MLS models are impractical. It can often
be advantageous to change labels of either processes or resources depending on the security context. For
example, a file downloaded from the Internet can receive the label LO (untrusted), but can later be classified
by elevating the label to HI if the integrity of the file can be established by other means (e.g., by validating a
digital certificate). Conversely, a resource can be created by a higher-level process and declassified for use by
a lower-level process. A process created by a high-level principal can run with a lower label to implement
the principle of least privilege (Which states that a process should be given only the required level of privilege
to execute its task at hand) and subsequently access high-level resources via explicit label elevations.

The Microsoft Windows Vista operating system (henceforth referred to as “Vista”) implements MLS
with integrity labels. The MLS model features customized rules that constrain how labels can evolve over
time. The model aims to prevent privilege-escalation attacks and code tampering by downloaded viruses,
among other flows. At the same time, labels are flexible enough to allow safe classification and declassifica-
tion. For example, if f is an untrusted executable downloaded from the Internet and consequently labeled
L0, an administrator can still execute f by creating a process p, declassifying p to L0, and subsequently ex-
ecute f in p with L0 privileges. As such, executing f cannot do much damage to the system (since sensitive
operations such as deleting files or making privileged system calls are denied to a LO thread).

While dynamic label changes enable more functionality, they also open the door for information-flow
vulnerabilities that can be exploited over time. For example, the L0 thread p running the downloaded file
f as described above cannot directly modify a HI resource r—yet, it can trick another HI process g (perhaps
via a LO graphical interface) to classify f to HI, and then execute f. In particular, this thread can now modify
the HI resource r.

Designers of MLS systems experiment with various rules for classification and declassification. For each
such rule, there might be hidden vulnerabilities that can be exploited by changing labels on existing pro-
cesses and resources, or by creating new processes and resources, or both. We provide a uniform analysis
technique to study such rules, and automatically detect all possible runtime exploits on information flow
properties. In particular, we use this technique to analyze the Vista MLS model and enumerate various
possible attacks on this model.

At the core of our technique is a new language called Dynamic Datalog, that extends standard con-
strained Datalog with temporal operators for creating and modifying simple objects. We code information
flow violations as queries in this language, and use query evaluation to find potential attacks. Dynamic Dat-
alog has some carefully designed restrictions—names can be created only through unary predicates, only
unary predicates can be transformed, and transition guards need to satisfy some monotonicity conditions.
(Fortunately all these restrictions are satisfied by Vista’s label dynamics.) We show that query evaluation
for Dynamic Datalog is decidable. Our crucial insight is that with these restrictions, it is possible to reduce
the temporal query evaluation problem to the query satisfiability problem in a subset of standard (static)
Datalog. Then, we adapt a decision procedure due to Halevy et al [50] to decide this satisfiability problem.

3The material presented here is part of ongoing work that has not yet been published.

2.1.4 Related work

Various cryptographic implementations of distributed access control have been proposed as part of the
security designs of NAS [43, 74, 63, 80, 71, 59]. However, the security analyses of these implementations
have been at best semi-formal. An exception is Gobioff’s security analysis of a NAS protocol using belief
logics [43].

Abadi and Lamport study the concept of refinement mappings for correct implementations [11]. There,
a specification implements another if the behaviors of the former are contained in those of the latter. We
borrow some of their ideas in our study of NAS, although their notion of correctness does not strictly
apply in our case. Abadi studies the concept of full abstraction [64] for secure implementations [2]. We
use variants of the pi calculus [65] to study security properties of systems; related techniques have been
developed in [7]. We employ a variation of may-tests to observe the behavior of systems. Proofs based on
may-testing for safety and security properties have also been studied elsewhere (e.g., [70, 10]).

Various cryptographic implementations of decentralized access control have been proposed as part of
the security designs of untrusted storage [61, 55, 40, 41]. Again, the security analyses of most of these im-
plementations have been at best semi-formal. An exception is the work of Maziéres and Shasha on data
integrity for untrusted storage [61]. There, they formalize a notion of integrity called fork consistency, and
propose a protocol that realizes this notion. Informally, fork consistency implies that the storage server can-
not act dishonestly in an undetectable manner; any such act prevents certain users from seeing any future
version of certain files. Several systems with untrusted storage (including Plutus [55]) rely on this protocol
for data integrity. Another exception is the work on computational proofs of lazy revocation schemes for
untrusted storage by Backes et al. [14, 13]. The schemes in these studies build on that proposed in [55] and
described in Section 2.1.2, and are proved to be computationally secure. In contrast, we focus on symbolic
security; symbolic security proofs often have computational counterparts, as first studied in [12].

Blanchet’s Proverif [19] is a powerful tool that can analyze security protocols written in the applied pi-
calculus, and has been successfully applied in several contexts [5, 58]. Logical analyses of access control
models also appear elsewhere (e.g., [34, 75, 68]).

2.2 On access control and types for security

We now present some initial work on type systems that exploit access control for secrecy and integrity.
Specifically, we consider a typed pi calculus with file-system constructs where secrecy relies on an inter-
play between permissions and knowledge of names. We then consider a system of polymorphic types for
a concurrent object calculus that allows methods to implement dynamic specifications via safe dynamic
access control. Finally we consider a integrity-typed calculus for protection in an operating system with
label-based access control.

2.2.1 Permissions and secrecy types in a file system environment

Secrecy properties can be guaranteed through a combination of static and dynamic checks. We present a
study of the interplay of such checks in a pi calculus with file-system constructs. The calculus supports
both access-control checks and a form of static scoping that limits the knowledge of terms—including file
names and contents—to groups of clients. We design a system of secrecy types for the calculus. While the
typing is static, it applies to a program subject to dynamic access-control checks.

We consider “ideal” storage systems similar to those of Section 2.1.1, where clients interact among them-
selves and with a common file system. The file system organizes files in directories. We assume that clients
are indexed by a set co, so that the set of clients is {Cy | k € co}. There is a set of channels {B | k € oo} on
which clients may send requests to the file system. Upon receiving a request on B, the file system decides
whether the request is allowed by the access-control policy for the index k. Access-control rules come in
three flavors: rules of the first kind give access rights to specific files; rules of the second kind give default
access rights to arbitrary files under specific directories; rules of the third kind give rights to assert rules of

10

the other two kinds. We focus on two operations on file contents, read and write, and an operation grant on
file permissions.

We refer to certain subsets of client indices as groups. Some of those sets are induced by an access-
control policy—for instance, the set of clients who have read access to a certain file. It is not true, however,
that only those clients who have read access to a file may come to know its contents: a client who has access
may read the contents, then share it with another client who is not allowed to read the file. While such
sharing is often desirable, it is reasonable to try to limit its scope—we would want to know, for instance, if
clients who have been granted access to sensitive files are leaking their contents, either intentionally or by
mistake, to dishonest ones.

We use groups as a declarative means of specifying boundaries within which secrets may be shared.
To make the definition of these groups more concrete, we draw a distinction between honest clients and
potentially dishonest ones. Honest clients are those who play by the rules—they are disciplined in the
way they interact with other clients and the file system, and this conformance may be checked statically by
inspecting their code (viz. by typechecking). We let a proper subset Z of co index honest clients. The re-
maining clients are assumed to be dishonest; in general they may make up an unknown, arbitrary attacker.
Secrecy groups span either only subsets of honest clients (thus excluding all dishonest clients) or all clients
(the group “public”).

A secrecy intention is declared by stating that a certain name belongs to some group. In our type system,
this declaration is made by assuming a type for a name. In turn, a type can be associated with a secrecy
group, called its reach. Informally, the reach of a type is the group within which the inhabitants of that type
may be shared. Typing guarantees that secrecy intentions are never violated, i.e., a name is never leaked
outside the reach of its declared type.

Let G range over subsets of Z, and H range over G and co. The grammar of types is as follows.

TV = declared types
G[T) polyadic channel
Un untrusted
HA{T} file name

T ::= types
Tv declared type
H'/H directory name
Wr(T) write contents
Rd(T) read contents
Gry grant permissions
Req; (i € 7) request channel
#H'/H{T} file path

Declared types are types with which new names can be declared in the calculus. Types have the following
informal meanings.

e The type H{T} is given to a file name; this typing means that the file name may be shared within
the group H, while the contents may be shared within the reach of the type T. This type construct is
somewhat similar in form to the traditional type construct G[T] for symmetric channels [26]. However,
the name of a symmetric channel can never be less secret than its contents, since by knowing its name
one can know what it carries. On the other hand, a file with a publicly known name may contain
secrets, and these contents may be protected by dynamic access control.

e The type H'/H is given to a directory name; this typing means that the directory name may be shared
within the group H’, and may contain files whose names may be shared within the group H.

e The type #H'/H{T} is given to a file path file(d/ f); this typing means that the directory name d has
type H'/H, and the file name f has type H{T}. The file path may be shared within the group H' N'H,
while the contents may be shared within the reach of the type T.

11

e The types Wr(T) and Rd(T) are respectively given to commands for writing and reading file contents
of type T.

e The type Gry is given to commands that grant permissions to index k.
e The type Req; is given to an honest client’s request channel §;.
e The type Un is given to untrusted terms, typically those that an attacker may know.

For a type T, the group within which the inhabitants of that type may be shared is given by its reach || T||,
defined next:

I = NITING |H/H| = H |H{T}]| = H
IRA(T)| = |T] We()| = Tl flGr] =
#H HITH = MR Reqll = 1} [Un] =

Any type whose reach is oo is called a public type; a term that belongs to o is a public term.

Typechecking a system involves typechecking client code and the file-system state under the same as-
sumptions I'. Specifically, typechecking imposes discipline on the code of honest clients and restricts the
permissions of dishonest clients. Not surprisingly, the partition between honest and dishonest clients plays
a central role in typechecking the system. Client code as well as the file-system state generate typing con-
straints that finally determine whether the partition is valid, i.e., whether all honest clients are well-typed,
and whether permissions are suitably restrictive for the remaining (possibly dishonest) ones. Arriving at
the correct partition may be delicate: overestimating the set of honest clients does not help if one of those
clients is ill-typed; underestimating this set imposes more constraints on permissions. Once we do have
a valid partition, however, we can prove that an honest client (or indeed a subset of honest clients) can
protect secrets from all other (honest and dishonest) clients.

Informally, typing ensures that any term used by an honest client C; must have a type whose reach
includes i. A subtyping rule allows any public type to be treated as untrusted. As a result, public directo-
ries and public file names may be used by and shared between all clients. Subtyping is not invertible; in
particular, an honest client may not receive a public file name on an untrusted channel and then request
a file operation on it. Typing also ensures that dishonest clients can access only those public files whose
contents are public. Accordingly, dishonest clients may not have default permissions on public directories
with public files. Further, dishonest clients may not grant themselves any of these potentially dangerous
permissions.

A well-typed system remains well-typed during execution. This property is crucial to our main result.
We view an attacker as arbitrary code that interacts with the system via dishonest clients. An attacker is
modeled by its knowledge, which is a set of names, and is an upper bound on the set of free names in its
code (see [4, 26] for similar analyses). Let S range over such sets of names.

Definition 2.3 (S-adversary). A closed process E is an S-adversary if all declared types in E have reach oo and
fn(E) C S.

Next, we provide a definition of secrecy, using the usual notion of escape (similar to that in, e.g., [4, 26]).
A term is revealed if it may eventually be published on a channel known to the adversary. The notion of
adversary is slightly generalized.

Definition 2.4 (Secrecy). Let P and Q be closed processes, S be a set of names, { be a file-system state, and u be a
closed term. Let 1 = fn(u) — fn(P, Q, S, {).

1. Under the assumptions 7i : T, P reveals u to (Q,S) via { if P| Q| E| {—* Nl for some S-adversary E
and ¢ € fn(Q)US.

2. If u has type T under assumptions T and ||T|| C G, then u is a (I > G)-secret.

12

Theorem 2.5 (Secrecy by typing and access control). Suppose that the file-system state { and each honest client
C; (i €) are well-typed under assumptions I'. Further suppose that |T'(s)|| = oo for each s € S. Then for any
trusted group G and fresh assumptions I, I1;cgC; never reveals a (I',I" > G)-secret to (I1ye7_gCy, S) via (.

In other words, in a well-typed system a secret meant to be shared only within a subset of honest clients
is never revealed to the other (honest and dishonest) clients.

2.2.2 Dynamic access control and polymorphic types in a concurrent object calculus

Our next topic is a study of dynamic access control for safe administration and usage of shared resources.
We use a convenient characterization of access control in terms of capabilities: a resource may be accessed
if and only if a corresponding capability is shown for its access. This view provides an immediate low-level
abstraction of access control “by definition”; moreover the view is independent of higher level specifications
on resource usage (say, in terms of types, or identities of principals). The separation facilitates higher
level proofs, since it suffices to guarantee that the flow of a capability that protects a resource respects
the corresponding high-level intention on resource usage. The proofs in turn rely on a sound low-level
implementation of access control in terms of capabilities. Fortunately, to that end, a capability for a resource
can be identified with a pointer to that resource. Exporting a direct link to a resource, however, poses
problems for dynamic access control, as discussed by Redell in his dissertation (1974). Redell suggests a
simple alternative that uses indirection: export indirect pointers to a local, direct reference to the resource,
and overwrite this local pointer to modify access to that resource [73]. We revisit that idea here.

We study safe dynamic access control in a concurrent object language. Resources are often built over
other resources; dependencies between resources may entail dependencies on their access assumptions for
end-to-end safety. A natural way to capture such dependencies is to group the related resources into objects.
We develop a variant of Gordon and Hankin’s concurrent object calculus concg [45] for our study. In concg,
as in most previous object calculi (e.g., [6, 20, 77]), a method is accessed by providing the name of the parent
object and a label that identifies the method. For example, for a timer object ¢ in the calculus, with two
methods, tick and set, knowing the name ¢ is sufficient to call (or even redefine) both methods (f.tick, t.set).
We may, however, want to restrict access to set to the owner of f, while allowing other users to access tick;
such requirements are not directly supported by concg.

Our calculus provides veils for implementing flexible access control of methods. Veils are similar to
Redell’s indirect access pointers. More specifically, a veil is an alias (or “handle”) for the label that identifies
a particular method inside an object definition. A method is invoked by sending a message on its veil;
method access is modified by re-exporting a different veil for its label. A method call crucially does not
require the name of the parent object. An object name, on the other hand, is required for access modification
and redefinition of methods—thus object names are similar to Redell’s local references (or “capabilities”). In
the sequel, informally, a capability is a reference to an object, and veils are indirect references to its methods.
A capability is meant to be shared between the owner and other administrators of an object, and veils
are meant to be made available to the users of its methods. Dependencies between object methods often
require their redefinitions and access modifications to be simultaneous—thus the calculus features a general
“administration” primitive.

We show a type system for the resulting language that guarantees safe manipulation of objects with re-
spect to dynamically changing specifications. Informally, we allow object methods to change their exported
“type views” at runtime via dynamic binding. Resource administrators can not only control resource usage
at runtime, but also dynamically specify why they do so. This flexibility is desirable since persistent re-
sources (e.g., file systems, memory) are typically used in several different contexts over time. For example,
files are often required to pass through intervals of restricted access; memory locations are dynamically
allocated /deallocated to map different data structures over several program executions. By a combina-
tion of access control (as provided by the language) and static discipline (provided by the type system)
we can show that the intentions of the users and administrators of those resources are respected through
and between such phases of flux. In particular, by labeling types with secrecy groups, we show that well-
typedness guarantees secrecy under dynamic access control, even in the presence of possibly untyped,

13

active environments.
We begin by presenting the calculus. The syntax is as follows.

u,v = results
X variable
n name (capability or veil)
di= denotations
il = c(x)(y)b] object
a,b:= expressions
u result
n—d denomination
(vn)a restriction
arb fork
letx =ainb evaluation
£(u) internal method call
0= (y)b internal method update
o{u) external method call
u—d external update (“administration”)

In the object [Z = g(x)(yf\)/b], the variable x abstracts “self”; for each label ¢; € ¢, u; is a veil for the
method identified by that label; the method’s body b; takes the parameter y;. Expressions have the following
informal meanings.

u is a result (a variable or name) that is returned by an expression.
p +— d attaches the capability p to an object d.
(vn) a creates a new name n that is bound in the expression 4, and executes a.

a I bis the (non-commutative) parallel composition of the expressions a and b; it returns any result
returned by b, while executing a for side-effect. This form, introduced in [45], is largely responsible
for the compactness of the syntax, since it provides an uniform way to write expressions that return
results, and “processes” that exhibit behaviors. (Of course, expressions that return results can also
have side-effects.)

let x = a in b binds the result of the expression a to the variable x and then executes the expression b;
here x is bound in b.

¢(u) means a local method call inside an object; see external call.
¢ <= (y)b means a local method update inside an object; see external update.

?(u) means an external call on the veil v, with argument u; in the presence of a denomination p — d
where d exports v for a defined method, the corresponding method expression is exported by substi-
tuting veiled calls for internal calls, self updates for internal updates, p for the abstracted self variable,
and u for the formal parameter.

u <« d means an external update on the capability u; in the presence of a denomination u +— d’, the
veils exported by d replace those exported by d’, and the methods defined by d augment or override
those defined by d’; the capability u is returned.

As mentioned above, we allow methods to change types at runtime: the type of a method corresponds
dynamically to the type of the veil it exports. The following general principles govern our type discipline.
One, an object update is consistent only if the types of the new veils match up with the types of the method
definitions. Two, type consistency forces some methods to be overridden—we call these methods “flat”.

14

Methods whose types are parametric with respect to the types of the flat methods need not be overridden.
This form of polymorphism is typically exhibited by higher-order (generic) functions, compositionally de-
fined procedures, or (in the degenerate case) methods that have static types, i.e., whose types do not change.
We call these methods “natural”. The primary goal of the type discipline is flux robustness, i.e., type safety
despite dynamic changes to type assumptions for methods. Dynamic access control is used in an integral
way to enforce safety.

To specify and verify secrecy, we introduce a universe of indices co and secrecy groups as in Section
2.2.1. Let G range over proper subsets of co or group variables (ranged over by &), and ‘H range over G and
0. Let p range over the qualifiers “flat” and “natural”.

S, T = types
X type variable
Obj9[C : (S)TP] capability type scheme
Veil9 (u.l : (S)T) veil type
(3x)T dependent union type
Null null type
Un untrusted type

Typed processes declare types for new names. Types have the following informal meanings.

e X ranges over type variables. Group and type variables appear in capability signatures (see below).

e A capability signature Obj9[: (S)T¥] is a type scheme that assigns types (S;)T; and qualifiers p; to
the methods ¢; € 7 of a denoted object. The group G corresponds to the set of administrators for that
object. The scheme binds group and type variables that are shared by the types of the methods in
the signature. We interpret a type scheme as an universally quantified type over its bound variables,
while leaving the bound variables implicit (4 la polymorphic types in ML [66]).

e A veil type Veil9(u.l : (S)T) is dependent on a capability u, and instantiates the type scheme for
a method / in the signature of that capability. The veil expects an argument of type S and returns
a result of type T. The group G corresponds to the set of users—the “access-control list’—for the
method referenced by the veil. We use dependence in the veil type to prevent the same veil from
being exported by different objects. (A similar “no-confusion” property is required, for instance, of
datatype constructors [32].)

e Dependent union types (3x)T allow capability dependencies to be passed without explicit commu-
nication of the capabilities themselves. The type system thus supports the separation of roles of veils
and capabilities (as intended) despite enforcing necessary dependencies between them.

e The type Null is given to an expression whose result, if any, is ignored.
e Finally, the type Un is given to any expression whose result, if any, is untrusted.

As before, the relationship between types and groups is made explicit by a reach function. Moreover we
define group and type substitution; it is mostly standard, except for the substitution of co for a group
variable that annotates a type, which “rounds off” that type as untrusted.

We prove that well-typed code never leaks secrets beyond declared boundaries, even under arbitrary
untrusted environments. As usual, the result relies on a standard but non-trivial preservation property:
well-typed expressions preserve their types on execution.

2.2.3 Labels and integrity types in an operating system environment*

Next we outline a study of protection provided by a commercial operating system by combining runtime
mechanisms with static discipline. The mechanisms are as discussed in Section 2.1.3; they complement con-

4The material presented here is part of ongoing work that has not yet been published.

15

ventional MLS controls with some non-standard features, e.g., mutability of labels, for richer functionality.
These features open the door for vulnerabilities that are eliminated by static discipline. For this purpose,
we design a calculus that can express dynamic creation and relabeling of threads and locations, packing
and execution of binaries, and other usual operating system constructs. In particular, the calculus may be
seen as an intermediate language for writing and executing code on (an abstraction of) Vista. More broadly,
the language is a concurrent imperative calculus with dynamic mandatory access control. We design a type
system for this language that guarantees protection of trusted code from arbitrary untrusted environments.
Protection is formalized as an integrity property on locations: loosely, locations whose contents are trusted
can never contain data that flows from untrusted code. The type system itself formally articulates some of
the so-called best practices in Vista [1], among other principles. The dynamics of labels pose several tech-
nical challenges (going well beyond standard declassification [67]). Indeed, labels protect both code and
locations, and locations can in turn contain executable code—and in the untyped language, label casts can
lead to integrity violations in various ways. We obtain a standard but non-trivial preservation theorem for
the type system that provides the desired runtime protection guarantees.

2.2.4 Related work

Static analyses have been quite helpful in guaranteeing high-level safety properties of distributed systems:
indeed, a significant body of work focuses specifically on safe resource usage [38, 21, 54, 57, 62, 22,23, 24, 72].
Some analyses use access levels, as declared via static type annotations, to guarantee the absence of access
violations at runtime [53, 69, 31, 23, 72]. In contrast, our type systems do not guarantee the success of access
checks; indeed, type soundness depends on the failure of some of those checks. A similar approach is
reflected in hybrid typechecking [37].

Our secrecy type systems borrow the concept of groups from an intermediate type system developed in
the study of group creation [26]. Kirli’s mobility regions [56] for distributed functional programs are also
similar to groups as presented here. Bugliesi et al. develop another calculus that uses group creation to
specify discretionary access-control policies [24]. Ideas similar to group creation also appear in the work
of Braghin ef al. on a calculus for role-based access control [22]. It is however not immediate to see how
to apply these approaches to our setting. In [24], for example, clients declare access groups; in our setting
clients can instead declare end-to-end secrecy intentions, and it is possible to verify that access control
respects such intentions. Here secrecy is not defined as the absence of certain flows of information (that is,
as some sort of non-interference property [44]). Rather, secrecy is presented as the impossibility of certain
communication events (for instance, sending a message that contains a particular sensitive value). On the
other hand, Banerjee and Naumann examine the use of access control for secure information flow [15].

Several other works emphasize distribution. Thus, in the language KLAIM [33], a type system checks
that processes have been granted the necessary right to perform operations at specified localities [69]. Hen-
nessy and Riely describe a typing system for a distributed pi-calculus that ensures that agents cannot access
the resources of a system without first being granted the capability to do so [53]. Bugliesi et al. explore
access-control types for the calculus of boxed ambients [23] with a typing relation similar in form to ours,
but without dynamic access control—access control is specified in terms of static security levels.

Some other works allow specifications to be dynamic to reflect changing assumptions during execution.
Dynamic specifications are often desirable when reasoning about persistent resources. When additional
runtime guarantees can be exploited, dynamic specifications typically also allow finer analyses than static
specifications. Along those lines, one body of work studies the enforcement of policies specified as security
automata [76, 51]. Yet another studies systems with declassification, i.e., conservative relaxation of secrecy
assumptions at runtime [67]. Ling and Zdancewic [60] study some intriguing aspects of integrity in the
presence of declassification. There is also some recent work on compromised secrets [47, 49] in the context of
network protocols. In comparison, our analyses apply more generally to changing assumptions at runtime.
Perhaps closest to our work are analyses developed for dynamic access control in languages with locality
and migration [52, 48]. Similar ideas also appear in a type system for noninterference that allows the use of
dynamic security labels [79]. Polymorphism in the context of dynamic typing has been studied by Duggan
in [35, 36].

16

3 Towards defense of the thesis

We now review our initial work in the light of the thesis stated in Section 1.1, and discuss work that remains
to be done to defend that thesis. We also provide a rough timeline.

3.1 Discussion on preliminary results and remaining work

In Section 2.1 we outline correctness proofs for three contrasting implementations of access control. The first
of these implementations appears in a storage design with networked storage servers. There, the focus is
on distributed enforcement of access control. Permissions are communicated from the site of maintenance
to the site of enforcement via cryptographically secured capabilities. The second access-control implemen-
tation appears in a storage design with untrusted storage servers. There, the focus is on decentralized
mechanisms for discretionary access control. Permissions are explicitly distributed as file-access keys, and
files are cryptographically secured so that they can be accessed only by the correct keys. The third access-
control implementation appears in a commercial operating system. There, the focus is on system-wide
mandatory enforcement of access control. Permissions are based on dynamic protection labels.

These case studies highlight contrasting access-control designs. Each of those designs is appropriate
for the underlying system with its particular assumptions and guarantees. Further, these studies highlight
complementary proof techniques. The first of these is a reduction technique that simplifies security proofs
for the systems under study by showing those systems preserve security properties of much simpler sys-
tems. The second technique uses an automatic tool ProVerif to prove concrete security properties for the
systems under study. The third technique uses a decidable logic to automatically prove or disprove security
properties of several experimental variants of the systems under study.

It might be instructive to compare these techniques and clarify their limitations. We plan to apply these
techniques to other examples. For example, it may be possible to apply the reduction technique to show
that systems with untrusted storage and cryptography (as described in Section 2.1.2) preserve security
properties of simpler systems. Specifically, in Section 2.1.2 we mention the apparent limitations of ProVerif
in automatically proving security theorems for a detailed concrete model of the protocol implemented in
Plutus; on the other hand ProVerif can automatically prove those theorems for an abstract model with lesser
details. We expect that this situation can be aptly resolved by a manual reduction analysis that shows that
the concrete model is a faithful refinement of the abstract model with respect to the security properties of
interest.

On the other hand, it may be possible to analyze various label-based operating-system access controls
in ProVerif, rather than in a decidable logic. ProVerif uses an underlying logical resolution engine over
a language of Horn clauses with function symbols; this language is undecidable. The resolution engine
incorporates several sound optimizations for efficiency. We expect that ProVerif can find attacks in some of
these experiments quite fast; however we do not expect ProVerif to terminate in all the experiments, or to
find all possible attacks in any particular experiment.

Next, in Section 2.2 we outline three type systems that exploit runtime access-control support in the
underlying language to prove secrecy and integrity properties. The first of these studies explores the in-
terplay of file permissions and knowledge of file names for secrecy. The second study explores the role of
dynamic access control on object methods for type safety in the presence of objects that implement dynamic
specifications. The third study explores a combination of static types and dynamic labels for protection in
an operating system.

Each of these typing analyses complement conventional static discipline with dynamic checks provided
by the language runtime. In other words, violations of intended properties that are not caught statically
are always caught at runtime. This verification method seems to be quite useful in practice. We plan to
further investigate these techniques. In particular, we are interested in applying the type discipline for
objects with dynamic access control to study systems with untrusted storage and key-based access control
as described in Section 2.1.2. Indeed in the calculus described in Section 2.2.2, veils seem to be particularly
close to access keys—both provide a mechanism for dynamic discretionary access control. We plan to make

17

this connection explicit by modeling protocols for untrusted storage in the language. The type system can
then be used to reason about systems that implement those protocols. Another possible application of this
type discipline is in memory management, and we may have a closer look at this topic in the future. We
also plan to show an abstract machine for the calculus that demonstrates the feasibility of implementing
the calculus using threads, stacks, and heaps.

We are interested in exploring if actual Vista binaries can be certified using a possibly extended version
of the typed process calculus for protection in (an abstraction of) Vista mentioned in Section 2.2.3. Specifi-
cally, we envision a two-tier system, wherein a model extractor extracts a process expression (in an extended
version of the process calculus) from the binary, and the type system operates on the process expression to
find information-flow violations.

Going further, we may explore other connections between information flow and access control. We
have already shown some techniques that exploit access control for information-flow properties. Perhaps
information flow can be suitably exploited for access-control properties. Indeed certain integrity properties
are necessary to ensure robust declassification [67].

While following up on these lines of work, we also plan to group related results and provide unifying
perspectives on those results. Further, we plan to publish some of these results in archival journals. Finally,
we plan to survey the state of the art on formal techniques for secure storage, and present a coherent story
about our contributions in the field.

3.2 Timeline

We propose the following tentative timeline that roughly spans the next two years.

Winter 2007 Expect to finish our study of the protocol implemented in Plutus, and finish ongoing work
described in Sections 2.1.3 and 2.2.3.

Spring 2007 Plan to further explore connections between information flow and access control, and follow
up on work described in Sections 2.2.2,2.1.3, and 2.2.3.

Summer 2007 There is a possibility of doing an internship. Otherwise, plan to prepare previous work for
publication in journals.

Fall 2007 Expect to continue preparing previous work for publication in journals, and plan to study peer-
to-peer file systems for anonymity.

Winter 2008 Plan to seek several examples beyond the ones we study where our techniques can be applied,
and others where our techniques seem inadequate.

Spring 2008 Expect to complete a survey of the state of the art on formal techniques for secure storage.
Summer 2008 Expect to finish writing the dissertation.

Fall 2008 Expect to defend our thesis.

4 Conclusion

We conclude by summarizing what we expect to be the main contributions of this thesis, and by speculating
on its likely impact on system security.

Based on this thesis, we expect to be able to argue that formal techniques are effective for specifying
and verifying security properties of a variety of storage systems. Our contributions will partly lie in adapt-
ing existing analysis techniques developed for the study of secure communication, where possible. Other
contributions will lie in motivating, developing, and applying new techniques to security problems that
arise in storage systems due to dynamic access control. Finally, and perhaps most importantly, we expect

18

to present a coherent view of the state of the art; indeed we hope that one will be able to comment on the
applicability of the studied techniques to storage systems beyond those considered in the thesis.

Most systems today rely on a combination of communication and storage. While secure communication
is fairly well understood, existing technology for secure communication is not enough for system-wide
security. We believe that what is needed beyond that technology is an understanding of the foundations of
access control for secure storage. From this perspective, we expect techniques and insights developed in
this thesis to impact the analysis of system security.

References

[1] Windows Vista Developer Center. http:/ /msdn.microsoft.com/windowsvista/.

[2] M. Abadi. Protection in programming-language translations. In ICALP’98: International Colloquium on
Automata, Languages and Programming, pages 868-883. Springer, 1998.

[3] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic programs. In
POPL’02: Principles of programming languages, pages 33-44. ACM, 2002.

[4] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical Computer Science,
298(3):387-415, 2003.

[5] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculus. In ESOP’04: European
Symposium on Programming, pages 340-354. Springer, 2004.

[6] M. Abadi and L. Cardelli. An imperative object calculus. In TAPSOFT95: Theory and Practice of Software
Development, pages 471-485. Springer, 1995.

[7] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In POPL’01: Princi-
ples of Programming Languages, pages 104-115. ACM, 2001.

[8] M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their compilation. In POPL’00:
Principles of Programming Languages, pages 302-315. ACM, 2000.

[9] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions. Information
and Computation, 174(1):37-83, 2002.

[10] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the spi calculus. Information and
Computation, 148(1):1-70, 1999.

[11] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science,
82(2):253-284, 1991.

[12] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). Journal of Cryptology, 15(2):103-127, 2002.

[13] M. Backes, C. Cachin, and A. Oprea. Secure key-updating for lazy revocation. In ESORICS’06: European
Symposium on Research in Computer Security, pages 327-346. Springer, 2006.

[14] M. Backes and A. Oprea. Lazy revocation in cryptographic file systems. In SISW "05: Security in Storage
Workshop, pages 1-11. IEEE, 2005.

[15] A.Banerjee and D. Naumann. Using access control for secure information flow in a Java-like language.
In CSEW’03: Computer Security Foundations Workshop, pages 155-169. IEEE, 2003.

[16] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations and model. Tech-
nical Report M74-244, MITRE Corp., 1975.

19

[17] K. J. Biba. Integrity considerations for secure computer systems. Technical Report TR-3153, MITRE
Corp., 1977.

[18] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network objects. ACM SIGOPS Operating Systems
Review, 27(5):217-230, 1993.

[19] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In CSFW’01: Computer
Security Foundations Workshop, pages 82-96. IEEE, 2001.

[20] P.D. Blasio and K. Fisher. A calculus for concurrent objects. In CONCUR'96: Concurrency Theory, pages
655-670. Springer, 1996.

[21] P.D. Blasio, K. Fisher, and C. Talcott. A control-flow analysis for a calculus of concurrent objects. IEEE
Transactions on Software Engineering, 26(7):617-634, 2000.

[22] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based access control. In CSFW’04:
Computer Security Foundations Workshop, pages 48-60. IEEE, 2004.

[23] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: the calculus of boxed ambi-
ents. ACM Transactions on Programming Languages and Systems, 26(1):57-124, 2004.

[24] M. Bugliesi, D. Colazzo, and S. Crafa. Type based discretionary access control. In CONCUR’04: Con-
currency Theory, pages 225-239. Springer, 2004.

[25] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the Royal Society
of London A, 426:233-271, 1989. A preliminary version appeared as Digital Equipment Corporation
Systems Research Center report No. 39, February 1989.

[26] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. Information and Computation,
196(2):127-155, 2005.

[27] A. Chaudhuri. Dynamic access control in a concurrent object calculus. In CONCUR’06: Concurrency
Theory, pages 263-278. Springer, 2006.

[28] A.Chaudhuri and M. Abadi. Formal security analysis of basic network-attached storage. In FMSE’05:
Formal Methods in Security Engineering, pages 43-52. ACM, 2005.

[29] A. Chaudhuri and M. Abadi. Formal analysis of dynamic, distributed file-system access controls. In
FORTE'06: Formal Techniques for Networked and Distributed Systems, pages 99-114. Springer, 2006.

[30] A.Chaudhuri and M. Abadi. Secrecy by typing and file-access control. In CSFW’06: Computer Security
Foundations Workshop, pages 112-123. IEEE, 2006.

[31] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control. In CSFW’03: Computer
Security Foundations Workshop, pages 170-184. IEEE, 2003.

[32] T. Coquand. Pattern matching with dependent types. In TYPES’92: Types for Proofs and Programs.
Informal record. Online version of the proceedings at http://citeseer.ist.psu.edu/71964.html,
1992.

[33] R. de Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents interaction and
mobility. IEEE Transactions on Software Engineering, 24(5):315-330, 1998.

[34] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and reasoning about dynamic access-
control policies. In IJCAR'06: International Joint Conference on Automated Reasoning, pages 632-646.
Springer, 2006.

20

[35] D. Duggan. Dynamic typing for distributed programming in polymorphic languages. ACM Transac-
tions on Programming Languages and Systems, 21(1):11-45, 1999.

[36] D. Duggan. Type-based hot swapping of running modules (extended abstract). In ICFP’01: Interna-
tional Conference on Functional Programming, pages 62-73. ACM, 2001.

[37] C. Flanagan. Hybrid type checking. In POPL’06: Principles of programming languages, pages 245-256.
ACM, 2006.

[38] C. Flanagan and M. Abadi. Object types against races. In CONCUR'99: Concurrency Theory, pages
288-303. Springer, 1999.

[39] C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies. In ESOP’05:
European Symposium on Programming, pages 141-156. Springer, 2005.

[40] K. Fu. Integrity and access control in untrusted content distribution. PhD thesis, Massachusetts Institute of
Technology, 2005.

[41] K. Fu, S. Kamara, and Y. Kohno. Key regression: enabling efficient key distribution for secure dis-
tributed storage. In NDSS’06: Network and Distributed System Security. The Internet Society, 2006.

[42] G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E. Feinberg, H. G. C. Lee, B. Ozceri, E. Riedel, and
D. Rochberg. A case for network-attached secure disks. Technical Report CMU—-CS-96-142, Carnegie
Mellon University, 1996.

[43] H. Gobioff. Security for a High Performance Commodity Storage Subsystem. PhD thesis, Carnegie Mellon
University, 1999.

[44] J. A. Goguen and J. Meseguer. Security policies and security models. In SSP’82: Symposium on Security
and Privacy, pages 11-20. IEEE, 1982.

[45] A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and typing. In HLCL'98:
High-Level Concurrent Languages, pages 248-264. Elsevier, 1998.

[46] A.D. Gordon and A. Jeffrey. Typing correspondence assertions for communication protocols. Theoret-
ical Computer Science, 300(1-3):379-409, 2003.

[47] A.D. Gordon and A. Jeffrey. Secrecy despite compromise: types, cryptography, and the pi-calculus. In
CONCUR’05: Concurrency Theory, pages 186-201. Springer, 2005.

[48] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges acquisition. In
ICALP’03: International Colloquium on Automata, Languages, and Programming, pages 119-132. Springer,
2003.

[49] C. Haack and A. Jeffrey. Timed spi-calculus with types for secrecy and authenticity. In CONCUR'05:
Concurrency Theory, pages 202-216. Springer, 2005.

[50] A.Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static analysis in datalog extensions. Journal of
the ACM, 48(5):971-1012, 2001.

[51] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference monitoring on .net. In
PLAS "06: Programming languages and analysis for security, pages 7-16. ACM, 2006.

[52] M. Hennessy, M. Merro, and]. Rathke. Towards a behavioural theory of access and mobility control
in distributed systems. In FOSSACS’03: Foundations of Software Science and Computational Structures,
pages 282-298. Springer, 2003.

21

[53] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In HLCL'98: High-Level
Concurrent Languages, pages 174-188. Elsevier, 1998.

[54] M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous pi-calculus. ACM
Transactions on Programming Languages and Systems, 24(5):566-591, 2002.

[55] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: scalable secure file sharing on
untrusted storage. In FAST’03: File and Storage Technologies, pages 29-42. USENIX Association, 2003.

[56] Z. D. Kirli. Confined mobile functions. In CSFW’01: Computer Security Foundations Workshop, pages
283-294. IEEE, 2001.

[57] J. Kleist and D. Sangiorgi. Imperative objects as mobile processes. Science of Computer Programming,
44(3):293-342, 2002.

[58] S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied pi calculus. In
ESOP’05: European Symposium on Programming, pages 186-200. Springer, 2005.

[59] A. W. Leung and E. L. Miller. Scalable security for large, high performance storage systems. In Stor-
ageSS’06: Storage Security and Survivability, pages 29-40. ACM, 2006.

[60] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In POPL’05: Principles of
Programming Languages, pages 158-170. ACM, 2005.

[61] D. Maziéeres and D. Shasha. Building secure file systems out of byzantine storage. In PODC’02: Prin-
ciples of Distributed Computing, pages 108-117. ACM, 2002.

[62] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In VLDB’03: Very
Large Data Bases, pages 898-909. Springer, 2003.

[63] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. Reed. Strong security for network-attached storage.
In FAST’02: File and Storage Technologies, pages 1-13. USENIX Association, 2002.

[64] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science, 4(1):1-22, 1977.

[65] R. Milner,]. Parrow, and D. Walker. A calculus of mobile processes, parts I and II. Information and
Computation, 100(1):1-77, 1992.

[66] R.Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT, 1997.

[67] A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In CSFW’04: Computer
Security Foundations Workshop, pages 172-186. IEEE, 2004.

[68] P.Naldurg, S. Schwoon, S. Rajamani, and J. Lambert. Netra: seeing through access control. In FMSE’06:
Formal Methods in Security Engineering, pages 55-66. ACM, 2006.

[69] R. D. Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control. Theoretical Computer
Science, 240(1):215-254, 2000.

[70] R. D. Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Computer Science,
34(1-2):83-133, 1984.

[71] C. Olson and E. L. Miller. Secure capabilities for a petabyte-scale object-based distributed file system.
In StorageSS’05: Storage Security and Survivability, pages 64-73. ACM, 2005.

[72] F. Pottier, C. Skalka, and S. Smith. A systematic approach to static access control. ACM Transactions on
Programming Languages and Systems, 27(2):344-382, 2005.

22

[73] D. D. Redell. Naming and protection in extendible operating systems. Technical Report MAC-TR-140,
Massachusetts Institute of Technology, 1974.

[74] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E. Long. Authenticating network-attached storage.
IEEE Micro, 20(1):49-57, 2000.

[75] B. Sarna-Starosta and S. D. Stoller. Policy analysis for security-enhanced linux. In WITS'04: Work-
shop on Issues in the Theory of Security, pages 1-12. Informal record. Online version of the paper at
http://www.cs.sunysb.edu/"stoller/WITS2004.html, 2004.

[76] E. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security,
3(1):30-50, 2000.

[77] V. T. Vasconcelos. Typed concurrent objects. In ECOOP’94: European Conference on Object-Oriented
Programming, pages 100-117. Springer, 1994.

[78] T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. ACM SIGOPS Operating
Systems Review, 28(3):24-37, 1994.

[79] L. Zheng and A. Myers. Dynamic security labels and noninterference. In FAST'04: Formal Aspects in
Security and Trust, pages 27—40. Springer, 2004.

[80] Y. Zhu and Y. Hu. SNARE: A strong security scheme for network-attached storage. In SRDS’03:
Symposium on Reliable Distributed Systems, pages 250-259. IEEE, 2003.

23

