On Secure Distributed Implementations of
Dynamic Access Control

Avik Chaudhuri
University of California at Santa Cruz

avik@cs.ucsc.edu

Abstract

Distributed implementations of access control abound in distributed storage protocols. While
such implementations are often accompanied by informal justifications of their correctness, our for-
mal analysis reveals that their correctness can be tricky. In particular, we discover several subtleties
in a standard protocol based on capabilities, that can break security under a simple specification of
access control. At the same time, we show a natural refinement of the specification for which a
secure implementation of access control is possible. Our models and proofs are formalized in the
applied pi calculus, following some new techniques that may be of independent interest.
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1 Introduction

Most file systems rely on access control for protection. Usually, the access checks are local—the file
system maintains an access policy that specifies which principals may access which files, and any access
to a file is guarded by a local check that enforces the policy for that file. In recent file systems, however,
the access checks are distributed, and access control is implemented via cryptographic techniques.

In this paper, we reason about the extent to which such access control implementations preserve the
character of local access checks. In particular, we consider implementations based on capabilities that
appear in protocols for networked storage, such as the Network-Attached Secure Disks (NASD) and
Object-based Storage Devices (OSD) [15, 17] protocols. Such protocols distribute access checks to im-
prove performance. Specifically, when a user requests access to a file, an access-control server certifies
the access decision for that file by providing the user with an unforgeable capability. Subsequently, the
user accesses the file at a storage server by presenting that capability as proof of access; the storage
server verifies that the capability is authentic before allowing access to the file.

We study the correctness of access control in this setting, under a simple specification of local access
control. Implementing static access policies already requires some care in this setting; dynamic access
policies cause further problems that require considerable analysis to iron out. We study these cases
separately, in detail, in Sections 2 and 3. We consider both safety and security for correctness; loosely,
safety requires that an implementation does not introduce unspecified behaviors, and security requires
that an implementation preserves the specified behavioral equivalences. We discover several problems in
a standard implementation that cause safety and security to break under a simple specification of access
control. On the other hand, we find a natural refinement of the specification under which a safe and
secure implementation is possible.

We formalize our results in the applied pi calculus [2]. Basically, the correctness theorems imply
that safety and security proofs for the specification carry over “for free” to the implementation. Our cor-
rectness proofs are built modularly, with carefully designed simulation proofs; we develop the necessary
concepts and proof techniques in Section 4, and outline the proofs in Section 5.



From a high-level perspective, our analysis details how a distributed implementation can be system-
atically designed from a specification, guided by precise formal goals. While our results are based on
formal criteria, we show how violations of each of those criteria can lead to real attacks; further, we
distill the key ideas behind those attacks and propose corrections in terms of useful design principles
(Sections 2 and 3). We indicate how other state machines can be distributed just as well using those
principles (Section 6).

Comparison with related work This paper culminates a line of work that we begin in [12] and continue
in [13]. In [12], we show how to securely implement static access policies with capabilities; in [13], we
present a safe (but not secure) implementation of dynamic access policies in that setting. In this paper,
we carefully review those results, and systematically analyze the difficulties that arise for security in the
case of dynamic access policies. Our analysis leads us to develop variants of the implementation in [13]
that we can prove secure with appropriate assumptions. Further, guided by our analysis of access control,
we outline how to automatically derive secure distributed implementations of other state machines. This
approach is reminiscent of secure program partitioning [24], and deserves further investigation.

Access control for networked storage has been studied in lesser detail by Gobioff [15] using belief
logics [10], and by Halevi, Karger, and Naor [17] using universal composability [11]. The techniques
used in this paper are similar to those used by Abadi, Fournet, and Gonthier for secure implementation
of channel abstractions [3] and authentication primitives [4], and by Maffeis to study the equivalence
of communication patterns in distributed query systems [19]. These techniques rely on programming
languages concepts, including testing equivalence [23] and full abstraction [1,21]. A huge body of such
techniques have been developed for formal specification and verification of systems.

We do not consider access control for untrusted storage [18] in this paper. In file systems for un-
trusted storage, files are cryptographically secured before storage, and their access keys are managed
and shared by users. As such, untrusted storage is quite similar to public communication, and standard
techniques for secure communication on public networks apply for secure storage in this setting. Related
work in that area includes formal analysis of protocols for secure file sharing on untrusted storage [9, 20],
as well as correctness proofs for the cryptographic techniques involved in such protocols [7, 8, 14].

2 Review: the case of static access policies

To warm up, let us focus on implementing access policies that are static. In this case, a secure implemen-
tation already appears in [12]. Below, we systematically reconstruct that implementation, focusing on a
new, detailed analysis of its correctness. This analysis allows us to distill some basic design principles,
marked with bold R, in preparation for later sections, where we consider the more difficult problem of
implementing dynamic access policies.

Consider the following protocol!, NS*, for networked storage. This protocol captures the essence of
the NASD and OSD protocols [15, 17]; as we move along, we present more complicated variants of this
protocol. Principals include users U, V, W ..., an access-control server A, and a storage server S. We
assume that A privately maintains a static access policy I and S privately maintains a store p. Access
decisions under I follow the relation I' -7 op over users U and operations op. Execution of an operation
op under p follows the relation p[op] |} p'[r] over next stores p’ and results 7. Let K 45 be a secret key
shared by A and .S, and mac be a function over messages and keys that produces unforgeable message
authentication codes (MACs) [16]. We assume that MACs can be decoded to retrieve their messages.
(Usually MAC:s are explicitly paired with their messages, so that the decoding is trivial.)

'In protocol names throughout this paper, we use the superscript * or ¢ to indicate whether the access policy in the un-
derlying protocol is “static” or “dynamic”; sometimes, we also use the superscript * or ~ to indicate whether the underlying
protocol is derived by “extending” or “restricting” some other protocol.



(1 v — A op

2 A —- U mac(op, Kag) if 'ty op

2) A - U error otherwise

3 VvV - 8 K

4 S -V T if Kk = mac(op, K 45) and p[op] | p'[r]
4y s - Vv error otherwise

Here a user U requests A for access to an operation op, and A returns a capability for op only if I'
specifies that U may access op. Elsewhere, a user V requests S to execute an operation by sending a
capability x, and .S executes the operation only if x authorizes access to that operation.

What does “safety” or “security” mean in this setting? A reasonable specification of correctness
is the following trivial protocol, IS®, for ideal storage. Here principals include users U, V, W, ... and
a server D. The access policy I' and the store p are both maintained by D; the access and execution
relations remain as above. There is no cryptography.

i) V. — D : op
(i) D —- V :r if 'y op and p[op] U o'[]
(i) D — V : error otherwise

Here a user V requests D to execute an operation op, and V' executes op only if I" specifies that V' may
access op. This protocol is correct “by definition”; so if NS*® implements this protocol, it is correct too.
What correctness criteria are appropriate here? A basic criterion is that of safety [5].

Definition 1 (Safety). Under any context (adversary), the behaviors of a safe implementation are in-
cluded in the behaviors of the specification.

In practice, a suitable notion of inclusion may need to be crafted to accommodate specific imple-
mentation behaviors by design (such as those due to messages (1), (2), and (2) in NS®). Typically,
those behaviors can be eliminated by a specific context (called a “wrapper”), and safety may be defined
modulo that context as long as other, interesting behaviors are not eliminated.

Still, safety only implies the preservation of certain trace properties. A more powerful criterion is
derived from the programming languages concept of semantics preservation (cf. full abstraction [1, 21]).

Definition 2 (Security). A secure implementation preserves behavioral equivalences of the specification.

In this paper, we tie security to an appropriate may-testing equivalence [23]. We consider a protocol
instance to include the file system and some code run by “honest” users, and assume that an arbitrary,
unspecified context colludes with the remaining “dishonest” users. From any NS instance, we derive
its 15® instance by an appropriate refinement map [5] (roughly, a map from implementation states to
specification states). Then NS? is a secure implementation of [S® if and only if for all NS* instances
Q1 and )2, whenever Q1 and ()2 can be distinguished, so can their 15 instances.

A safety counterexample usually suffices to break security. For instance, we are in trouble if oper-
ations that cannot be executed in 1S® can somehow be executed in NS® by manipulating capabilities.
Suppose that I" I/}, op for all dishonest V. Then no such V' can execute op in IS®. Now suppose that
some such V' requests execution of op in NS*. We know that op is executed only if V' shows a capability
k for op. Since « cannot be forged, it must be obtained from A by some honest U that satisfies I' ;7 op.
Therefore:

R1 Capabilities obtained by honest users must not be shared with dishonest users.

(However U can still share x with honest users, and any execution request with « can then be reproduced
in the specification as an execution request by U.)



While (R1) prevents explicit leaking of capabilities, we in fact require that capabilities do not leak
any information that is not available to IS contexts. Information may also be leaked implicitly (by
observable effects). Therefore:

R2 Capabilities obtained by honest users must not be examined (by applying destructors) or compared.

Both (R1) and (R2) may be enforced by typechecking the code run by honest users.

Finally, we require that information is not leaked via capabilities obtained by dishonest users. (Recall
that such capabilities are already available to the adversary.) Unfortunately, a capability for an operation
op is provided only to those users who have access to op under I'; in other words, A leaks information on
I" whenever it returns a capability!? This leak breaks security. Why? Consider implementation instances
@1 and )2 with op as the only operation, whose execution returns error and may be observed only by
honest users; suppose that a dishonest user has access to op in ()1 but not in Q2. Then ()1 and Q)2 can
be distinguished by a context that requests a capability for op—a capability will be returned in ()1 but
not in (Qo—but their specification instances cannot be distinguished by any context.

Why does this leak concern us? After all, we expect that executing an operation should eventu-
ally leak some information about access to that operation, since otherwise, controlling access to that
operation makes no sense. However, the leak here is premature; it allows a dishonest user to obtain
information about its access to op in an undetectable way, without having to request execution of op. To
prevent this leak:

R3 “Fake” capabilities for op (rather than error) must be returned to users who do not have access
to op.

The point is that it should not be possible to distinguish the fake capabilities from the real ones pre-
maturely. Let K 45 be another secret key shared by A and S. As a preliminary fix, let us modify the
following message in NS®.

(2) A — U : mac(op,Kas) if 'ty op

Unfortunately, this modification is not enough, since the adversary can still compare capabilities that are
obtained by different users for a particular operation op, to know if their accesses to op are the same
under I'. To prevent this leak:

R4 Capabilities for different users must be different.

For instance, a capability can mention the user whose access it authenticates. Making the meaning of
a message explicit in its content is a good design principle for security [6], and we use it on several
occasions in this paper. Accordingly, we modify the following messages in NS?.

(2) A — U : mac((U,op),Kas) ifI'Fy op
2y A — U : mac((U op),Kas) otherwise
4 S -V :r if K = mac((_, op), Kas) and p[op] | p'[r]

(On receiving a capability « from V, S still does not care whether V' is the user to which « is issued,
even if that information is now explicit in .) The following result can then be proved (cf. [12]).

Theorem 1. NS? is a secure implementation of 15°.

Recall that in this case, the access policy is forced to be static. It follows that if a capability correctly
certifies an access decision, that decision is always correct. Fortunately, this restriction simplifies the
implementation. However, in general, the access decision certified by a capability may not be correct in
the future. This fact is a major source of difficulties, and we study those difficulties in the next section.

2If we do not care about leaking information on I', then we must allow the same leak in the specification (see Section 3).



3 The case of dynamic access policies

We now consider the general problem of implementing dynamic access policies. Let I' be dynamic;
the following protocol, NS¢, is obtained by adding administration messages to NS®. Execution of an
administrative operation 6 under I" follows the relation I'[0] |} T[r] over next policies I and results 7.

G) W — A : 0
6) A — W : r if ' by Oand T[6] | T[]
(6) A — W : error otherwise

Here a user W requests A to execute an administrative operation 6, and A executes 6 (perhaps modifying
I) if T specifies that W controls 6. The following protocol, IS, is obtained by adding similar messages
to 1S°.

ii) W — D : 0

(iv. D —- W : r if ' Fy 0 and T[6] | T'[r]

(iv'y D — W : error otherwise

Unfortunately, NS¢ does not remain a secure implementation of IS%. Consider the NS¢ pseudo-code
below. Informally, acquire x means “obtain a capability ” and use x means “request execution with
k”; chmod # means “request access modification 6”; and success means “detect successful use of a
capability”. Here « is a capability for an operation op and 6 modifies access to op.

tl acquire k;chmod 0;use k;success
t2 chmod #; acquire k;use k;success

Now (t1) and (t2) map to the same IS d pseudo-code chmod 6; exec op;success, where informally,
exec op means “request execution of op”. (Requesting execution with x in NS¢ amounts to request-
ing execution of op in IS%, so the refinement map from NS¢ pseudo-code to IS pseudo-code erases
occurrences of acquire and replaces occurrences of use with the appropriate occurrences of exec.)
However, suppose that initially no user has access to op, and 6 specifies that all users may access op.
Then (t1) and (t2) can be distinguished by testing the event success. In (t1), x cannot authorize access
to op, so success must be false; but in (t2), x may authorize access to op, so success may be true.

Worse, if revocation is possible, NS? does not even remain a safe implementation of 759! Why? Let
0 specify that access to op is revoked for some user U, and revoked be the event that 6 is executed (thus
modifying the access policy). In IS¢, U cannot execute op after revoked. But in NS?, U can execute
op after revoked by using a capability that it acquires before revoked.

Safety in a special case One obvious way of eliminating the counterexample above is to assume that:

A1l Accesses cannot be dynamically revoked.

This assumption may be reasonable enough for particular applications; crucially, it does not restrict
the access policy from dynamically accommodating new users. On the other hand, it suggests that any
access should be granted only with sufficient care, because that access cannot be subsequently denied.
While this situation is not ideal, it suffices for storing short-term secrets, for example. Further, it allows
us to prove the following new result, without complicating capabilities at all (see Section 5).

Theorem 2. NS¢ is a safe implementation of IS® assuming (A1).

The key observation is that with (A1), since a user cannot access an operation until it can always
access that operation, the user gains no advantage by acquiring capabilities early.

*Some implementation details, such as (R3), are not required for safety.



Of course, we must still find a way to recover safety (and security) with revocation. It is generally
recognized that revocation is problematic for distributed implementations of access control, where au-
thorization is certified by capabilities or keys. At the very least, we expect that capabilities need to be
more sophisticated. Below, we show how to recover safety by introducing time.

Safety in the general case Let A and S share a counter, and let a similar counter appear in D. We use
these counters as (logical) clocks, and refer to their values as time. We require that:

RS Any capability that is produced at time Clk expires at time Clk + 1.

R6 Any administrative operation requested at time Clk is executed at the next clock tick (to time Clk+1),
so that policies in NS¢ and IS? may change only at clock ticks (and not between).

We call this arrangement a “midnight-shift scheme”, since the underlying idea is the same as that of
periodically shifting guards at a museum or a bank. Implementing this scheme is straightforward. To
implement (RS), capabilities carry timestamps. To implement (R6), administrative operations are exe-
cuted on a “scratchpad” = instead of I', and at every clock tick, I' is updated to =. Accordingly, we
modify the following messages in NS¢ to obtain the protocol NS+ .

(2) A — U:mac((U,op,Clk),Kas) if'Fyop
(2') A — U: mac((U,op,Clk), K 45) otherwise

4 S - V:r if K = mac((_, op, Clk), K as) and p[op] |} p'[r]
6) A — W:r if ' by 0 and Z[0] || Z'[r]
Likewise, we modify the following message in IS to obtain the protocol IS+,
(iv) D — W :r ifl'by 0and Z[0] | Z/[r]

Now a capability that carries Clk as its timestamp certifies a particular access decision at the instant Clk:
the meaning is made explicit in the content, following good practice. However, recall that MACs can be
decoded to retrieve their messages. In particular, one can tell the time in NSt by decoding capabilities.
Clearly we require that:

R7 If it is possible to tell the time in NS*, it must also be possible to do so in IS4+,

So we must make it possible to tell the time in IS?*. (The alternative is to make it impossible to tell
the time in NS9*. We can do this by encrypting the timestamps carried by capabilities—recall that the
notion of time here is purely logical. We consider this alternative later in the section.) Accordingly, we
add the following messages to IS4F.

(v)

U —- D : ()
(vij D — U

Clk

The following result can then be proved. A version of this result already appears in [13], but the
definition of safety there is rather ad hoc; in Section 5, we prove this result again, for a stronger definition
of safety.

Theorem 3. NS is a safe implementation of 1S+,

Unfortunately, beyond this result, [13] does not consider security. In the rest of this section, we
analyze the difficulties that arise for security, and present new results.



Obstacles to security It turns out that there are several recipes to break security, and expiry of capabil-
ities is a common ingredient. Clearly, using an expired capability has no counterpart in IS%*. So:

R8 Any use of an expired capability must block (without any observable effect).

Indeed, security breaks without (R8). Consider the NS+ pseudo-code below. Informally, stale means
“detect any use of an expired capability”. Here  is a capability for operation op.

t3 acquire k;use k;stale

Without (R8), (t3) can be distinguished from a false event by testing the event stale. But consider
implementation instances (01 and ()2 with op as the only operation, whose execution has no observable
effect on the store; let @)1 run (t3) and ()2 run false. Since stale cannot be reproduced in the spec-
ification, it must map to false. So the specification instances of ()1 and )2 run exec op; false and
false. These instances cannot be distinguished.

Before we move on, let us carefully understand what (R8) implies. The soundness of this condition
hinges on the fact that blocking is not observable by may-testing [23]. However, under some reasonable
assumptions on fairness and communication reliability, blocking in fact becomes observable. Then, the
only way to deal with this issue is to allow a similar observation in the specification, say by letting an
execution request block non-deterministically. We consider such a solution in more detail below; but
first, let us explore how far we can go with (RS).

Expiry of a capability yields the information that time has elapsed between the acquisition and use of
that capability. We may expect that leaking this information is harmless; after all, the elapse of time can
be trivially detected by inspecting timestamps. Why should we care about such a leak? If the adversary
knows that the clock has ticked at least once, it also knows that any pending administrative operations
have been executed, possibly modifying the access policy. If this information is leaked in a way that
cannot be reproduced in the specification, we are in trouble. Any such way allows the adversary to
implicitly control the expiry of a capability before its use. (Explicit controls, such as comparison of
timestamps, are not problematic, since they can be reproduced in the specification.)

For instance, consider the NSt pseudo-code below. Here x and «’ are capabilities for operations
op and op’, and # modifies access to op.

t4 acquire «’; chmod 6; acquire k;use K; success; use «’; success
t5 chmod #; acquire k;use k; success;acquire ’;use k’; success

Both (t4) and (t5) map to the same 154+ pseudo-code chmod 6; exec op; success; exec op’; success.
But suppose that initially no user has access to op and all users have access to op’, and 6 specifies that
all users may access op. Now, the intermediate success event is true only if 4 is executed; therefore it
“forces” time to elapse for progress. It follows that (t4) and (t5) can be distinguished by testing the final
success event. In (t4), ' must be stale when used, so the event must be false; but in (t5), " may be
fresh when used, so the event may be true. Therefore, security breaks.

Security in a special case One way of plugging this leak is to consider that the elapse of time is
altogether unobservable. (This prospect is not as shocking as it sounds, since time here is simply the
value of a privately maintained counter.) What assumptions do we require to make this possible?

Note that we expect that executing an operation has some observable effect. If initially a user does
not have access to an operation, but that access can be dynamically granted, then the elapse of time can
be detected by observing the effect of executing that operation. So we must assume that:

A2 Accesses cannot be dynamically granted.



On the other hand, we should allow accesses to be dynamically revoked, since otherwise the access
policy becomes static, and we do not need to consider time at all. Now, if initially a user has access to
an operation, but that access can be dynamically revoked, then it is possible to detect the elapse of time
if the failure to execute that operation is observable. So we must further assume that:

A3 Any unsuccessful use of a capability blocks (without any observable effect).

To validate our assumptions, let us try to adapt the counterexample above with (A2) and (A3). Suppose
that initially all users have access to op and op’, and 6 specifies that no user may access op. Consider
the NS+ pseudo-code below. Informally, failure means “detect unsuccessful use of a capability”.

t6 acquire x’; chmod f;acquire k;use x;failure;use x’; success

t7 chmod #; acquire x;use k;failure;acquire k';use k'; success

Both (t6) and (t7) map to the same IS%T pseudo-code chmod 0; exec op; failure; exec op’; success.
Fortunately, now (t6) and (t7) cannot be distinguished, since the intermediate failure event cannot
be observed if true. (In contrast, recall that the intermediate success event in (t4) and (t5) forces a
distinction between them.) Indeed, with (A2) and (A3) there remains no way to detect the elapse of
time, except by comparing timestamps. To prevent the latter, we assume that:

A4 Timestamps are encrypted.

Let E45 be a secret encryption key shared by A and S. The encryption of a term M with E 45 under a
random coin m is written as {m, M } g, .. Randomization takes care of (R4), so capabilities do not need
to mention users. Now, we remove message (4") and modify the following messages in NS 4+ to obtain
the protocol NS~

(2) A — U : mac({op,{m,Clk}g,q)
(2) A — U : mac({op,{m,Clk}g,q)

yKas) ifTFy op
,Ka5) otherwise

4 S — V:r if K = mac((op, {-, Clk} g,4), Kag) and p[op] | p'[r]

Likewise, we remove the messages (iv’), (v), and (vi) from IS%* to obtain the protocol IS%~. We can
then prove the following new result (see Section 5):

Theorem 4. NS¢~ is a secure implementation of 1S = assuming (A2), (A3), and (A4).

The key observation is that with (A2), (A3), and (A4), the adversary cannot force time to elapse,
so capabilities do not need to expire! In this model, any access revocation can be faked by indefinitely
delaying the service of requests that require that access. Note that (A4) is perfectly reasonable as an
implementation strategy. On the other hand, (A2) is a bit conservative; in particular, new users must
be accommodated by some default access policy that is based (at least partially) on static information.
Finally, (A3) is as problematic as (R8). Thus, this result is largely of theoretical interest. Its main
purpose is to expose the limitations of a secure implementation under the current specification.

Security in the general case More generally, we may consider some static analysis for plugging all
problematic information leaks caused by expiry of capabilities. (Any such analysis must be incomplete
because of the undecidability of the problem.) However, several complications arise in this effort.

e The adversary can control the elapse of time by interacting with honest users in subtle ways. Such
interactions lead to counterexamples of the same flavor as the one with (t4) and (t5) above, but are
difficult to prevent statically without severely restricting the code run by honest users. For instance,
even if the suspicious-looking pseudo-code chmod 6; acquire k;use k; success in (t4) and (t5) is
replaced by an innocuous pair of inputs on a public channel ¢, the adversary can still run that code in
parallel and serialize it by a pair of outputs on ¢ (which serve as “begin/end” signals).



e Even if we restrict the code run by honest users, such that every use of a capability can be serialized
immediately after its acquisition, the adversary can still force time to elapse after a capability is sent
to the file system and before it is examined. Unless we have a way to constrain this elapse of time,
we are in trouble.

To see how the adversary can break security by interacting with honest users, consider the NS4 pseudo-
code below. Here « is a capability for operation op, and 6 modifies access to op; further, ¢() and w()
denote input and output on public channels ¢ and w.

t8 acquire k;use k;¢(); chmod 6; ¢(); success; w()

t9 c();c();w()

Although use x immediately follows acquire « in (t8), the delay between use x and success can be
detected by the adversary to force time to elapse between those events. Suppose that initially no user
has access to op or op’, 0 specifies that a honest user U may access op, and 6’ specifies that all users
may access op’. Consider the following context. Here r(, and /) are capabilities for op’.

— . / / . / . / / =
¢(); acquire k; use k(; failure; chmod 6'; acquire K7; use K7; success; ¢()

This context forces time to elapse between a pair of outputs on c. The context can distinguish (t8) and (t9)
by testing output on w: in (t8), £ does not authorize access to op, so success must be false and there is
no output on w; on the other hand, in (t9), there is. Security breaks as a consequence. Why? Consider im-
plementation instances (01 and (02 with U as the only honest user and op and op’ as the only operations,
such that only U can detect execution of op and all users can detect execution of op’; let Q1 run (t8) and
Q2 run (19). Then the specification instances of @)1 and Q3 run exec op; ¢(); chmod #; ¢(); success; w()
and ¢(); c();w(). These instances cannot be distinguished, since the execution of op can always be de-
layed until 4 is executed, so that success is true and there is an output on w.

Intuitively, an execution request in NS commits to a time bound (specified by the timestamp of the
capability used for the request) within which that request must be processed for progress; but operation
requests in 7S%* make no such commitment. In the end, the only way to deal with this issue is to allow
such a commitment in IS%*. Therefore, we assume that:

A5 In IS?+ atime bound is specified for every operation request, so that the request is dropped if it is
not processed within that time bound.

This assumption leads to a natural refinement of the current specification. Usual (unrestricted) requests
simply carry a time bound oco. Further, (AS) obviates the need for the problematic (R8), since using an
expired capability now has a counterpart in IS%*. Accordingly, we modify the following messages in
159+,

i) V. = D : (opT)

i) D - V :r if Clk <T,T by op, and plop] 4 p'[7]
Now, if a capability for an operation op is produced at time 7" in NS, then any use of that capability

in NS is mapped to an execution request for op in IS+ with time bound 7. We can then prove our
main new result (see Section 5):

Theorem 5 (Main theorem). NS is a secure implementation of 1S d+ assuming (AS).
While this result is quite pleasant, we should take care to understand its limitations.

e On the bright side, (AS) captures and removes the essence of the difficulties of achieving secu-
rity for an implementation of dynamic access control with capabilities. Further, (A5) is not an
unreasonable assumption; in fact, it is very common to implement (AS5) in a file system.

e On the dark side, it seems that (A5) is necessary to reduce security proofs over NS¢ to those
over IS%*. Thus, even in abstract proofs, we are forced to deal with expiry, which is an imple-
mentational artifact. Note that in contrast, we do not require (A5) to reduce safety proofs.



Discussion We now revisit the principles developed in Sections 2 and 3, and discuss some alternatives.

First recall (R3), where we introduce fake capabilities to prevent premature leaks of information
about the access policy I'. It is reasonable to consider that we do not care about such leaks, and wish
to keep the original message (2) in NS®. But then we must allow those leaks in the specification. For
instance, we can make I" public. More practically, we can add messages to 15° that allow a user to know
whether it has access to a particular operation.

Next recall (R5) and (R6), where we introduce the midnight-shift scheme. This scheme can be
relaxed to allow different capabilities to expire after different intervals, so long as administrative opera-
tions that affect their correctness are not executed before those intervals elapse. Let delay be a function
over users U, operations op, and clock values Clk that produces time intervals. We may have that:

R5 Any capability for U and op that is produced at time Clk expires at time Clk + delay (U, op, Clk).

R6 If an administrative operation affects the access decision for U and op and is requested in the
interval Clk,...,Clk + delay(U, op, Clk) — 1, it is executed at the clock tick to time Clk +
delay (U, op, Clk).

This scheme is sound, since a capability for U and op at Clk, that expires at Clk 4+ delay (U, op, Clk),
certifies a correct access decision for U and op between Clk, . .., Clk + delay (U, op, Clk) — 1.

Finally, the implementation details in Sections 2 and 3 are far from unique. Guided by the same
underlying principles, we can design capabilities in various other ways. For instance, we may have an
implementation in which any capability is of the form mac(((U, op, Clk),{m, L}g,.), Kas), Where
m is a fresh nonce and L is the access-decision predicate I' -y op. In particular, the key K 45 is
not required. Although this design involves more cryptography than the one in NS¢, it reflects better
practice: the access decision for U and op under I' is explicit in the content of any capability that certifies
that decision. What does this design buy us? Consider applications where the access decision is not a
boolean, but a label, a decision tree, or some arbitrary data structure. The design in NS+ requires
a different signing key for each value of the access decision. Since the number of such keys may be
infinite, verification of capabilities becomes very inefficient. The design above is appropriate for such
applications, and we discuss it further in Section 6.

4 Definitions and proof techniques

Let us now develop formal definitions and proof techniques for security and safety; these serve as back-
ground for Section 5, where we outline formal proofs for security and safety of NS under 1S+,

Let < be a precongruence on processes and ~ be the associated congruence. A process P under a
context  is written as ¢[P]. Contexts act as tests for behaviors, and P < () means that any test that is
passed by P is passed by @, that is, “P has no more behaviors than @)”.

We describe an implementation as a binary relation R over processes, which relates specification
instances to implementation instances. This relation conveniently generalizes a refinement map [5].

Definition 3 (Full abstraction and security (cf. Definition 2)). An implementation R is fully abstract if

it satisfies: (PRESERVATION) VY(P,Q) € R. V(P',Q)eR. PP = Q=<Q
(REFLECTION) Y(P,Q)€eR. Y(P,Q)eR. Q<Q = PP

An implementation is secure if it satisfies (PRESERVATION).

(PRESERVATION) and (REFLECTION) are respectively soundness and completeness of the imple-
mentation under <. Security only requires soundness. Intuitively, a secure implementation does not
introduce any interesting behaviors—if (P, @) and (P’, Q') are in a secure R and P has no more behav-
iors than P/, then () has no more behaviors than ()’. A fully abstract implementation moreover does not
eliminate any interesting behaviors.
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Any subset of a secure implementation is secure. Security implies preservation of ~. Finally, testing
itself is trivially secure since =< is closed under any context.

Proposition 6. Let p be any context. Then {(P, | P]) | P € WY} is secure for any set of processes V.

On the other hand, a context may eliminate some interesting behaviors by acting as a test for those
behaviors. A fully abstract context does not do so; it merely translates behaviors.

Definition 4 (Fully abstract context). A context o is fully abstract for a set of processes VV if the relation
{(P,¢[P]) | P € W} is fully abstract.

A fully abstract context can be used as a wrapper to account for any benign differences between the
implementation and the specification. In particular, we define an implementation to be safe if it does not
introduce any behaviors modulo such a wrapper.

Definition 5 (Safety (c¢f. Definition 1)). An implementation R is safe if there exists a fully abstract
context ¢ for the set of specification instances such that R satisfies:

(INCLUSION) V(P,Q) € R. Q < ¢[P]

Let us see why ¢ must be fully abstract in the definition. Suppose that it is not. Then for some P
and P’ we have ¢[P] < ¢[P'] and P £ P’. Intuitively, ¢ “covers up” the behaviors of P that are not
included in the behaviors of P’. Unfortunately, those behaviors may be unsafe. For instance, suppose
that P’ is a pi calculus process [22] that does not contain public channels. Further, suppose that { P’}
is taken to be the set of specification instances (so that any output on a public channel is unsafe). Let ¢
be a public channel; suppose that P = ¢(); P’ and ¢ = e | ! &(). Then P £ P and ¢[P] =< ¢[P'], as
required. But clearly P is unsafe by our assumptions; yet P < ¢[P’], so that by definition {(P’, P)} is
safe! Thus, the definition of safety is too weak unless ¢ is required to be fully abstract.

We now present some handy proof techniques for security and safety. A direct proof of security
requires mappings between subsets of <. Those mappings may be difficult to define and manipulate.
Instead, a security proof may be built modularly by showing simulations, as in a safety proof. Such a
proof requires simpler mappings between processes.

Proposition 7 (Proof of security). Let ¢ and 1) be contexts such that for all (P,Q) € R, Q = ¢[P),
P 2 9[Q], and ¢[¢[Q]] X Q. Then R is secure.

Proof. Let (P,Q) € R, P < P',;and (P',Q') € R. Then Q < ¢[P] < ¢[P'] < ¢[v[Q]] = Q' O
Intuitively, R is secure if R and R~! both satisfy (INCLUSION), and the witnessing contexts “can-
cel” each other. A simple technique for proving full abstraction for contexts follows as a corollary.

Corollary 8 (Proof of full abstraction for contexts). Let there be a context o~ such that for all P € W,
¢ L[@[P]] == P. Then ¢ is a fully abstract context for W.

Proof. Take ¢ = ¢~ ! and ¢ = ¢ in the proposition above to show that {(p[P], P) | P € W} is secure.
The converse follows by Proposition 6. g

S Models and proofs

We now outline models of NS+ and IS%*, formalized in the applied pi calculus [2], and present proofs
of our results. Other versions of these protocols that appear in Sections 2 and 3 are treated similarly.
We fix an equational theory that defines natural numbers and tuples, and contains exactly one equa-
tion that involves the symbol mac, which is
msg(mac(z, y)) = @

Natural numbers are required to model time. Further, we identify the set of users by the set of natural
numbers (N), and consider any user not identified in a fixed subset H of N to be dishonest.
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Models We conveniently model the file systems under study by parameterized process definitions [22].
Specifically, both file systems are parameterized by an access policy I', a scratchpad =, a time Clk, and
a store p. For the networked file system, Nfsr = cjk ,, the interface includes channels oy, By, and vir
for every user U; the user U may send authorization requests on «;, execution requests on [y, and
administration requests on 7. For the ideal file system, Ifsr = cix . the interface includes channels ag;,
B¢y, and 7y, for every user U the user U may send time requests on agy, operation requests on (g, and
administration requests on 7;;. The adversary is an arbitrary evaluation context in the language [2].

We encode the relations I by op, p[op] | p'[r], T Fu 6, and Z[0] | Z'[r] in the equational
theory. A networked storage system is described as

NSTL(C) £ (venavBuw)(C | (vKasK as) Nfsrro,)

Here C' is code run by honest users, I" is an access policy, and p is a store; initially the scratchpad is I'
and the time is 0. Similarly, an ideal storage system is described as

ISE(C) 2 (vrero f75)(C | srro )

Channels associated with honest users are hidden from the adversary. The adversary itself is left implicit;
in particular, channels associated with dishonest users are available to the adversary.

Proofs We take < to be the standard may-testing precongruence for applied pi calculus processes:
P =< @ if and only if for all evaluation contexts (, whenever [ P] outputs on the distinguished channel
w, so does p[Q)]. Let I" and p range over terms that do not contain any interface channels, keys, or other
private names used by the file systems under study. Let C' range over well-formed code for honest users
in NSt (see below), and let [_] abstract such C' in IS, We define the implementation relation

IMP £ | ] {(UISEL([CT), NSEL ()}
Lp,C

The function [_] can be described as a compiler from processes to processes. For every U € H, the
compiler translates requests on oy, 3y, and 7y to appropriate requests on oy, 3;;, and 7. Further, the
compiler guarantees strong secrecy of capabilities obtained by user U € H.

We then show evaluation contexts ¢ and 1) such that:

Lemma 9. For any T', p, and C, NS?;(C) =< qb[ISl‘f?;((C])], IS?;([ D =< Y[ S‘H( )], and
S[Y[NSTL(C)]] = NSEE(C).

Specifically, we define processes T{\:?S and T%\és which, for every V' € N\ H, receive requests on avy,
By, and vy and send the requests by appropriate translation on af,, 3y, and 7y, and vice versa. Then:

¢ & (vwemmayByy) (o] (VK) 1Rs)
v 2 (wwemmavBrv) (o 1Y)

where K is a dummy key that is secret to ¢. Roughly, Lemma 9 is proved as follows: a networked
storage system is simulated by an ideal storage system by forwarding public requests directed at Nfs to
a private Ifs interface (via ¢). Capabilities are simulated by terms that encode the same messages, but
are signed with K. Conversely, an ideal storage system is simulated by a networked storage system by
forwarding public requests directed at Ifs to a private Nfs interface (via v). Finally, a networked storage
system simulates another networked storage system where requests directed at Nfs are filtered through a
private Ifs interface before forwarding them to a private Nfs interface (via ¢[¢]). This detour essentially
forces capabilities to be acquired immediately before their use. Now, by Lemma 9 and Proposition 7:
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Theorem 10 (¢f. Theorem 5). IMP is secure.

Further, we show that:
Lemma 11. ForanyT, p, and C, ¢[¢[IS%§([C})H = IS%;((C]).

So, by Lemmas 9 and 11 and Proposition 7, IMIP is fully abstract. Finally:
Theorem 12 (c¢f. Theorem 3). IMP is safe.

Proof. Fix any I', p, and C. By Lemma 9, NSdF:;(C') = (Z)[ISIC%((C} )]. Further, by Lemma 9,
ISdFj;([CD < @Z)[NS%;(C)] = w[gé[ISdF;([CD]]. So, by Lemma 11 and Corollary 8, ¢ is fully ab-
stract (taking ¢~ = ). The result follows by our definition of safety. O

6 Designing correct distributed protocols

In the preceding sections, we present a thorough analysis of the problem of distributing access control.
We now recycle that analysis on a more general problem.

Suppose that we are required to design a distributed protocol that correctly implements a given
specification. For concreteness, we may assume that the specification is a state machine. We can solve
this problem by partitioning the specification into smaller state machines, running those machines in
parallel, and encoding the intermediate outputs of those machines so that they may be released and
absorbed in any order. In particular, we can design NS%* by partitioning IS?* into access control and
storage, running them in parallel, and encoding the intermediate outputs of access control as capabilities.
The same principles should guide any such design. For instance, by (R3) and (R4), intermediate outputs
should not leak information prematurely; by (R5) and (R6), such outputs must be timestamped and the
states on which they depend must not change between clock ticks; and finally, by (AS5), the specification
must allow time-bounded requests.

We sketch a formalization of this idea below. (A detailed treatment is relegated to the appendix.) We
describe a state machine as a directed graph GG. In this graph, we refer to nodes of indegree 0 as input
nodes, and nodes of outdegree 0 as output nodes; some of the other nodes are distinguished as state
nodes. A configuration of G is a tuple (o, 7), where o assigns values to the nodes in GG, and 7 assigns
times to the state nodes in G.

We label each node v in G by a function §,,. The semantics of the state machine is then described as
a binary relation over configurations of . Intuitively, at every node v, the function d,, produces a new
value at v, consuming the values at its incoming nodes; further, if v is a state node, §,, consumes the
value at v, and increments the time at v.

For example, IS may be described by the following graph:

—

@] — k9 — kg — g — k7 — @g
3 *5

In this graph, e; and e5 are input nodes, e3 and eg are output nodes, and *a, x4, and x7 are state nodes.
Intuitively, the values at x2, x4, and %7 are (respectively) scratchpads =, access policies I', and stores
p. The nodes e and e3 carry inputs and outputs for access modifications; the node e¢ carries access
decisions; and the nodes e and eg carry inputs and outputs for store operations. We define the functions
d, for each node v accordingly.

In the appendix, we describe an algorithm that can distribute a given state machine G along any cut
of G, yielding a distributed state machine GS. Intuitively, this algorithm proceeds as follows. For every
edge (v,u) in the cut, we replace (v,u) with the edges (7, %) and (v®,u) in G¥, where T and v* are

13



fresh nodes, and v and v share the secret keys K, 7 and F, 5. Let r be any value at v that is produced
in G by consuming some input values 7 and some state values at times £. The encoded value at v that
is produced in G® is mac((,, {m,r} E.)> Kv) for some fresh nonce m. As such, this value can be
released at v and absorbed at , in parallel. The function ¢,s decodes this value back to r. In other
words, the node v* in G¥ finally carries the same value r as the node v in G.

For instance, IS can be distributed along the cut {(eg,*7)} to obtain NSt as follows:

o — k9 P *4 — Og *7 —— g
! T 7
o3 [ 251 .g
T
[

In particular, de; now produces capabilities of the form mac({(U, op, Clk),{m, L}g, .}, Ke35),
where L is the access decision for U and op at Clk. These capabilities are decoded back by d,s.
[§

We prove that any distributed state machine G derived by our algorithm is a safe and secure imple-
mentation of the state machine GG. The proofs are similar to the ones presented in Section 5, and rely
on a definition of < which is roughly as follows. A context is any graph that can produce values at the
input nodes, consume values at the output nodes, and consume times at the state nodes of a graph. Two
graphs are related by = if under all contexts, whenever an output is produced at the distinguished node
w with the former graph, so is it with the latter graph.

7 Conclusion

In this paper, we present a comprehensive analysis of the problem of implementing distributed access
control with capabilities. While in previous work, we already show how to implement static access
policies securely [12] and dynamic access policies safely [13], here, we explain those results in new
light. In particular, we reveal the several pitfalls that any such design must care about for correctness,
while discovering interesting special cases that allow simpler implementations. Further, we present new
insights on the difficulty of implementing dynamic access policies securely (a problem that has hitherto
remained unsolved). We show that such an implementation is in fact possible if the specification is
slightly generalized. Finally, our analysis turns out to have other applications. Guided by the same
basic principles, we show how to automatically derive secure distributed implementations of other state
machines. This approach is reminiscent of secure program partitioning [24], and investigating its scope
should be interesting future work.

Proof details for all the results in this paper appear in an extended technical report available online
athttp://www.soe.ucsc.edu/~avik/papers/sdidac.pdf.
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Appendix

In this appendix, we provide some additional details on the material of Sections 5 and 6, that may help
the referees. Specifically, in Appendix A, we present the semantics of the applied pi calculus processes
that appear in the models and proofs in Section 5. In Appendix B, we describe the algorithm for deriving
secure distributed state machines, that is outlined in Section 6.

A Details on models and proofs

In Section 5, we consider the file systems Nfsp = ci« , and Ifsp = ik, to be modeled by parameterized
process definitions [22]. For convenience, we express these definitions as extensions of the usual seman-
tic relations of structural equivalence = and reduction — in the applied pi calculus [2]. Processes that
satisfy these extended relations modulo —* are guaranteed to exist. Further, some of the processes that
we require are actually functions [22]; for convenience, we define their semantics directly as functions.

Models Figure 1 shows applied pi calculus models for the file systems under study. We implicitly
assume that U € N. Recall that the file systems are parameterized by an access policy I, a scratchpad =,
a time Clk, and a store p. For the networked file system Nfsp = cik ,, the interface includes channels ags,
By, and vy for every user U; the user U may send authorization requests on gy, execution requests on
By, and administration requests on ;. For the ideal file system Ifsr = cik . the interface includes chan-
nels ap;, 377, and g, for every user U; the user U may send time requests on oy, operation requests on
B> and administration requests on 7y7;. Other parameterized processes such as CReqy; ,, 17, TReqy a7,
EReq,, rs» OReqy o, 101> EOKL op a1, and AReqy; g 5y denote various internal states.

In the equational theory auth(I', U, op) = ok means that U may access op under I'; auth(I', U, ) =
ok means that U controls 6 under I'; exec(L, op, p) = (N, p) means that executing op on store p under
decision L returns N and store p; and exec(L, 0, =) = (N, Z') means that executing 6 on scratchpad
= under decision L returns N and scratchpad ='. We define the following functions:

true ifauth(I',U, op) = ok
false otherwise

true if auth(I',U,0) = ok

erm - :
Permyr g {false otherwise

permF’Uyop = {
t — mac((U, op, C|k>> KAS) if aUth(F, U, Op) = ok
cer F7U70p7clk - maC(<U, Op, CIk),FAS) OtherWISe

orif. — true if Kk = mac(msg(k), Kag)
v "7 false if x = mac(msg(k), K 45)

A networked storage system may be described as

NSTL(C) £ (wenavBuw)(C | (vKasK as) Nfsr o)

Here C' is code run by honest users, I" is an access policy, and p is a store; initially the scratchpad is '
and the time is 0. Similarly, an ideal storage system may be described as

ISE(C) 2 (vyenad B578)(C | srro,)

Channels associated with honest users are hidden from the context. The context itself may be arbitrary
and is left implicit; in particular, channels associated with dishonest users are available to the context.
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(TIME REQUEST) (TIME) o
|f51'*75,c|k,p = a%(x);TReqm | Ifsl",E,CIk,p TReqM | IfSF,E,CIk,p — M<C|k> | |f51'*75,c|k,p

(EXECUTION OK)

(OPERATION REQUEST) perny. ., = L Ck<T

|fSF = Clk.p = ﬂo (0 T fE) OReq | Ifsr =
= P U p’ b b ”,Op, I , F,._,C|k,p
Olzeqli7op7’l7]\4 | Ist,.:,CIk,p ’ EOkL,op,]W | Ist,:,CIk

(EXECUTION)
exec(L, op,p) = (N, p)
EOKL,op,n | Ifsr = cik,p — M(N) | Ifsp = cik,pr

(ADMINISTRATION)
permr ;=L  exec(L,0,E) = (N,Z') (TICK)
Ifsr =,cikp — Ifsz = ciir 1,0

(ADMINISTRATION REQUEST)
Ifsr =.cik,p = 70 (0,7); AReqr; g . | Ifsr = cik,p

AReqy g ar | Ifsr = cip — M(N) | Ifsp =/ cip

(AUTHORIZATION)
cert(T', U, op,Clk) = K

CReqU’Op’M | NfSF’E’Qk’p — M<I€> | NfSF,E,CIk,p

(AUTHORIZATION REQUEST)
NfSF,EA,CIkA,p = CYU(OP7 LC); CReqU,op,:r | NfSDEaC'k’P

(EXECUTION OK)

(EXECUTION REQUEST) verif, = L € {true, false} msg(k) = (-, op, Clk)

Nfsr = cik,p = Bu(k, x); EReq,, , | Nfst = cikp

EReq,, s | Nfst = cik,p — EOkz op.as | Nfsr = cik,p

(EXECUTION)
exec(L, op, p) = (N, )
EOKL,op,a | Nfsr = cik,p — M(N) | Nfsr = cik,pr

(ADMINISTRATION)
permp;, =L  exec(L,0,Z) = (N,Z) (TICK)
— NfSF,E,C”(,p — NfS’: =,Clk+1,p

=,

(ADMINISTRATION REQUEST)
Nfsr = cik,p = (0, 7); AReqy 4, | Nfst = ik

AReqy; g 2 | Nfsp = cikp — M(N) | Nfsr = cik,p

Figure 1: An ideal file system with local access control (above) and a networked file system with dis-
tributed access control (below)

Proofs Let I and p range over terms that do not contain any interface channels, keys, or other private
names used by the file systems under study. Let C range over well-formed code for honest users in
NS, and let [_] abstract such C' in IS4 (see below). We define

IMP = | J {(ISE(1C1), NSE ()
Tp,C

We describe [_] as a typed compilation || under an appropriate type environment I". Let Cert (U, op)
be the type of any capability obtained by user U for operation op. We show a fragment of the compiler

below.
(AUTHORIZATION REQUEST TO TIME REQUEST)

c ¢ fn(Q) [Q1r w:cert(U,op) = P
[(ve) @t (op, c); c(x); QIr = (ve) ag(c); ela); P
(EXECUTION REQUEST TO OPERATION REQUEST)
I'(z) = Cert(V, op) [Qlr =P

[Bu{z, M); Qlr = B (op, x, M); P
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(DUMMY AUTHORIZATION REQUEST) (DuMMY EXECUTION REQUEST)
Ns = av(op, x); (vm) af (m); m(Clk); Z(mac((V, op, Clk), K) [ 185 1Xs = Bv (%, 7); DReq,. , | 1

(DUMMY OPERATION REQUEST)
k = mac(msg(k), K) msg(x) = (V, op, Clk)
DReqn,]\/[ - @<0p7 C|k7 M>

(DUMMY ADMINISTRATION REQUEST)
s = (op, 2); 7 (op, ) | 1K

(DUMMY TIME REQ) (DuMMY OPERATION REQUEST)
msg(y) = (-~ Clk) ©

18 = BV (op, T, 2); (ve) @y {op, c); c(k); DRed,, 7, | 115

1 = ay(@); (ve) avz, o) e(y); 7(CIK) | 118

(DuMMY EXECUTION REQUEST) D A R
msg(x) = (_, _, CIk) Ck<T (DUMMY ADMINISTRATION REQUEST)

R Tstoo,x'io x) | 108
DRequ’M By (r, M) IS Y (op,x); Fv op, ) | 1S

Figure 2: Wrappers

(ADMINISTRATION REQUEST TO ITSELF)
[Plr=0Q
(7 (adm, M); Qv = 7 (adm, M); Q
The omitted fragment may be built from any type system that guarantees strong secrecy of terms of type

Cert(U, op) forany U € H and op.
Next, we show contexts ¢ and 1) such that:

Restatement: Lemma 9. Forany I', p, and C, NS%;(C) = qS[ISf%((C])], IS%;([C’]) = w[NSl‘f;(C)],
and ¢[y[NSL!,(O)]] < NST5(C).

Figure 2 defines processes T%\?s and TINSS, which translate public requests from NS to IS%* and
from IS to NS9*. There, we implicitly assume that V € N\ H. We define

¢ = (wempaV B (o (VK) 1)

v = (rwemmavBrv) (o] 1Y)

B Details on designing correct distributed protocols

In Section 6, we briefly outline a method for distributing state machines. We provide a detailed treatment
of this method below.

State machine as a graph 'We describe a state machine as a directed graph G(V, £). The input nodes,
collected by V; C V, are the nodes of indegree 0. The output nodes, collected by V, C V), are the
nodes of outdegree (. Further, we consider a set of state nodes Vs C V such that V; NV, = . As a
technicality, any node that is in a cycle or has outdegree > 1 must be in V.

Nodes other than the input nodes run some code. Let M contain all terms and C be a strict total
order on V. We label each v € V' \ (V; U V) with a function 4, : Min(®) — MM, and each v € V4
with a function ¢, : M) M — M. Further, each state node carries a shared clock, following the
midnight-shift scheme.
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A configuration (o, T) consists of a partial function o : ¥V — M such that dom(c) O Vs, and a
total function 7 : Vs — N. Intuitively, o assigns values at the state nodes and some other nodes, and 7
assigns times at the state nodes. For any v € V \ V;, the function ¢, outputs the value at v, taking as
inputs the values at each incoming u, and the value at v if v is a state node; further, if such u ¢ Vs, the
value at u is “consumed” on input. Formally, the operational semantics is given by a binary relation ~~
over configurations.

veV\ VUV
Vk € 1..in(v). (uy,v) € € A o(uy) =ty up C ..o C Usp(o) o = U‘VSU(V\{u1,---7uin(v)}
(0,7) ~ (07 [v = 0u(t1, - Lin(w))]s 7)
vE Vs 7(v) = Clk olv) =t
Vk € 1..in(v). (uy,v) € € A o(uy) =ty up C ..o C Usp(o) o = U‘VSU(V\{u1,---7uin(v)}
(0,7) ~ (07 [v = 8u(t1,- -, tin(w), )], T[v — Clk + 1])

As usual, we leave the context implicit; the adversary is an arbitrary context that can write values at V;,
read values at V,, and read times at V;.
For example, a graph that describes 1S+ is

—

@) — k9 <—— k4 — @4 — k7 —— @g
o3 o5

Here V; = {o1, 05}, V, = {®3,05}, Vs = {*o,%4,%7},and V = V; UV, UV, U {eg}. Intuitively, *o
carries scratchpads, and e; and e3 carry inputs and outputs for access modifications; x4 carries access
policies, and eg carries access decisions; x7 carries stores, and o5 and eg carry inputs and outputs for
store operations. We define:

5*2(<k7 0>7 L, (- E>) = exec(permF,Uﬂ? 0,E) (503(< 7E>) =N
0, ({4 E),-) =E deg (L', (K, 0 >) (op, permp U0p>
0xr ({0p, L), (-, p)) = exec(L, 0p,p)  des({N,p)) =

Distribution as a graph cut Once described as a graph, a state machine can be distributed along any
cut of that graph. For instance, IS?* can be distributed along the cut {(eg, 7)} to obtain NS+, We
present this derivation formally in several steps.

Step1 Foreach v € V, let S(v) C Vs be the set of state nodes that have paths to v, and I(v) C V; be
the set of input nodes that have paths to v without passing through nodes in V,. Then G(V, E) can be
written in a form where, loosely, the values at I(v) and the times at S(v) are explicit in o(v) for each
node v. Formally, the explication of G is the graph G(V, €) where V = VU {0 |v € V;} U{di | u € V,}
and € = EU{(0,v) |v eV} U{(u,0) | ueV,}. We define:
ou(t) = (t.t)  ds(t) =t
veV\ (V;uly) 5U(t17"-7tin(y)):t
5U(<Ilat1>a LR <Iin(v)7tin(v)>) = <<Il s Iin('u)>7t>
v E Vs o(v) = (Clk,t) Ou(t1, - ting),t) =1
du({-t1), -, (o tinw)), (Clk, 1)) = (Clk + 1,¢)
This translation is sound and complete.
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Theorem 13. G is Sfully abstract with respect to G.

For example, the explication of the graph for IS4 is:

—

o — *2 — kg — o —_— *7 — @g
T l T !
. L3 * s
! T
o3 o5

Here o(eg) is of the form ((k, op, Clk), (op, permp ; ,,,)) rather than (op,permr; ,,); the “input”
o(e5) = (k, op), the “time” 7(x4) = Clk, and the “output” (op,permp ; ,,) of an access check are
all explicit in o(eg). A capability can be conveniently constructed from this form (see below).

Step 2 Next, let & be any cut. As a technicality, we assume that & N ((V; U Vs) x V) = &. The
distribution of G along & is the graph G3(V%, £%), where V¥ = VU{T | (v,.) € &YU{v® | (v,.) € &}
and £% = (£\ &) U{(@,0%) | (v,.) € &Y U{(v%u) | (v,u) € &Y. Let K, and E, be secret keys
shared by v and v® for every (v, ) € &. We define:

(v,-) € & ult, ... s tinw)) = (1) m is fresh
AS(t1, . tin()) = mac((t, {m,t'} g, ), K)

(v,-) € & 7(S(v)) is included in ¢
)‘i$ <t7 mac(<t7 {*7 t/}Ev>7 KU)>) = (1, t/>
UEV\VZ‘ (U,J%&)

A =4,

Intuitively, for every (v,_) € &y, v® carries the same values in G¥ as v does in G; those values are
encoded and released at v, absorbed at v, and decoded back at v8. For example, the distribution of the
graph for IS* along the cut {(eg, x7)} is:

o — kg T k4 —— eg *7 —  @g
T ! T 1 !
'3 o3 o5 og o3
! T 1
3 5 %

This graph describes a variant of NS?t. In particular, the node eg now carries a capability of the
form mac({(k, op, Clk), {m, (op, permp ; ,,) } E., ), K o), that secures the input, time, and output of
an access check.

Step 3 Finally, G is revised following (A5). The revision of G along & is the graph G# (V# E%),
where V#* = VU {v# | (v,) € &} and EF = EU {(v¥,v) | (v,-) € &}. We define:

(v,u) € & 7(S(v)) <T
)‘#(tlv s >tin(v)7T) = 51;(751, s atin(v))

veV\Vi  (v,0)¢&
N =4,
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Intuitively, for every (v,-) € &, progress at v requires that the times at S(v) do not exceed the time
bounds at v#. For example, the revised form of the graph for IS+ is:

—

O] — kg < kg —— @ —— k7 — @g
! |
o3 .? o5

Here o?f carries a time bound T, and Af; (T, (k,0p), T) = 0ag (I, (k, op)) if T(x4) <T.
We prove the following correctness result.

Theorem 14. G® is fully abstract with respect to G¥.

By Theorem 14, the graph for NSt is fully abstract with respect to the revised graph for S+,

Similarly, we can design NS® from IS®. The induced subgraph of 1S9t without {®1,%2,03,%4}
describes 1S°. We define de((k, 0p)) = (op,permp ) for some static I'. Distributing along the
cut {(eg,*7)}, we obtain the induced subgraph of NS9* without {1, ey, %2, ®3, 83, %4}. This graph
describes a variant of NS*, with o(eg) of the form mac(((k, op), {m, (op,permr 1/ ,,,) } Eoy )5 Kog)-
(Here capabilities do not carry timestamps.) By Theorem 14, the graph for NS? is fully abstract with
respect to a trivially revised graph for IS®, where )\f; ((k, op), () = deg ((k, 0p)).
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