
Static Typing for Ruby on Rails

Jong-hoon (David) An, Avik Chaudhuri, and Jeffrey S. Foster
Computer Science Department, University of Maryland, College Park

Email: {davidan,avik,jfoster}@cs.umd.edu

Abstract

Ruby on Rails (or just “Rails”) is a popular web
application framework built on top of Ruby, an object-
oriented scripting language. While Ruby’s power-
ful features help make Rails development extremely
lightweight, this comes at a cost: Ruby is dynamically
typed, and so type errors in a Rails application can
remain latent until run time, making debugging and
maintenance harder. In this paper, we describe DRails,
a novel tool that brings static typing to Rails appli-
cations to detect a range of run time errors. DRails
works by translating Rails programs into pure Ruby
code in which Rails’s numerous implicit conventions are
made explicit. We then discover type errors by applying
DRuby, a previously developed static type inference
system, to the translated program. We ran DRails on a
suite of applications and found that it was able to detect
several previously unknown errors.

1. Introduction

Web application frameworks have become indispens-
able for rapid web development. One very popular
framework is Ruby on Rails (or just “Rails”), which
is built on top of Ruby, an object-oriented scripting
language. While Ruby allows Rails development to
be extremely lightweight, it also introduces a signif-
icant challenge. Ruby is dynamically typed, and that
means that type errors in Ruby programs, and hence
Rails programs, can remain latent until run time. Our
main observation in this paper is that many common
programming bugs in Rails programs are essentially
due to such type errors. To give some Rails-specific
examples, the programmer could make a typo when
referring to a database table, could call a non-existing
field accessor method, or could make type errors in
Ruby code embedded inside HTML. Anecdotally, the
lack of static types can also impede maintainability, and
means that programmers miss out on the automatically
enforced documentation that types can provide.

Recently, we have been developing Diamondback
Ruby (DRuby), a new static type inference system for
ordinary Ruby code [6, 5]. We would like to bring the
same type inference to Rails to catch common program-
ming bugs in Rails programs. Unfortunately, by itself,
DRuby would be essentially useless on Rails code, for
two reasons.

The first problem is that Rails favors “convention
over configuration” [19], so that analyzing only the
application code would be insufficient. For example,
suppose that an application uses a database table called
students. Rails will automatically abstract rows of this
table as instances of a Ruby class Student, and Rails
will create accessor methods in Student to get and
set fields according to the database schema. While
such a design leads to very concise code, it makes
Rails programs unanalyzable with DRuby, or indeed
with most other static analyses—there are too many
implicitly created methods, which DRuby would think
are missing; too many conventions relating names in
different parts of the application, which DRuby would
fail to check; and too many implicit method calls, which
DRuby would not see, and hence would not type check.
(More examples of this problem appear in Section 2.)

The second problem is that even if we included the
framework code (which implements the conventions)
in our analysis, the resulting code would still be un-
analyzable by DRuby. Indeed, this code uses highly
dynamic, low-level class and method manipulations that
are typically hard to analyze statically.

In this paper, we address these problems with DRails,
a novel tool that brings DRuby’s type inference to Rails.
The key insight behind DRails is that we can make
implicit Rails conventions explicit through a Rails-to-
Ruby transformation, and then analyze the resulting
programs with DRuby. Type errors in the transformed
programs indicate type errors in the original Rails appli-
cations. As far as we are aware, DRails is the first tool
to bring static typing to Rails. Furthermore, we expect
that DRails’s transformation can serve as a front-end for
other static analyses on Rails programs, and the idea of

1

Figure 1. Screenshot from catalog

analyzing programs by transformation can be applied to
other code development frameworks as well.

DRails’s transformation itself is fairly complicated,
because Rails has many moving parts. The major steps
include parsing a Ruby file containing the database
schema; transforming HTML files with embedded
Ruby into pure Ruby code that renders the same web
page; using a dynamic “load-time” analysis to discover
how the Rails application calls the Rails API; and finally
inserting the implied method definitions and calls into
the source code. Some of our implementation details
are interesting in their own right, as they allow us to
optimize our transformation code and provide more
assurance of the faithfulness of the transformed code
(Section 3).

We evaluated DRails by running it on a suite of
11 Rails programs gathered from a variety of sources.
DRails found 12 previously unknown errors that can
cause crashes or unintended behavior at run time.
DRails also identified 2 examples of questionable cod-
ing practice. The fact that DRails could find these errors
is particularly surprising since such applications are of-
ten thoroughly tested during development using Rails’s
in-built testing infrastructure. Furthermore, DRails re-
ported 57 false positives; about half of them were due
to known incompleteness issues in DRuby, and we
expect most of the others to be eliminated with minor
extensions to DRails (Section 4).

We believe these results suggest that DRails is a
promising new tool for preventing errors in Rails ap-
plications, and we think that our transformation-based
approach will prove very useful for many other future
static analyses for Ruby on Rails.

2. Reasoning About Ruby on Rails

Rails is built on top of Ruby, an object-oriented
scripting language [4]. To illustrate how Rails works
and the challenges of reasoning about Rails applica-
tions, we will develop a small program called catalog
that maintains an online product catalog. As we will see

Products
Controller

Product
Model

Companies
View

Companies
Controller

Company
Model

Database

Request

Response

Figure 2. Rails MVC architecture

in the following sections, the small size of the program
is somewhat illusory; there is a lot of implicit code run
by Rails even for this program, and such code typically
blows up the size of programs by a factor of around 2.7
in our experiments.

The database for catalog tracks a set of companies,
each of which has a set of products. In turn, each prod-
uct has a name plus a longer textual description. The
capabilities provided by catalog are illustrated with the
screenshot in Figure 1. This page is generated when the
user visits “〈server〉/companies/info?name=Shoppers”,
and it shows the products belonging to company “Shop-
pers.” In this case, there are two products, “Fudge
Delight” with description “cake,” and “Chill Bill” with
description “beer.” The catalog application also allows
the user to update product descriptions, and it displays
the product listing screen for the owning company af-
terward. For example, assuming “Fudge Delight” has
id 4 in the database, then if the user visits “〈server〉
/products/change/4?description=cake”, the description
for “Fudge Delight” will be updated to “cake,” and the
screenshot in Figure 1 will be displayed.

Rails applications use a model-view-controller
(MVC) architecture [7], in which any web request by
the client is translated into a call to some method in
a controller, which in turn uses a model to perform
database accesses and eventually returns a view, i.e.,
the text of a web page, as the response. Figure 2 shows
how various components of catalog interact. A request
to catalog eventually produces a response after possible
interactions with a database. Internally, catalog has
two models (Company and Product), two controllers
(CompaniesController and ProductsController), and one
view (“companies/view/info.html.erb”). A request gen-
erates a call to one of the controller actions, which
possibly interacts with the database through the mod-
els, and eventually calls the view action to generate a
response. We next discuss the code for these various
components.

2

db/schema.rb

1 create table ‘‘companies’’ do |t|
2 t.string ‘‘name’’
3 end
4

5 create table ‘‘products’’ do |t|
6 t.integer ‘‘company id’’
7 t.string ‘‘name’’
8 t.string ‘‘description’’
9 end

models/company.rb

10 class Company < ActiveRecord::Base
11 has many :products
12 validates uniqueness of :name
13 end

models/product.rb

14 class Product < ActiveRecord::Base
15 belongs to :company
16 validate :unique name in company
17

18 def unique name in company?(x)
19 x.company != company ||
20 x.name != name
21 end
22

23 def unique name in company
24 Product.all.forall do |p|
25 p.unique name in company?(self)
26 end
27 end
28 end

Figure 3. catalog schema and models

2.1. Models

Recall that the catalog application includes two
database tables, one for the companies and one for
their products. The first listing in Figure 3 shows
db/schema.rb, which is a Ruby file that is auto-
generated from the database table. (The code for a
Rails application is split across several subdirectories,
including db/ for the database, and models/, views/,
and controllers/ for the correspondingly named compo-
nents.) This file records the names of the tables and the
fields of each row: the companies table has a name field,
and the products table has fields company id, name, and
description. (A few other, minor details of this file are
omitted for simplicity.)

In Rails, each row in a table is mirrored as an instance
of a model class (henceforth, just “model”), which must
be defined by a file in the models/ directory. The bot-
tom two listings in Figure 3 show the Company class,
corresponding to the companies table, and the Product
class, corresponding to the products table. Note the

singular/plural relationship between model and table
names.

Rails uses the information from schema.rb to au-
tomatically add field setter and getter methods to the
models, among other things. For example, it creates
methods name() (called on line 20) and name=() to get
and set the corresponding field of a Product object.

Models not only have methods added to them based
on the database schema, but they also inherit from the
Rails class ActiveRecord::Base (as shown on lines 10
and 14; < indicates inheritance). This class defines a
variety of useful methods, including several that tell
Rails about relationships between tables. In our exam-
ple, each Product is owned by some Company, and
this is indicated on line 15 by calling the (inherited)
belongs to method with the argument :company (a
symbol). When Rails sees this call, it adds methods
company() and company=() to Product. Analogously,
each company can have many products, indicated by
the call on line 11, which adds methods products()
and products=() (note the pluralization) to Company.
For these methods to function, Rails requires that the
company id field declared on line 6 exist; this field
maps each product to a company.

Next, if a model instance is updated or created, the
save() method (inherited from ActiveRecord::Base) is
called to commit it to the database. This method will
reject objects whose validation methods fail. For exam-
ple, line 12 calls validates uniqueness of :name to
create a validation method that requires the name field
of a company is unique across all companies.

Programmers can also define custom validation
methods that include arbitrary Ruby code. For ex-
ample, line 16 registers the validation method de-
fined in lines 23–27. This method iterates through all
Products in the database (line 24) and, for each one,
calls its unique name in company? method with ar-
gument self. (Note this method’s name differs from
the previous one only in the trailing ?.) This method,
defined on lines 18–21, returns false if the argument has
the same company and name as the receiver.

Possible Errors Caught by DRails. Models already
provide a rich source of errors that DRails can catch:
• Pluralization of model names is implicit in Rails,

and misunderstandings of this convention can lead
to hard-to-understand bugs. Even worse, having a
model with a singular name foo and a model with
its plural foos (or however it is inflected) can cause
a lot of confusion, because Rails will map both to
the table foos (as the plural of foos is foos). DRails
checks for these kinds of bugs, and makes sure all the
models exist as database tables.

3

• Various methods for accessing database columns are
created implicitly by Rails, and since Ruby has no
static type checking, it is easy to make a mistake in
calling such a method and not realize it during de-
velopment. Worse, there are some idiosyncrasies in
Rails’s method generation that programmers might
not be aware of, leading to mistakes. For example,
Rails names join tables using a combination of the
names of the associated tables, and the exact combi-
nation is sometimes difficult to predict. DRails helps
ameliorate such problems by explicitly generating
Ruby code corresponding to auto-generated methods
and then using DRuby to check that method calls are
type correct.
• DRails makes sure the bodies of all programmer-

defined methods are type safe. For example, if
on line 25 the programmer forgets to pass an
argument to unique name in company?, or calls
unique name in company instead, DRails reports
that it cannot find an instance method in class
Product with the required signature. As another ex-
ample, if the programmer moves the || from the end
of line 19 to the beginning of line 20 (a common mis-
take in Ruby, due to line breaks acting as statement
delimiters), DRails reports that while || is expected
to take 2 arguments, it only takes 1 argument here.

2.2. Controllers and Views

Moving on with our example, now that we have
created our models, we can construct the actual
web application. In Rails, the actions available in
a web application are defined as methods of con-
troller classes. The first listing in Figure 4 shows
CompaniesController, which, as do other controllers,
inherits from ActionController::Base. This controller de-
fines an action info that allows clients to list the prod-
ucts belonging to a particular company. This action
is invoked whenever the client requests a URL begin-
ning with “〈server〉/companies/info”, and it expects a
parameter name to be passed as part of the POST or
GET request. When info is called, it finds the Company
row whose name matches params[:name], the requested
name, and stores it in field @company (line 31). The
find by name method called here is implicitly added to
the Company model by Rails. The last step of an action
is often a call to render, which displays a view. In this
case, info includes no such call, so Rails automatically
calls render :info to display the view with the same
name as the controller.

That view, which corresponds to the screenshot in
Figure 1, is shown as the second listing in Figure 4. As
is typical, the view is written as an .html.erb file, which

controllers/companies controller.rb

29 class CompaniesController < ActionController::Base
30 def info
31 @company = Company.find by name (params[:name])
32 end
33 end

views/companies/info.html.erb

34 <h2><%= @company.name %></h2>
35 <h3>Products</h3>
36 <table>
37 <% @company.products.each do |product| %>
38 <tr><td>
39 <%= product.name %> (<%= product.description %>)
40 </td></tr>
41 <% end %>
42 </table>

controllers/products controller.rb

43 class ProductsController < ActionController::Base
44 before filter :authorize, :only ⇒ :change
45

46 def info
47 company = Product.find(params[:id]).company
48 redirect to :controller ⇒ ‘‘companies’’, :action ⇒ ‘‘info’’,
49 :name ⇒ company.name
50 end
51

52 def change
53 @product.description = params[:description]
54 @product.save
55 info
56 end
57

58 private
59 def authorize
60 @product = Product.find(params[:id])
61 if @product.company.name == session[:user] then nil
62 else info
63 end
64 end
65 end

Figure 4. catalog controllers and views

contains HTML with embedded Ruby code. Here, text
between <% and %> is interpreted verbatim as Ruby
code, and text between <%= and %> is interpreted as
a Ruby expression that produces a string to be output
in the resulting web page. For example, line 34 shows
a second-level heading whose content is the value of
@company.name; recall @company was set by the
controller, so it is an interesting design decision that
Rails allows it to be accessed here. Similarly, lines 37–
43 contain Ruby code to iterate through the company’s
products (line 37) and render each one (line 39).

The third listing in Figure 4 defines a more com-
plex controller, ProductsController, with several actions.

4

The first one, info (lines 46–50), computes the com-
pany of the product given by the parameter id and
then uses redirect to to pass control to the info ac-
tion of CompaniesController (lines 30–32), specifying
the company’s name. As we discussed above, this in
turn calls render :info (lines 34–42). It is possible to
call redirect to several times before eventually calling
render, and it allows control to flow through several
controllers before eventually displaying a view.

The change action (lines 52–56) allows a product
description to be updated. However, we only want to
allow authorized users to make such changes. Thus, on
line 44 we call before filter to specify that the authorize
action should always be run before change. Note that
authorize is declared private (line 59), so it cannot be
called directly as an action.

When authorize is called, it looks up the product
to be modified (line 60) and checks whether the user
logged into the current session (stored in session[:user];
this is established elsewhere (not shown)) matches the
name of the company of that product (line 61). If so,
then authorize evaluates to nil (line 61), and control
passes to change, which updates the product description
(line 53), commits the change to the database (line 54),
and then calls info to show the product listing screen
(line 55). Otherwise, authorize calls info (line 62), and
since that ends in a redirect to, the action change will
never be rendered.

More Possible Errors Caught by DRails. Again,
DRails can prevent several potential pitfalls in writing
controllers and views.

• View file names could have the wrong extension, in
which case Rails may be unable to find them, causing
crashes or unintended behavior. A (perhaps implicit)
call to render could go to a non-existent view. Fur-
thermore, as control flows get complex, with actions
inserted before other actions with filters, and actions
in one controller calling actions in another, it is
easy to make a typo in the method name for a filter
(say, by writing :authorized instead of :authorize on
line 44), or make a mistake in a redirect to call (say,
by writing ‘‘company’’ instead of ‘‘companies’’ on
line 48, or @company = ... rather than company = ...
on line 47). DRails catches such bugs by trying to
explicitly insert the intended method calls and type
checking the resulting code.
• Embedded code in views might make type errors

when accessing fields (like @company) set in con-
trollers. DRails checks for such errors plus other type
errors in controller and view code.

Rails source program

models/
views/
controllers/
helpers/
db/schema.rb
config/environment.rb

Instrumented
Program

Rails API
Usage Info

Combined
Program

Transformed
Program

Error
Messages

DRails

DRuby

base.rb
+ Stubs

Figure 5. DRails architecture

Summing up, even an application as simple as cat-
alog contains many opportunities for inadvertent mis-
takes, and Ruby’s dynamic typing means that such
errors can remaining latent until run time. In addition
to the problems we have already seen, DRails can detect
several other issues, such as type-incorrect calls to Rails
API methods, using Rails features that are deprecated,
and in general catching type errors in Ruby code. Next,
we explore how DRails transforms Rails source code
into Ruby, to allow us to use type inference to find these
problems.

3. DRails: From Rails to Ruby

Figure 5 shows the basic architecture of DRails,
which comprises approximately 1,700 lines of OCaml
and 2,000 lines of Ruby. To run DRails, the user ex-
ecutes the command “drails dirname,” where dirname
is the root directory containing the Rails program. In
addition to the application subdirectories we have al-
ready seen, Rails programs also include several other
directories, parts of which are analyzed by DRails.
The helpers/ directory contains Ruby code that may
be shared across several models or controllers, and
the file config/environment.rb has global configuration
information such as external library imports and global
constants.

As illustrated in Figure 5, DRails begins by com-
bining all the separate files of the Rails application
into one large program. Then DRails instruments this
program to capture arguments passed to Rails API calls.
The program is loaded with Ruby, and the resulting
instrumentation output is fed back into DRails and used
to transform the combined program, making uses of
Rails’s conventions explicit. This transformed program
is passed to DRuby along with base.rb, a file that gives
type signatures to remaining Rails API methods, and
stub files containing type signatures for any libraries

5

used by the application. DRuby performs type inference
and emits warnings for any errors it finds.

The most unusual feature of our approach is instru-
menting the source code and then loading it into Ruby.
Originally we used a purely static approach that found
methods called and their argument values via pattern
matching on the parsed Ruby source code. However,
we found the pattern matching code to be ad hoc and
tedious to write, since it needed to be specialized for
all Rails API functions. Moreover, since in the dynamic
approach we record method calls using a simple string-
based encoding, it made it very easy to discover how a
Rails application was calling the API, and DRuby uses
a related dynamic analysis technique to good effect on
regular Ruby code [5].

We next describe the steps that DRails uses to pro-
duce the various program representations in Figure 5.

Defining Models. Recall from the example in Figure 3
that Rails creates getter and setter methods in models
based on the fields listed in db/schema.rb. This kind
of low-level class manipulation is not typable in DRuby
(or in any standard type system), so DRails makes the
effect explicit by transforming the models to include
getter and setter method definitions. For example, the
Company model in Figure 3 is modified as follows:

66 class Company < ActiveRecord::Base
67 attr accessor :id, :name # inserted by DRails
68 ...

The call to attr accessor creates methods to read and
write fields @id and @name.

There are also a few other implicit model conven-
tions that DRails makes explicit. One important case
is find by x(y), which, if called, returns the first oc-
currence of a record whose x field has value y. (For
an example, recall line 31 of Figure 4.) There is one
such method, plus one find by all x method, for each
possible field. DRails adds type annotations for these
methods to the model, e.g., since Company has a field
name, DRails adds annotations for find by name and
find all by name to class Company.

“Rubifying” Views. To fully reason about a Rails
application, we need to be able to analyze the Ruby
code embedded in views, and we wanted to do this
without changing DRuby’s rather complex parser. Our
solution was to use Markaby for Rails [16] to parse the
views and produce regular Ruby classes that generate
the same web page. We call this process Rubifying the
view. Note that while Markaby worked as-is initially on
small examples, we needed to make major changes to
apply it to our suite of programs in Section 4.

As an example, here is the result of Rubifying
views/companies/info.html.erb of Figure 4, slightly sim-
plified for discussion purposes:

69 module CompaniesView
70 include ActionView::Base
71 def info
72 Rubify.h2 do Rubify.text(@company.name) end
73 Rubify.h3 do Rubify.text(‘‘Products’’) end
74 Rubify.table do
75 @company.products.each do |product|
76 Rubify.tr do
77 Rubify.td do
78 Rubify.text(product.name)
79 Rubify.text(‘‘(’’)
80 Rubify.text(product.description)
81 Rubify.text(‘‘)’’)
82 end
83 end
84 end
85 end
86 end
87 end

Here we created a method info (based on the view name
info). The calls to class methods of Rubify output strings
containing the appropriate HTML text, and notice that
the calls are intermixed with regular Ruby code. For
example, line 72 creates the second-level heading on
line 34 of Figure 4.

We created this method as part of module
CompaniesView, where the module name was de-
rived from the file’s location under views/. Rails does
approximately the same thing, implicitly creating a
CompaniesView class from the view. We make the view
a module rather than a class for reasons we will discuss
later in this section.

This step not only produces Ruby code we can
analyze with DRuby, but DRails also does two other
checks: It makes sure that the HTML is well-formed (in
the sense that closing and opening tags are balanced),
and it also ensures that the views’ filename extensions
match what Rails expects.

Combining a Rails Application and Gathering API
Usage Data. DRails parses the application’s source
code (including the Rubified views) into the Ruby In-
termediate Language (RIL), a subset of Ruby that is
designed to be easy to analyze and transform [6]. RIL is
DRuby’s internal representation, and it can be unparsed
into code that is semantically identical to the original
source. DRails concatenates the RIL representation of
each application component, creating a single, “com-
bined” program that contains the whole application.

The next step is to discover what calls the program
makes to the Rails API, so that we can make the effects
of hard-to-statically analyze calls explicit in the source

6

code. For example, in Section 2 we saw that calling
has many created methods to get and set database
table relationships, and calling before filter modified
the sequencing of actions. To type programs that use
these, then, DRails needs to add the actual method
definitions and the implied calls to the program.

As mentioned earlier, we record information about
these Rails API calls dynamically. We observed that es-
sentially all of the calls we need to process are invoked
as the model and controller source files are loaded.
For example, the call to before filter on line 44 in
Figure 4 is actually invoked as the ProductsController
class is loaded. Hence we use a “load time” analysis: At
each API call of interest, we add instrumentation that
records the location of the call in a global variable. We
also created a file with mock definitions of has many,
before filter, and all the other necessary Rails methods.
Our mock functions simply record the method called,
its arguments, and any additional information that is
helpful in modeling the call. We then load the file with
Ruby, which triggers the instrumentation calls, and the
information we gather is stored in a data file that is then
loaded by OCaml and used in the next step.

There are four groups of Rails API calls that DRails
records: filters, such as before filter and after filter,
which create chains of filters before and after ac-
tions; associations, such as belongs to and has many,
which create methods to access database model re-
lationships; callbacks, such as validate, which insert
method calls whenever particular events happen (e.g.,
a model is saved to the database); and layouts, which
specify a “template” view that is always invoked first in
a controller and then calls out to other views.

Transforming Rails Programs for Analysis. Next, we
use the Rails API call information to transform the
original source program and make the behavior of the
calls explicit. The particular transformation varies with
the category of call.

Filters are eliminated but the appropriate calls are
inserted in the controllers. For example, before filter
on line 44 of Figure 4 is removed, and the change
method is modified to have an explicit call to authorize:

88 def change
89 authorize() # inserted by DRails
90 @product.description = params[:description]
91 @product.save
92 info
93 end
94 ...

Association calls are also removed, and the methods
implied by them are added. One subtlety is that if there
is a has many relationship, then accessor methods

return something that is actually a “monkey-patched”
instance of Ruby’s Array class. (“Monkey patching”
means the object’s methods are changed at run time.)
We model this using a class HasManyCollection that
we created to mimic the special return type of these
methods. For example, the has many call on line 11 of
Figure 3 produces the following set of type annotations
(and more):

95 class Company < ActiveRecord::Base
96 ##% products : () → HasManyCollection<Product>
97 ...
98 ##% products= : \
99 ##% (Array<Product>) → HasManyCollection<Product>

100 ...
101 end

Line 96 annotates the getter method, which takes no ar-
guments and returns an instance of HasManyCollection
whose contents has type Product. Similarly, lines 98–
99 annotate the setter method, which takes an Array and
returns a HasManyCollection. More details on DRuby’s
type annotation language can be found elsewhere [6].

Callbacks are inserted into the appropriate positions
in the code, similarly to filters. To illustrate some of the
complexities, suppose we modified the Product model
to also call before validation :foo, which indicates
method foo should be called before validation:

102 class Product < ActiveRecord::Base
103 belongs to :company
104 validate :unique name in company
105 before validation :foo # added
106 ...

Then DRails transforms Product as follows:

107 class Company < ActiveRecord::Base
108 def validate()
109 before validation() # inserted by DRails
110 unique name in company()
111 end
112 def before validation() # inserted by DRails
113 foo()
114 end
115 ...

Here DRails rewrote line 104 as the method on
lines 108–111, and it rewrote line 105 as the method
on lines 112–114. The key is that on line 109,
our validate method calls the transformed code
for before validation. Then in base.rb, we define
ActiveRecord::Base (which is inherited on line 107) so
that save calls validate:

116 class ActiveRecord::Base
117 def save()
118 ...validate()...
119 end
120 def validate()

7

121 ...before validation()...
122 end
123 ...

Notice that lines 120–122 also define a validate
method, which is overridden in our transformed
Company class. This lets us handle the case when
before validation is used with a non-custom validator
(e.g., the call to validates uniqueness of on line 12 in
Figure 3).

Lastly, layouts are modeled simply as regular view
classes, except we ensure that if a layout is specified, it
is always called first whenever a view is rendered.

Further Transformations. Our transformation phase
also makes a few other changes. The most substantial
is to support render and redirect to. Recall from Sec-
tion 2 that these methods invoke either views or actions
according to their arguments. DRails makes these calls
explicit so that DRuby can “see” them.

To do this, we modify the structure of controller
and view classes in several ways. First, we duplicate
each controller method—one copy stays as-is (in case
it is called directly in the Ruby code; after all, it is
an ordinary method), and the second copy is modi-
fied so the view it renders or controller it redirects
to is called explicitly. For example, DRails modifies
CompaniesController and CompaniesView as follows:

124 class CompaniesController < ApplicationController
125 include CompaniesView
126 def info
127 @company = Company.find by name(params[:name])
128 end
129 def ctrl info
130 @company = Company.find by name(params[:name])
131 view info()
132 end
133 end
134 module CompaniesView
135 include ActionView::Base
136 def view info
137 ...Rubify.h2 do Rubify.text(@company.name) end...
138 end
139 end

Notice that the copy of info on lines 126–128 is as
before, but a duplicate copy of it on lines 129–132 has
been made with name ctrl info. That version, instead
of returning directly, ends with a call to view info(),
the renamed version of the Rubified info method. Recall
the view’s method was called implicitly before.

Also notice that on line 137, the view is able to access
a field set by the controller on line 130, even though they
come from different classes. We model this in DRails by
making CompaniesView a module (line 134) and then
including it in CompaniesController (line 125). (We use

a module because while a Ruby class can only have
one superclass, it can inherit from many modules.) This
inheritance is why we renamed the info method of the
view to view info(), to avoid clashes with the info
method of the controller.

Running DRuby. Finally, the last step is to apply
DRuby to the transformed program. At this point, the
Rails-specific analysis is complete, and we have re-
placed all the hard-to-analyze Rails API methods with
equivalent code that we can check for type errors—
and type errors in that code indicate problems in the
original, untransformed Rails application.

We model the remainder of the Rails API with code
and type annotations in base.rb. For example, here
are signatures for two methods of ActiveRecord::Base,
which is inherited by models:

140 module ActiveRecord
141 ...
142 class Base
143 ##% attributes<t> : () → Hash<Symbol, t>
144 ...
145 ##% attributes=<t> : \
146 ##% (Hash<Symbol, t>, ?Boolean) → Hash<Symbol, t>
147 ...

The method attributes returns a hash mapping attribute
names to their values. The method attributes= allows
programmers to set multiple attributes at once by pass-
ing in a hash and, optionally, a boolean flag (indicating
whether certain attributes may be changed by the call),
and it returns the new attributes hash. In general, we
give these API methods the most precise type signatures
possible in DRuby. We should note that sometimes
our type annotations are less precise than we would
like, however, because some Rails API methods are
extremely polymorphic or would require a dependent
type system for full precision.

We include base.rb when we run DRuby on the
transformed program. We also include stub files with
annotations for portions of the Ruby standard library
and other external libraries used by the Rails applica-
tions in our experiments.

4. Experiments

We evaluated DRails by running it on 11 Rails appli-
cations that we obtained from various sources including
RubyForge, OpenSourceRails, and our colleagues. The
first group of columns in Figure 6 gives the size of each
application, in terms of source code lines (counted with
wc); the size in kilobytes of the RIL control-flow graph
after parsing the model, controllers, and similar files and
Rubifying the views; and the size in kilobytes of the

8

CFG sizes (kb) Patches (#) Running times (s) Errors (#)
LoC Before After R H I B DRails DRuby Total E W D F

depot 997 139 358 · · · 1 2.30 9.74 12.04 · 1 1 1
moo 838 143 402 4 · · 3 2.45 18.76 21.21 · · · 3

pubmgr 943 196 548 · · · 1 3.00 26.41 29.41 · · · ·
rtplan 1,480 273 697 · · · 2 3.47 26.65 30.12 · · 6 1

amethyst 1,183 264 729 · · · 4 3.53 39.03 42.56 · · · 1
diamondlist 1,415 265 786 4 2 · 1 4.10 23.81 27.91 2 · · 2

chuckslist 1,447 329 883 1 · 9 4 4.08 52.23 56.31 · 1 2 14
boxroom 2,330 376 959 6 · 1 2 4.16 87.23 91.39 1 · 27 6

onyx 2,228 484 1,190 6 1 · 1 5.62 79.75 85.37 3 · · 1
mystic 2,822 639 1,525 13 · 5 1 6.38 146.40 152.78 · · · 11

lohimedia 11,106 1,290 3,331 9 · 2 3 14.01 662.95 676.96 6 · 36 17

R - erb fix H - directory reorganization I - routing info B - environment.rb
E - errors W - warnings D - deprecated F - false positives

Figure 6. Experimental results

RIL control-flow graph after full transformation. Note
that the last step of DRails’s transformation increases
the code size significantly, by a factor of 2.7 on average.
This increase shows that there is a significant amount of
code that Rails produces by convention.

We made four kinds of manual changes to applica-
tions to make them “DRails-compatible,” summarized
in the second group of columns in Figure 6. First,
DRails cannot complete its translation if the .html.erb
files in the application contain unbalanced tags, if tags
are opened in HTML code and closed in Ruby code,
or if embedded Ruby code contains syntax that DRuby
cannot parse. We count the number of changes to cor-
rect these issues under (R).

Second, DRails requires that the directory structure
of the application match the documented specification
for Rails exactly, whereas Rails itself is slightly more
forgiving. We needed to do minor reorganizations in
the directory structure of diamondlist and onyx. We
also needed to flatten some class names that had nested
scope and move the class files accordingly. We count
these cases under (H).

Third, sometimes render and redirect to are called
with non-constant arguments, or an application uses
“RESTful routing” [20] instead, which DRails does
not currently support. For these cases we manually
specified the targets of render and redirect to, and we
count the number of times we needed to do this as (I).

Finally, since DRails does not automatically detect li-
brary imports, we had to add several require statements
(which load another file) to config/environment.rb. In
the same file, we also removed a call require ”boot.rb”,
which loads the Rails framework, as this is unnecessary
for DRails. These changes are listed as (B).

4.1. Results

The results of running DRails on these programs are
tabulated in the last two groups of columns in Figure 6.
We ran DRails on an AMD Athlon 4600 processor with
4GB of memory.

The second-to-last group of columns shows the run-
ning times of DRails. We break this down into the
DRails-only time on the left, and the DRuby time in the
middle; the total time is the sum of these two columns.
The reported running times are the average of three
runs. The DRails-only step is typically fairly fast across
all the applications, and most of the running time is due
to DRuby.

We manually categorized DRuby’s error reports into
four categories: errors (E), reports that correspond to
bugs that may crash the program at run time or cause
unintentional behavior; warnings (W), reports for code
that behaves correctly at run time, but uses suspicious
programming practice; deprecated (D), reports of uses
of Rails features that are no longer available in Rails
2.x; and false positives (F) that do not correspond to
actual bugs. Recall from Section 3 that Rails duplicates
code for actions in controllers. This may cause duplicate
warnings, which we do not include in the counts.

Errors. We found 12 errors in the applications. Eight of
the errors, six in lohimedia and two in onyx, are due to
programmer misunderstandings of Ruby’s syntax. For
example, lohimedia contains the code:

flash[:notice] = ‘‘You do not have...’’
+ ”...”

Here the programmer intends for the string on the
second line to be concatenated with the first line. In

9

Ruby, however, line breaks affect parsing, so the string
on the first line is assigned to flash[:notice]. Then the
second line results in a call to the unary method + with
a string argument, which is a type error. Because Ruby
is dynamically typed, errors like this can remain latent
until run-time, whereas DRuby (and DRails) can find
such bugs statically.

As another example of this kind of error, onyx con-
tains the code:

@count, @next, @last = 1

We contacted the developer and confirmed that he ex-
pected this to assign 1 to all three fields. However,
this code only assigns 1 to @count, and sets @next
and @last to nil. DRails catches this error as a type
mismatch between Fixnum (the type of integers) and
Array (the type expected at a parallel assignment in
DRuby).

The other two errors in onyx are due to the following
embedded Ruby code:

<% @any more =
Post.find(:first, :offset => (@offset.to i +
@posts per page.to i) + 1, :limit => 1) %>

Here DRuby reports that Post, which the programmer
seems to be treating as a model, is undefined, as indeed
it is.

One error in diamondlist is due to invoking the
nonexistent method << on a Hash. (A method with that
name does exist in Array, perhaps explaining the error.)
The other error in diamondlist occurs in call to render
in which the specified view, top bar, does not exist.

Finally, boxroom has an interesting error in one
of its models due to a call to an undefined method
password confirmation. This method name is com-
monly used by convention in Rails applications, but
it is only available if the user declares both password
and password confirmation fields, usually by calling
attr accessor. However, in this case the programmer
instead calls attr accessible on these fields, which has
completely different semantics.

Warnings. We found 2 warnings across our applica-
tions. The warning in chuckslist occurs in the code

@ad = Category.find(params[:category]).ads.new

Here ads returns a collection (a HasManyCollection
in DRails). According to the Rails documentation, the
programmer should therefore call create to make a new
instance. However, although the new method is not
mentioned in the documentation for this case, it appears
to work. (This is a very confusing usage, because new
is typically called only on instances of Class.)

The other warning occurs in depot, in which Hash’s
map method is used without an explicit tuple type for
the block argument:

validates inclusion of :pay type,
:in => PAYMENT TYPES.map {|disp, value| value}

The correct syntax for the block argument is
|(disp,value)|, because map expects a single argument (a
tuple) rather than two arguments. Ruby is fairly lenient
in this particular case and pairs the two values before
binding them to map’s formal parameter. However,
we consider this a bad programming practice because
such pairing does not always happen automatically in
Ruby [6].

Deprecated. We found 72 uses of deprecated constructs
across five benchmarks. All of these cases cause run-
time errors on Rails 2.x, though they operate correctly
on older versions of Rails. Our applications often do
not document what version of Rails they are intended to
work with, so these may or may not be errors depending
on the programmer’s intention.

False positives. DRails reported 57 false positives.
Twenty-nine of these (across eight benchmarks) are
due to limitations in DRuby’s annotation language;
we sometimes had to assign overly general types to
Rails API methods, and this could conflate types during
inference and trigger false warnings.

Twenty-four of the false positives (across four bench-
marks) are because DRails does not handle some Rails
features, namely the ActionMailer, ActionController, and
Configuration modules. We expect these could be ad-
dressed with more engineering effort.

Three false positives are due to DRails’s Rubification
step. Recall that DRails converts HTML tags to Ruby
method calls with an optional block. The introduction
of these block scopes means local variables in different
blocks are different, but in the original view file they
referred to the same variable. Again, this could be
addressed with more engineering effort.

The last false positive is due to a run-time type test.
DRuby does not realize that if the test passes, then the
tested value has the given type. This could be solved by
extending DRuby to include occurrence typing [24].

4.2. Threats to Validity

We should emphasize that DRails by no means
checks for all possible errors in Rails programs, e.g.,
clearly Rails programs can have errors that are unrelated
to types. Beyond that, there are several potential threats
to the validity of our experimental results.

10

First, as we saw in Section 3, our type signatures
for Rails API methods are sometimes overly general,
statically allowing calls that might fail at run time.
Nevertheless, our experiments show that DRails is still
quite useful in finding errors in Rails programs.

Second, DRails’s modeling of the Rails API is in-
complete and could be slightly inaccurate. Indeed, the
Rails API is enormous, and many features of its API
are poorly or not at all documented. In such cases,
we had to examine Rails’s source and use trial and
error to understand the feature, and thus there could be
mistakes in our interpretation. However, as we have ap-
plied DRails across a range of programs and produced
sensible results, we believe we have correctly modeled
the essential core of Rails.

Third, our categorization of some of DRails’s errors
might be incorrect, e.g., we may have classified code
as erroneous that actually behaves correctly at run time.
We addressed this concern by conferring among our-
selves about the errors and getting the opinion of the
developers for some of the problems we found.

Finally, there could be bugs in DRuby that cause it to
unsoundly miss type errors. However, DRuby has been
run on a significant amount of code at this point [6, 5],
and so we believe any remaining unsoundness is likely
minor.

5. Related Work

Static Analysis for Web Applications. Most existing
work on static analysis of web applications focuses
on verification of security properties. Lam et al. [13]
combine static analysis with model checking to verify
that information-flow patterns are satisfied in Java-like
programs. Huang et al. [11] use a lattice-based static
analysis algorithm derived from type systems and type-
state to ensure similar information-flow properties. The
tool TAJ [25] performs taint analysis of web applica-
tions written in Java, and uses novel program slicing
techniques to handle reflective calls and flows through
containers. On the other hand, the tool Pixy [12] per-
forms alias analysis for PHP and finds security vulner-
abilities in web applications written in PHP. Xie and
Aiken [28] address the same problem, and present a
static analysis algorithm based on symbolic evaluation
to handle dynamic features of PHP. While the above pa-
pers focus on server-side code, Guha et al. [10] present
a static control-flow analysis for client-side JavaScript
code to handle dynamic code generation. Maffeis and
Taly [15] study methods for filtering and rewriting
JavaScript code to address similar problems.

The key differences between these systems and
DRails is our focus on static typing and Ruby on Rails,

a combination we believe we are the first to study.

Static Typing in Dynamically Typed Languages.
Other related work focuses on the elimination of
common programming mistakes in scripting languages
through compiler support. WASH [22] is a Haskell-
embedded language for server-side web scripting that
provides extensive guarantees due to its pervasive use
of type information. Thorn [27] is another scripting
language, targeting the JVM, that allows optional con-
straint annotations to drive lightweight static type infer-
ence, and provides safety guarantees for the typed parts
of a program while ensuring smooth integration with
the untyped parts of the program [26]. Recently Gor-
bovitski et al. [8] implement an abstract interpretation
framework for Python to provide a basis for program
analysis. Maffeis et al. [14] provide an operational
semantics for JavaScript to provide a similar basis for
program analysis.

Finally, there is a lot of theoretical work on inte-
grating static and dynamic typing in object-oriented
languages, including gradual types [21] and hybrid
types [3]. Some of these ideas have been imple-
mented in (extensions of) JavaScript [2, 23], Python [1],
Smalltalk [9], Scheme [24], and Ruby [6]. We build on
top of the latter system, DRuby, in this work. A related
but less powerful type inference algorithm appears in
RadRails, an IDE for Rails [17, 18], to suggest methods
during method completion in the IDE.

6. Conclusion

In this paper, we present DRails, a novel static analy-
sis tool for Rails applications. DRails works by translat-
ing Rails applications into pure Ruby code in which the
automation provided by Rails’s sophisticated internal
machinery is made explicit. We then apply DRuby, a
previously developed static type inference system for
Ruby, to the result. We show that static typing can catch
a variety of bugs in Rails applications that may cause
exceptions or otherwise unintended behaviors at run
time. We believe we are the first to bring static typing to
Ruby on Rails.

There are several interesting directions for future
work. We plan to continue extending DRails’s analysis
to more features of Rails, to increase its comprehensive-
ness. We also plan to consider ways to check correct-
ness properties that are deeper than simple typing. Ver-
ifying such properties on Rails programs might require
some interesting new techniques. Lastly, we intend to
explore how far our approach can be applied to web
applications written in related scripting languages such
as Perl, Python, and PHP.

11

References

[1] D. Ancona, M. Ancona, A. Cuni, and N. Mat-
sakis. RPython: Reconciling Dynamically and Statically
Typed OO Languages. In DLS, 2007.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
Type Inference for JavaScript. In ECOOP, pages 428–
452, 2005.

[3] C. Flanagan, S. N. Freund, and A. Tomb. Hybrid types,
invariants, and refinements for imperative objects. In
FOOL, 2006.

[4] D. Flanagan and Y. Matsumoto. The Ruby Programming
Language. O’Reilly Media, Inc, 2008.

[5] M. Furr, J. An, and J. S. Foster. Profile-guided static
typing for dynamic scripting languages. In OOPSLA,
2009. To appear.

[6] M. Furr, J. An, J. S. Foster, and M. Hicks. Static Type
Inference for Ruby. In OOPS Track, SAC, 2009.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[8] M. Gorbovitski, K. T. Tekle, and Y. A. Liu. Assess-
ing alias analysis for object-oriented and dynamic lan-
guages, 2009. IBM PL Day Talk.

[9] J. O. Graver and R. E. Johnson. A type system for
Smalltalk. In PLDI, pages 136–150, 1990.

[10] A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for Ajax intrusion detection. In WWW, 2009.

[11] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by static
analysis and runtime protection. In WWW, pages 40–52,
2004.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias
analysis for static detection of web application vulnera-
bilities. In PLAS, pages 27–36, 2006.

[13] M. S. Lam, M. Martin, B. Livshits, and J. Whaley.
Securing web applications with static and dynamic in-
formation flow tracking. In PEPM, pages 3–12, 2008.

[14] S. Maffeis, J. Mitchell, and A. Taly. An operational
semantics for JavaScript. In APLAS, pages 307–325,
2008.

[15] S. Maffeis and A. Taly. Language-based isolation of
untrusted Javascript. In CSF, 2009.

[16] Markaby for Rails, 2006. http://redhanded.hobix.com/
inspect/MarkabyforRails.html.

[17] J. Morrison. Type Inference in Ruby. Google Summer
of Code Project, 2006.

[18] Radrails, 2008. http://www.aptana.com/rails.

[19] Ruby on Rails, 2009. http://rubyonrails.org.

[20] S. Ruby, D. Thomas, and D. H. Hansson. Agile Web
Development with Rails, Third Edition. The Pragmatic
Bookshelf, 2009.

[21] J. Siek and W. Taha. Gradual typing for objects. In
ECOOP, pages 2–27, 2007.

[22] P. Thiemann. An embedded domain-specific language
for type-safe server-side web-scripting. ACM Transac-
tions on Internet Technology, 2003.

[23] P. Thiemann. Towards a type system for analyzing
javascript programs. In ESOP, pages 408–422, 2005.

[24] S. Tobin-Hochstadt and M. Felleisen. The Design and
Implementation of Typed Scheme. In POPL, pages 395–
406, 2008.

[25] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and
O. Weisman. TAJ: Effective taint analysis for Java. In
PLDI, 2009. To appear.

[26] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and
J. Vitek. Integration of typed and untyped code in Thorn,
2009. Submitted.

[27] T. Wrigstad, J. Östlund, G. Richards, J. Vitek, B. Bloom,
J. Field, N. Nystrom, and R. Strnisa. Thorn—Robust,
concurrent, extensible scripting on the JVM. In OOP-
SLA, 2009. To appear.

[28] Y. Xie and A. Aiken. Static detection of security vul-
nerabilities in scripting languages. In USENIX Security,
pages 179–192, 2006.

12

