A Concurrent ML Library in Concurrent Haskell

Avik Chaudhuri
University of Maryland, College Park

avik@cs.umd.edu

Abstract

In Concurrent ML, synchronization abstractions can be defined
and passed as values, much like functions in ML. This mecha-
nism admits a powerful, modular style of concurrent programming,
called higher-order concurrent programming. Unfortunately, it is
not clear whether this style of programming is possible in lan-
guages such as Concurrent Haskell, that support only first-order
message passing. Indeed, the implementation of synchronization
abstractions in Concurrent ML relies on fairly low-level, language-
specific details.

In this paper we show, constructively, that synchronization ab-
stractions can be supported in a language that supports only first-
order message passing. Specifically, we implement a library that
makes Concurrent ML-style programming possible in Concurrent
Haskell. We begin with a core, formal implementation of synchro-
nization abstractions in the 7-calculus. Then, we extend this imple-
mentation to encode all of Concurrent ML’s concurrency primitives
(and more!) in Concurrent Haskell.

Our implementation is surprisingly efficient, even without pos-
sible optimizations. In several small, informal experiments, our li-
brary seems to outperform OCaml’s standard library of Concurrent
ML-style primitives.

At the heart of our implementation is a new distributed syn-
chronization protocol that we prove correct. Unlike several previ-
ous translations of synchronization abstractions in concurrent lan-
guages, we remain faithful to the standard semantics for Concurrent
ML’s concurrency primitives. For example, we retain the symme-
try of choose, which can express selective communication. As a
corollary, we establish that implementing selective communication
on distributed machines is no harder than implementing first-order
message passing on such machines.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.3.1 [Programming Languages]: Formal Defi-
nitions and Theory—Semantics

General Terms Algorithms, Languages

Keywords Concurrent ML, synchronization abstractions, dis-
tributed synchronization protocol, 7w-calculus, Concurrent Haskell

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.

Copyright (© 2009 ACM 978-1-60558-332-7/09/08. .. $10.00

1. Introduction

As famously argued by Reppy (1999), there is a fundamental con-
flict between selective communication (Hoare 1978) and abstrac-
tion in concurrent programs. For example, consider a protocol run
between a client and a pair of servers. In this protocol, selec-
tive communication may be necessary for liveness—if one of the
servers is down, the client should be able to interact with the other.
This may require some details of the protocol to be exposed. At
the same time, abstraction may be necessary for safety—the client
should not be able to interact with a server in an unexpected way.
This may in turn require those details to be hidden.

An elegant way of resolving this conflict, proposed by Reppy
(1992), is to separate the process of synchronization from the mech-
anism for describing synchronization protocols. More precisely,
Reppy introduces a new type constructor, event, to type syn-
chronous operations in much the same way as —> (“arrow”) types
functional values. A synchronous operation, or event, describes
a synchronization protocol whose execution is delayed until it is
explicitly synchronized. Thus, roughly, an event is analogous to
a function abstraction, and event synchronization is analogous to
function application.

This abstraction mechanism is the essence of a powerful, mod-
ular style of concurrent programming, called higher-order concur-
rent programming. In particular, programmers can describe sophis-
ticated synchronization protocols as event values, and compose
them modularly. Complex event values can be constructed from
simpler ones by applying suitable combinators. For instance, se-
lective communication can be expressed as a choice among event
values—and programmer-defined abstractions can be used in such
communication without breaking those abstractions (Reppy 1992).

Reppy implements events, as well as a collection of such suit-
able combinators, in an extension of ML called Concurrent ML
(CML) (Reppy 1999). We review these primitives informally in
Section 2; their formal semantics can be found in (Reppy 1992).
The implementation of these primitives in CML relies on fairly
low-level, language-specific details, such as support for continu-
ations and signals (Reppy 1999). In turn, these primitives immedi-
ately support higher-order concurrent programming in CML.

Other languages, such as Concurrent Haskell (Peyton-Jones
et al. 1996), seem to be more modest in their design. Following
the m-calculus (Milner et al. 1992), such languages support only
first-order message passing. While functions for first-order mes-
sage passing can be encoded in CML, it is unclear whether, con-
versely, the concurrency primitives of CML can be expressed in
those languages.

Contributions In this paper, we show that CML-style concur-
rency primitives can in fact be implemented as a library, in a lan-
guage that already supports first-order message passing. Such a
library makes higher-order concurrent programming possible in a
language such as Concurrent Haskell. Our implementation has fur-
ther interesting consequences. For instance, the designers of Con-

current Haskell deliberately avoid a CML-style choice primitive
(Peyton-Jones et al. 1996, Section 5), partly concerned that such
a primitive may complicate a distributed implementation of Con-
current Haskell. By showing that such a primitive can be encoded
in Concurrent Haskell itself, we eliminate that concern.

At the heart of our implementation is a new distributed protocol
for synchronization of events. Our protocol is carefully designed
to ensure safety, progress, and fairness. In Section 3, we formalize
this protocol as an abstract state machine, and prove its correctness.
Then, in Section 4, we describe a concrete implementation of this
protocol in the m-calculus, and prove its correctness as well. This
implementation can serve as a foundation for other implementa-
tions in related languages. Building on this implementation, in Sec-
tions 5, 6, and 7, we show how to encode all of CML’s concurrency
primitives, and more, in Concurrent Haskell. Our implementation
is very concise, requiring less than 150 lines of code; in contrast, a
related existing implementation (Russell 2001) requires more than
1300 lines of code.

In Section 8, we compare the performance of our library
against OCaml’s standard library of CML-style primitives, via sev-
eral small, informal experiments. Our library consistently runs
faster in these experiments, even without possible optimizations.
While these experiments do not account for various differences be-
tween the underlying language implementations, especially those
of threads, we think that these results are nevertheless encouraging.

Finally, we should point out that unlike several previous im-
plementations of CML-style primitives in other languages, we re-
main faithful to the standard semantics for those primitives (Reppy
1999). For example, we retain the symmetry of choose, which can
express selective communication. Indeed, we seem to be the first to
implement a CML library that relies purely on first-order message
passing, and preserves the standard semantics. We defer a more de-
tailed discussion on related work to Section 9.

2. Overview of CML

In this section, we present a brief overview of CML’s concurrency
primitives. (Space constraints prevent us from motivating these
primitives any further; the interested reader can find a comprehen-
sive account of these primitives, with several programming exam-
ples, in (Reppy 1999).) We provide a small example at the end of
this section.

Note that channel and event are polymorphic type construc-
tors in CML, as follows:

e The type channel tau is given to channels that carry values
of type tau.

e The type event tau is given to events that return values of
type tau on synchronization (see the function sync below).

The combinators receive and transmit build events for syn-
chronous communication.

channel tau -> event tau
channel tau -> tau -> event ()

receive
transmit

e receive c returns an event that, on synchronization, accepts
a message M on channel c and returns M. Such an event must
synchronize with transmit c¢ M.

e transmit c Mreturns an event that, on synchronization, sends
the message M on channel ¢ and returns () (that is, “unit”). Such
an event must synchronize with receive c.

Perhaps the most powerful of CML’s concurrency primitives is
the combinator choose; it can nondeterministically select an event
from a list of events, so that the selected event can be synchronized.
In particular, choose can express selective communication. Several

implementations need to restrict the power of choose in order to
tame it (Russell 2001; Reppy and Xiao 2008). Our implementation
is designed to avoid such problems (see Section 9).

choose [event tau] -> event tau

e choose V returns an event that, on synchronization, synchro-
nizes one of the events in list V and “aborts” the other events.

Conversely, the combinator wrapabort can specify an action
that is spawned if an event is aborted by a selection.

wrapabort (O -> ()) -> event tau -> event tau

e wrapabort f v returns an event that either synchronizes the
event v, or, if aborted, spawns a thread that runs the code £ ().

The combinators guard and wrap can specify pre- and post-
synchronization actions.

guard : (() -> event tau) -> event tau
wrap : event tau -> (tau -> tau’) -> event tau’

e guard f returns an event that, on synchronization, synchro-
nizes the event returned by the code £ ().

e wrap v f returns an event that, on synchronization, synchro-
nizes the event v and applies the function £ to the result.

Finally, the function sync can synchronize an event and return
the result.

sync : event tau -> tau

By design, an event can synchronize only at some “point”,
where a message is either sent or accepted on a channel. Such a
point, called the commit point, may be selected among several other
candidates at run time. Furthermore, some code may be run before,
and after, synchronization—as specified by guard functions, by
wrap functions that enclose the commit point, and by wrapabort
functions that do not enclose the commit point.

For example, consider the following value of type event ().
(Here, c and ¢’ are values of type channel ().)

val v =
choose
[guard (fn O ->
wrapabort
(choose [wrapabort
wrap (tramsmit c’ ())
guard (fn) ->

L]

(transmit ¢));

e 1)),

wrap
(wrapabort

)]

The event v describes a fairly complicated protocol that, on syn-
chronization, selects among the communication events transmit
¢ (), transmit ¢’ (), and receive c, and runs some code
(elided by .. .s) before and after synchronization. Now, suppose
that we run the following ML program.

(receive c))

val _ =
spawn (fn () -> sync v);
sync (receive c’)

This program spawns sync v in parallel with sync (receive
c?). In this case, the event transmit c’ () is selected inside v,
so that it synchronizes with receive c’. The figure below depicts
sync v as a tree. The point marked e is the commit point; this
point is selected among the other candidates, marked o, at run time.

Furthermore, (only) code specified by the combinators marked
in boxes are run before and after synchronization, following the

semantics outlined above.
[rrapabort |
[Frep]

guard choose

choose <

3. A distributed protocol for synchronization

wrapabort—

We now present a distributed protocol for synchronizing events.
‘We focus on events that are built with the combinators receive,
transmit, and choose. While the other combinators are important
for describing computations, they do not fundamentally affect the
nature of the protocol; we consider them later, in Sections 5 and 6.

3.1 A source language

For brevity, we simplify the syntax of the source language. Let

c range over channels. We use the following notations: @y is a

sequence of the form ¢1,...,¢,, where £ € 1..n; furthermore,

{pe}isthe set {1, ..., @n}, and [p7] is the list [p1, . . ., ©n].
The syntax of the language is as follows.

e Actions a, 3,... are of the form c or ¢ (input or output on
¢). Informally, actions model communication events built with
receive and transmit.

Programs are of the form Sy | ... | Sm (parallel composition
of S1,...,Sm), where each Sy, (k € 1..m) is either an action
a, or a selection of actions, select(c;). Informally, a selection
of actions models the synchronization of a choice of events,
following the CML function select.

select : [event tau] -> tau
select V = sync (choose V)

Further, we consider only the following local reduction rule:
—
ce{ai} ce{p}

= = _
select(a;) | select(83;) — c| €

(SEL COMM)

This rule models selective communication. We also consider the
usual structural rules for parallel composition. However, we ignore
reduction of actions at this level of abstraction.

3.2 A distributed abstract state machine for synchronization

Our synchronization protocol is run by a distributed system of prin-
cipals that include channels, points, and synchronizers. Informally,
every action is associated with a point, and every select is associ-
ated with a synchronizer.

The reader may draw an analogy between our setting and one of
arranging marriages, by viewing points as prospective brides and
grooms, channels as matchmakers, and synchronizers as parents
whose consents are necessary for marriages.

We formalize our protocol as a distributed abstract state ma-
chine that implements the rule (SEL COMM). Let o range over
states of the machine. These states are built by parallel composi-
tion |, inaction 0, and name creation v (Milner et al. 1992) over
various states of principals.

States of the machine o

o= states of the machine
oo parallel composition
0 inaction
N .
(vpi)o name creation
S state of principals

The various states of principals are shown below. Roughly, prin-
cipals in specific states react with each other to cause transitions in
the machine, following rules that appear later in the section.

States of principals ¢

Sp it states of a point
active
matched
released

states of a channel
free

q) announced

states of a synchronizer
open
closed
selected
refused
confirmed
canceled

1
R

i

Ge it

)

Cs

@

o

YexAaREIeol e g
NN s
ORI

Let p and s range over points and synchronizers. A synchronizer
can be viewed as a partial function from points to actions; we
represent this function as a parallel composition of bindings of the
form p — «. Further, we require that each point is associated with a
unique synchronizer, that is, for any s and s, s # s’ = dom(s)N
dom(s’) = @.

The semantics of the machine is described by the local transition
rules shown below, plus the usual structural rules for parallel com-
position, inaction, and name creation as in the mw-calculus (Milner
et al. 1992).

Operational semantics 0 — o’

() prclg—e] @ — Op| Q] e (p,q) | Oc

. p € dom(s)
2.
@) o TE — /.=
@.ii) p € dom(s)

Op| By — x(p) [®s

G Vs V@] @e(pg) — = ()| =5 (0)
Gi) Vslp) | x (@) | ®e(pg) — s

Gii) x(p) | V(@) | Be (pq) — s

@iv) x| x(@)] ®e(p,q9) — 0

, s(p) = «
4,
= —a
(4i)) A= (vp;) (3s | 5) where dom(s) = {p;}

Intuitively, these rules may be read as follows.

(1) Two points p and g, bound to complementary actions on chan-
nel ¢, react with ¢, so that p and ¢ become matched (¥, and
Q4) and the channel announces their match (. (p, q)).

(2.i-ii) Next, p (and likewise, q) reacts with its synchronizer s. If
the synchronizer is open ([s), it now becomes closed (X),
and p is declared selected by s (v's(p)). If the synchronizer is
already closed, then p is refused (X (p)).

(3.i-iv) If both p and ¢ are selected, ¢ confirms the selections to
both parties (=5 (p) and = (q)). If only one of them is
selected, c cancels that selection (—).

(4.i-ii) If the selection of p is confirmed, the action bound to p
is released. Otherwise, the synchronizer “reboots” with fresh
names for the points in its domain.

3.3 Compilation

Next, we show how programs in the source language are com-
piled on to this machine. Let II denote indexed parallel compo-
sition; using this notation, for example, we can write a program
S1] ... | Sm as Ixe1..mSk. Suppose that the set of channels in
a program Ilxe1..,m Sk is C. We compile this program to the state

IMece ®c | ier..m Sk, where

N « ifS=a
S 2 (vp) (s | 5) if S = select(a;), i € 1..n, and
s = e1..n (pi — ;) for fresh names p;

3.4 Correctness

‘We prove that our protocol is correct, that is, the abstract machine
correctly implements (SEL COMM), by showing that the compila-
tion from programs to states satisfies safety, progress, and fairness.
Roughly, safety implies that any sequence of transitions in the state
machine can be mapped to some sequence of reductions in the lan-
guage. Furthermore, progress and fairness imply that any sequence
of reductions in the language can be mapped to some sequence of
transitions in the state machine. (The formal definitions of these
properties are complicated because transitions in the machine have
much finer granularity than reductions in the language; see below.)

Let a denotation be a list of actions. The denotations of pro-
grams and states are derived by the function -7, as follows. (Here
W denotes concatenation over lists.)

Denotations of programs and states -

TSy || S TS W WS,
l‘a‘l — [Oé]

Fselect(a;)” =[]

ro.|o."| Tolwg'
0" — H
Twp) o o
re _ { [a] if¢= O‘
[] otherwise

Informally, the denotation of a program or state is the list of
released actions in that program or state. Now, if a program is com-
piled to some state, then the denotations of the program and the
state coincide. Furthermore, we expect that as intermediate pro-
grams and states are produced during execution (and other actions
are released), the denotations of those intermediate programs and
states remain in coincidence. Formally, we prove the following the-
orem (Chaudhuri 2009).

THEOREM 3.1 (Correctness of the abstract state machine). Let C
be the set of channels in a program ie1. .m Sk. Then

~

erlumsk ~ HCGC Oc |Hk61“m Sk:
where ~ is the largest relation such that P ~ o iff
(Invariant) o —* ¢’ for some o’ such that"P" = "¢'7;

(Safety) if o — o’ for some o', then P —* P’ for some P’
such that P’ ~ o’

* o' and P — P’ for some

(Progress) if P — _, then 0 —
o' and P’ such that P' ~ o’;
(Fairness) if P — P’ for some P’, then 09 — ... — oy, for

some 0q, . ..,0n suchthat o, = o, P ~ o; forall0 < i <n,

and 09 — 1 &' for some o’ such that P’ ~ o’.

Informally, the above theorem guarantees that any sequence of
program reductions can be simulated by some sequence of state
transitions, and vice versa, such that

e from any intermediate program, it is always possible to simulate
any transition of a related intermediate state;

e from any intermediate state,

— it is always possible to simulate some reduction of a related
intermediate program;

— further, by backtracking, it is always possible to simulate
any reduction of that program.
3.5 Example
Consider the program
select(T,7) | select(y, z) | select(Z) | select(z)
By (SEL COMM)), this program can reduce to
T|z|Z|x
with denotation [Z, z, Z, z], or to
7 |y | select(z) | select(x)

with denotation [7, y].
The original program is compiled to the following state.

Oz | Oy | Oz | WPz, 1y) (Bpzz | pyoy) | Pz T | D5 — 7)
| (vpy,p=) (E‘(pyHy | pz—2) | py =y | ps = 2)
| (vpz) (B(psz) | Pz — Z)
| (vp2) (B(pysa) | Pz — @)
This state describes the states of several principals:
e channels Oz, Oy, Oz}
® points pz — T, py — Y, Py — Y, Pz > 2, Dz k> Z, Pz > T;

* synchronizers B(p; -7 | py—7)s Dipyy | po2)s Dpzmz)s
B(pl‘._)a").

This state can eventually transition to
Oc| Oy | ©: [T]2]Z]2] 0ge
with denotation [z, z, Z, z], or to

Oz | Oy | ©: [Ty |0ge B
| (vpz) (B(psz) | Pz — Z)
| (vPz) (B(py—a) | Po > T)

with denotation [7, y]. In these states, o4 can be garbage-collected,
and is separated out for readability.

Ogc £ (Vpi7p177py7pz,p27px)
Xpez 1 pg—) | Bpyoy [po—2) [Bz [B, —a))

Let us examine the state with denotation [g,y|, and trace the
transitions to this state. In this state, the original synchronizers are
all closed (see o4.). We can conclude that the remaining points
pz +— z and p; +— x and their synchronizers [(,..z) and
E(p,—z) Were produced by rebooting their original synchronizers
with fresh names pz and p;. Indeed, in a previous round of the pro-
tocol, the original points pz — Z and p, — x were matched with
the points p. — 2z and pz +— T, respectively; however, the lat-

ter points were refused by their synchronizers [,y | p.+—z) and

B(ps—z | py—y) (to accommodate the selected communication on
y in that round); these refusals in turn necessitated the cancellations
Ppzz) A ()

4. Higher-order concurrency in the 7-calculus

While we have an abstract state machine that correctly implements
(SEL CoMM), we do not yet know if the local transition rules
in Section 3.2 can be implemented faithfully, say by first-order
message-passing. We now show how these rules can be imple-
mented concretely in the m-calculus (Milner et al. 1992).

The m-calculus is a minimal concurrent language that allows
processes to dynamically create channels with fresh names and
communicate such names over channels. This language forms the
core of Concurrent Haskell. Let a,b, x range over names. The
syntax of processes is as follows.

Processes

o= processes
| parallel composition
0 inaction
(va) name creation
a(b). w output
a(z). input
I replication

Processes have the following informal meanings.

m | 7’ behaves as the parallel composition of 7 and 7'

0 does nothing.

(va) 7 creates a channel with fresh name a and continues as 7;
the scope of a is 7.

a(b). m sends the name b on channel a, and continues as 7.

a(z). m accepts a name on channel a, binds it to z, and contin-
ues as m; the scope of x is .

I7r behaves as the parallel composition of an unbounded number
of copies of 7; this construct, needed to model recursion, can be
eliminated with recursive process definitions.

A formal operational semantics can be found in (Milner et al.
1992). Of particular interest are the following reduction rule for
communication:

a(z). ©|ad). 7’ — w{b/x} |7’
and the following structural rule for scope extrusion:

ais fresh in 7

7| (va) 7' = (va) (x| ")

The former rule models the communication of a name b on a
channel a, from an output process to an input process (in parallel);
b is substituted for x in the remaining input process. The latter
rule models the extrusion of the scope of a fresh name a across
a parallel composition. These rules allow other derivations, such as
the following for communication of fresh names:

bis freshin a(x). =
a(z). m| (wh) a). 7' = (vb) (x{b/x}|7")

4.1 A 7-calculus model of the abstract state machine

We interpret states of our machine as 7-calculus processes that run
at points, channels, and synchronizers. These processes reduce by
communication to simulate transitions in the abstract state machine.
In this setting:

e Each point is identified with a fresh name p.

e Each channel ¢ is identified with a pair of fresh names
(i[c], o[C]), on which it accepts messages from points that are
bound to input or output actions on c.

e Each synchronizer is identified with a fresh name s, on which
it accepts messages from points in its domain.

Informally, the following sequence of messages are exchanged
in any round of the protocol.

e A point p (at state p — c or p +— ¢) begins by sending a
message to ¢ on its respective input or output name il or ol
the message contains a fresh name candidate!”! on which p
expects a reply from c.

e When ¢ (at state ®.) gets a pair of messages on i and
olel, say from p and another point g, it replies by sending
messages on candidate and candidate!? (reaching state
®c(p, q) | ©c); these messages contain fresh names decision!?!
and decision!? on which ¢ expects replies from the synchroniz-
ers for p and q.

e On receiving a message from ¢ on candidate!®!, p (reaching
state Op,) tags the message with its name and forwards it to its
synchronizer on the name s.

If p is the first point to send such a message on s (that is, s is at
state [,), a pair of fresh names (confirm!?!, cancel) is sent
back on decisionP! (reaching state v, (p) | K,); for each sub-
sequent message accepted on s, say from p’, a blank message is
sent back on decision!”'] (reaching state x (') | Ks).

On receiving messages from the respective synchronizers of p
and ¢ on decision! and decision!?, ¢ inspects the messages
and responds.

— If both (confirm!?!,) and (confirm!?,) have come in,
signals are sent back on confirm”! and confirm!.

— If only (_, cancel®') has come in (and the other message is
blank), a signal is sent back on ccmcel[p]; likewise, if only
(- cancel[q]) has come in, a signal is sent back on cancell?l.

If s gets a signal on confirm!?! (reaching state =5 (p)), it
signals on p to continue. If s gets a signal on cancel (] (reaching
state), it “reboots” with fresh names for the points in its
domain, so that those points can begin another round.

Below we formalize this interpretation of states as (recursively
defined) processes. For convenience, we let the interpreted states
carry some auxiliary state variables in [. ..]; these state variables
represent names that are created at run time. The state variables
carried by any state are unique to that state. Thus, they do not
convey any new, distinguishing information about that state.

For simplicity, we leave states of the form « uninterpreted, and
consider them inactive. We define & as shorthand for i if o is of
the form ¢, and o!°! if « is of the form .

Programs in the source language are now compiled to pro-
cesses in the m-calculus. Suppose that the set of channels in a pro-
gram Ilgeq1. Sk is C. We compile this program to the process

(Veec i, o) (Tleee ®c | Mier..m Sk), where
«@ if S =«
£ 4 (vs, pi) if S = select(a;),

(Bs ‘ Hielun(pi — ai)[[s,di]]) 1 € 1..n, and
s, p: are fresh names

na

Interpretation of states as processes

IStates of a point

(0 Ol i &
(v candidate!®) il (candidate'). candidate! (decision!?!).

Op[decision!? | s, (]

(q—2)s, 0] &
(v candidate!?) ol (candidate!?). candidate!? (decision!?).

Q4 [decision!? s,¢]

Op[decision!?) s, a] £
3(p, decision). p().
e

States of a channel

@c[[i[clyo[c]]] 2
il (candidate™). ol (candidate!®).
((vdecision!!| decision!?))

candidate(decision)). candidate® (decision!).
De (p, q)[decision?! decision!®)]
| @c i, olI])

@e(p, q)[decision!?!| decisionld] £
(decision!! (confirmP!, cancel™!).
(decision!? (confirm!? | cancelld)).
confirm™ (). confirm!9 (). 0
| decision!®().
cancel” (). 0)
| decision)().
(decision!® (confirm!9), cancel'@).
cancel® (). 0

| decision!?().

0)

States of a synchronizer

0, £
s(p, decision!?)).

(v s (p)[decision] | K,)

X. &
s(p, decision?!).
(x(p)[decision!”] | B,)

Y «(p)[decisionP)] £

(v confirm® | cancel™) decision!”!(confirm, cancelP).

(confirm[P (). < (p)
| cancel?! 0. —s)

X (p) [decision!] £
decision!?! 0.0

o (p) &
p(). 0

A (vs, D7) (& | E&el..n(pi — a;)[s, &)
where dom(s) = {pi}, ¢ € 1.n,and Vi € 1..n. s(p;) = o

Let f) be a partial function from processes to states that, for
any state o, maps its interpretation as a process back to o. For any
process 7 such that f} 7 is defined, we define its denotation "7 ' to
be "t 7 '; the denotation of any other process is undefined. We then
prove the following theorem (Chaudhuri 2009), closely following
the proof of Theorem 3.1.

THEOREM 4.1 (Correctness of the m-calculus implementation).
Let C be the set of channels in a program ec1. 1 Sk. Then

Mie1.mSk = (Veec i[C], O[C]) (Ieee ®c | Mrer..m Sk)
where == is the largest relation such that P ~ 7 iff

(Invariant) 7 —* 7’ for some 7’ such that "P = "7'7;
(Safety) if 71 — 7’ for some ', then P —* P’ for some P’
such that P' ~ ';

(Progress) if P — _, then m —
7w’ and P’ such that P’ ~ «';
(Fairness) if P — P’ for some P’, then 1o — ... — m, for
some To, . .., Ty such that m, = m, P~ m; forall0 < i < n,

and 7o — 1 1’ for some 7' such that P’ ~ .

tx' and P — P’ for some

5. A CML library in Concurrent Haskell

We now proceed to code a full CML-style library for events in
a fragment of Concurrent Haskell with first-order message pass-
ing (Peyton-Jones et al. 1996). This fragment is close to the -
calculus, so we can simply lift our implementation of Section 4.1.
Going further, we remove the restrictions on the source language:
a program can be any well-typed Haskell program. We implement
not only receive, transmit, choose, and sync, but also new,
guard, wrap, and wrapabort. Finally, we exploit Haskell’s type
system to show how events can be typed under the standard I0
monad (Gordon 1994; Peyton-Jones and Wadler 1993).

Before we proceed, let us briefly review Concurrent Haskell’s
concurrency primitives. (The reader may wish to refer (Peyton-
Jones et al. 1996) for details.) These primitives support concurrent
I/O computations, such as forking threads and communicating on
mvars—which are synchronized mutable variables, similar to 7-
calculus channels (see below).

Note that MVar and IO are polymorphic type constructors in
Concurrent Haskell, as follows:

e The type MVar tau is given to a communication cell that car-
ries values of type tau.

e The type I0 tau is given to a computation that yields results
of type tau, with possible side effects via communication.

We rely on the following semantics of MVar cells.

e A cell can carry at most one value at a time, that is, it is either
empty or full.

e The function newEmptyMVar :: I0 (MVar tau) returns a

fresh cell that is empty.

e The function takeMVar :: MVar tau -> I0 tauis used to
read from a cell; takeMVar m blocks if the cell m is empty, else
gets the content of m (thereby emptying it).

e The function putMVar :: MVar tau -> tau -> I0 () is
used to write to a cell; putMVar m M blocks if the cell m is full,
else puts the term M in m (thereby filling it).

Further, we rely on the following semantics of I0 computations;
see (Peyton-Jones and Wadler 1993) for details.

e The function forkI0 :: I0 () -> I0 () isusedtospawna
concurrent computation; forkI0 f forks a thread that runs the
computation £.

e The function return ::
value into a computation.

tau -> IO tau is used to inject a

e Computations can be sequentially composed by “piping”. We
use Haskell’s convenient do {. ..} notation for this purpose,
instead of applying the underlying piping function

(>>=) :: I0 tau -> (tau -> I0 tau’) -> I0 tau’

Thus, e.g., we write do {x <- takeMVar m; putMVar m x}
instead of takeMVar m >>= \x -> putMVar m x.

Our library provides the following CML-style functions for pro-
gramming with events in Concurrent Haskell." (Observe the differ-
ences between ML and Haskell types for these functions. Since
Haskell is purely functional, we must embed types for computa-
tions, with possible side-effects via communication, within the I0
monad. Further, since evaluation in Haskell is lazy, we can discard
A-abstractions that simply “delay” eager evaluation.)

new :: I0 (channel tau)

receive channel tau -> event tau

transmit channel tau -> tau -> event ()

guard :: I0 (event tau) -> event tau

wrap :: event tau -> (tau -> IO tau’) -> event tau’
choose [event tau] -> event tau

wrapabort I0 (O -> event tau -> event tau

sync :: event tau -> I0 tau

In this section, we focus on events that are built without
wrapabort; the full implementation appears in Section 6.

5.1 Type definitions

We begin by defining the types of cells on which messages are
exchanged in our protocol (recall the discussion in Section 4.1).2
These cells are of the form i and o (on which points initially
send messages to channels), candidate (on which channels re-
ply back to points), s (on which points forward messages to syn-
chronizers), decision (on which synchronizers inform channels),
confirm and cancel (on which channels reply back to synchro-
nizers), and p (on which synchronizers finally signal to points).

type In = MVar Candidate

type Out = MVar Candidate

type Candidate = MVar Decision

type Synchronizer = MVar (Point, Decision)
type Decision = MVar (Maybe (Confirm, Cancel))
type Confirm = MVar ()

type Cancel = MVar ()

type Point = MVar ()

Below, we use the following typings for the various cells used in
our protocol: i :: In, o Out, candidate Candidate,
s :: Synchronizer, decision :: Decision, confirm ::
Confirm, cancel Cancel,andp :: Point.

We now show code run by points, channels, and synchronizers
in our protocol. This code may be viewed as a typed version of the
m-calculus code in Section 4.1.

!'Instead of wrapabort, some implementations of CML provide the com-
binator withnack. Their expressive powers are exactly the same (Reppy
1999). Providing withnack is easier with an implementation strategy that
relies on negative acknowledgments. Since our implementation strategy
does not rely on negative acknowledgments, we stick with wrapabort.

2 In Haskell, the type Maybe tau is given to a value that is either Nothing,
or of the form Just v where v is of type tau.

5.2 Protocol code for points

The protocol code run by points abstracts on a cell s for the associ-
ated synchronizer, and a name p for the point itself. Depending on
whether the point is for input or output, the code further abstracts
on an input cell i or output cell o, and an associated action alpha.

AtPointI Synchronizer -> Point -> In ->
I0 tau -> IO tau
AtPointI s p i alpha = do {
candidate <- newEmptyMVar;
putMVar i candidate;
decision <- takeMVar candidate;
putMVar s (p,decision);
takeMVar p;
alpha
}
AtPoint0 Synchronizer -> Point -> Out ->
I0 O -> 10 O
AtPoint0O s p o alpha = do {
candidate <- newEmptyMVar;
putMVar o candidate;
decision <- takeMVar candidate;
putMVar s (p,decision);
takeMVar p;
alpha

‘We instantiate the function AtPointI in the code for receive,
and the function AtPointO0 in the code for transmit. These as-
sociate appropriate point principals to any events constructed with
receive and transmit.

5.3 Protocol code for channels

The protocol code run by channels abstracts on an input cell i and
an output cell o for the channel.

AtChan :: In -> Out -> I0 ()
AtChan i o = do {
candidate_i <- takeMVar i;
candidate_o <- takeMVar o;
forkI0O (AtChan i o);
decision_i <- newEmptyMVar;
decision_o <- newEmptyMVar;
putMVar candidate_i decision_i;
putMVar candidate_o decision_o;
x_1i <- takeMVar decision_i;
x_o <- takeMVar decision_o;
case (x_i,x_o) of
(Nothing, Nothing) ->
return ()
(Just(_,cancel_i), Nothing) ->
putMVar cancel_i ()
(Nothing, Just(_,cancel_o)) ->
putMVar cancel_o ()
(Just(confirm_i,_), Just(confirm_o,_)) -> do {
putMVar confirm_i ();
putMVar confirm o ()

}

We instantiate this function in the code for new. This associates
an appropriate channel principal to any channel created with new.
5.4 Protocol code for synchronizers

The protocol code run by synchronizers abstracts on a cell s for that
synchronizer and some “rebooting code” reboot, provided later.

(We encode a loop with the function fix :: (tau -> tau) ->

tau; the term fix f reducesto f (fix £).)

AtSync :: Synchronizer -> I0 () -> I0 O
AtSync s reboot = do {
(p,decision) <- takeMVar s;
forkIO
(fix (\iter -> do {
(p’,decision’) <- takeMVar s;
putMVar decision’ Nothing;
iter
)
confirm <- newEmptyMVar;
cancel <- newEmptyMVar;
putMVar decision (Just (confirm,cancel));
forkIO
(do {
takeMVar confirm;
putMvVar p O
});
takeMVar cancel;
reboot

We instantiate this function in the code for sync. This associates
an appropriate synchronizer principal to any application of sync.

5.5 Translation of types

Next, we translate types for channels and events. The Haskell types
for ML channel and event values are:

type channel tau = (In, Out, MVar tau)
type event tau = Synchronizer -> IO tau

An ML channel is a Haskell MVar tagged with a pair of input
and output cells. An ML event is a Haskell I0 function that
abstracts on a synchronizer cell.

5.6 Translation of functions

‘We now translate functions for programming with events. We begin
by encoding the ML function for creating channels.

new :: I0 (channel tau)
new = do {
i <- newEmptyMVar;
o <- newEmptyMVar;
forkIO (AtChan i o);
m <- newEmptyMVar;
return (i,o,m)

}

e The term new spawns an instance of AtChan with a fresh pair
of input and output cells, and returns that pair along with a fresh
MVar cell that carries messages for the channel.

Next, we encode the ML combinators for building communi-
cation events. Recall that a Haskell event is an IO function that
abstracts on the cell of its synchronizer.

receive :: channel tau -> event tau
receive (i,o,m) = \s -> do {

p <- newEmptyMVar;

AtPointI s p i (takeMVar m)
}
transmit channel tau -> tau -> event ()
transmit (i,o,m) M = \s -> do {

p <- newEmptyMVar;

AtPoint0 s p o (putMVar m M)
}

e The term receive c s runs an instance of AtPointI with the
synchronizer s, a fresh name for the point, the input cell for
channel c, and an action that inputs on c.

e The term transmit ¢ M sis symmetric; it runs an instance of
AtPoint0 with the synchronizer s, a fresh name for the point,
the output cell for channel c, and an action that outputs term M
on c.

Next, we encode the ML combinators for specifying pre- and
post-synchronization actions.

guard :: I0 (event tau) -> event tau
guard £ = \s -> do {
v <- f;
v s
3
wrap :: event tau -> (tau -> IO tau’) -> event tau’
wrap v £ = \s -> do {
X <- VvV s;
fx
}

e The term guard f s runs the computation £ and passes the
synchronizer s to the event returned by the computation.

e The term wrap v f s passes the synchronizer s to the event v
and pipes the returned value to function f.

Next, we encode the ML combinator for choosing among
a list of events. (We encode recursion over a list with the
function foldM :: (tau’ -> tau -> I0 tau’) -> tau’ ->
[tau] -> I0 tau’.Theterm foldM f x [] reducesto return
x, and the term foldM f x [v,V] reduces todo {x <- f x v;
foldM f x V})

choose [event tau] -> event tau
choose V = \s -> do {
temp <- newEmptyMVar;
foldM (_ -> \v —>
forkI0 (do {

X <- V s;
putMVar temp x
10
O v

takeMVar temp
}

e The term choose V s spawns a thread for each event v in V,
passing the synchronizer s to v; any value returned by one of
these threads is collected in a fresh cell temp and returned.

Finally, we encode the ML function for event synchronization.

sync :: event tau -> I0 tau
sync v = do {
temp <- newEmptyMVar;
forkIO
(fix (\iter -> do {
s <- newEmptyMVar;
forkI0 (AtSync s iter);

x <= V s;
putMVar temp x
LIDIDH

takeMVar temp
}

e The term sync v recursively spawns an instance of AtSync
with a fresh synchronizer s and passes s to the event v; any
value returned by one of these instances is collected in a fresh
cell temp and returned.

6. Implementation of wrapabort

The implementation of the previous section does not account for
wrapabort. We now show how wrapabort can be handled by
enriching the type for events.

Recall that abort actions are spawned only at events that
do not enclose the commit point. Therefore, in an encoding of
wrapabort, it makes sense to “name” events with the sets of points
they enclose. Note that such names may not be static. In particular,
for an event built with guard, we need to run the guard functions
to compute the set of points that such an event encloses. Thus, we
do not name events at compile time. Instead, we introduce events
as principals in our protocol; each event is named in situ by com-
puting the list of points it encloses at run time. This list is carried
on a fresh cell name :: Name for that event.

type Name = MVar [Point]

Further, each synchronizer carries a fresh cell abort ::
Abort on which it accepts wrapabort functions from events,
tagged with the list of points they enclose.

type Abort = MVar ([Point], I0 O)

The protocol code run by points and channels remains the same.
We only add a handler for wrapabort functions to the protocol
code run by synchronizers. Accordingly, that code now abstracts
on an abort cell.

AtSync :: Synchronizer -> Abort -> I0 () -> I0 O
AtSync s abort X = do {

forkI0O (do {
fix (\iter -> do {
(P,f) <- takeMVar abort;
forkIO iter;
if (elem p P) then return ()
else £
)
});
}

Now, after signaling the commit point p to continue, the syn-
chronizer continues to accept abort code £ on abort; such code is
spawned only if the list of points P, enclosed by the event that sends
that code, does not include p.

The enriched Haskell type for event values is as follows.

type event tau =
Synchronizer -> Name -> Abort -> IO tau

Now, an ML event is a Haskell I0 function that abstracts on a
synchronizer, an abort cell, and a name cell that carries the list of
points the event encloses.

The Haskell function new does not change. We highlight minor
changes in the remaining translations. We begin with the functions
receive and transmit. An event built with either function is
named by a singleton containing the name of the enclosed point.

receive (i,o,m) = \s -> \name -> \abort -> do {
forkI0O (putMVar name [p]);

}

transmit (i,o,m) M = \s -> \name -> \abort -> do {

forkI0O (putMVar name [pl);

In the function choose, a fresh name’ cell is passed to each
event in the list of choices; the names of those events are concate-
nated to name the choose event.

choose V = \s -> \name -> \abort -> do {
P <-
foldM (\P -> \v —>
do {
name’ <- newEmptyMVar;
forkI0 (do {
X <- v s name’ abort;

)
P’ <- takeMVar name’;
putMVar name’ P’;
return (P’ ++ P)
Yo adv;
forkI0 (putMVar name P);

‘We now encode the ML combinator for specifying abort actions.

wrapabort :: I0 () -> event tau -> event tau
wrapabort f v = \s -> \name -> \abort -> do {
forkIO (do {
P <- takeMVar name;
putMVar name P;
putMvVar abort (P,f)
)
v s name abort

}

e The term wrapabort f v s name abort spawns a thread
that reads the list of enclosed events P on the cell name and
sends the function f along with P on the cell abort; the syn-
chronizer s is passed to the event v along with name and abort.

The functions guard and wrap remain similar.

guard £ = \s -> \name -> \abort -> do {
v <- f;
v s name abort

}

wrap v £ = \s -> \name -> \abort -> do {
X <- Vv s name abort;
f x

}

Finally, in the function sync, a fresh abort cell is now passed
to AtSync, and a fresh name cell is created for the event to be
synchronized.

sync v = do {

forkIO (fix (\iter -> do {
name <- newEmptyMVar;
abort <- newEmptyMVar;
forkIO (AtSync s abort iter);
X <- v s name abort;

}))

7. Implementation of communication guards

Beyond the standard primitives, some implementations of CML
further consider primitives for guarded communication. In par-
ticular, Russell (2001) implements such primitives in Concurrent
Haskell, but his implementation strategy is fairly specialized—for
example, it requires a notion of guarded events (see Section 9 for a
discussion on this issue). We show that in contrast, our implemen-
tation strategy can accommodate such primitives with little effort.

Specifically, we wish to support the following receive combi-
nator, that can carry a communication guard.

receive

Intuitively, (receive ¢ cond) synchronizes with (transmit
¢ M) only if cond M is true.

In our implementation, we make minor adjustments to the types
of cells on which messages are exchanged between points and
channels.

type In tau = MVar (Candidate, tau -> Bool)
type Out tau = MVar (Candidate, tau)
type Candidate = MVar (Maybe Decision)

Next, we adjust the protocol code run by points and channels.
Input and output points bound to actions on ¢ now send their
conditions and messages to c. A pair of points is matched only
if the message sent by one satisfies the condition sent by the other.

AtChan :: In tau -> Out tau -> I0 Q)
AtChan i o = do {
(candidate_i,cond) <- takeMVar ij;
(candidate_o,M) <- takeMVar o;

if (cond M) then do {

putMVar candidate_i (Just decision_i);
putMVar candidate_o (Just decision_o);
} else do {
putMVar candidate_i Nothing;
putMVar candidate_i Nothing
}
}
AtPointI Synchronizer -> Point -> In tau ->
(tau -> Bool) -> 1I0 tau -> IO tau
AtPointI s p i cond alpha = do {

putMVar i (candidate,cond);
x <- takeMVar candidate;
case x of
Nothing ->
AtPointI s p i cond alpha
Just decision -> do {
putMVar s (p,decision);

}
}
AtPoint0 Synchronizer -> Point -> Out tau ->
tau -> I0 O -> I0 O

AtPoint0 s p o M alpha = do {

putMVar o (candidate,M);
x <- takeMVar candidate;
case x of
Nothing ->
AtPoint0 s p o M alpha

channel tau -> (tau -> Bool) -> event tau

Just decision -> do {
putMVar s (p,decision);

Finally, we make minor adjustments to the type constructor
channel, and the functions receive and transmit.

type channel tau = (In tau, Out tau, MVar tau)

receive (i,o,m) cond = \s -> \name -> \abort -> do {

AtPointI s p i cond (takeMVar m)
}

transmit (i,o,m) M = \s -> \name -> \abort -> do {

AtPoint0 s p o M (putMVar m M)
}

8. Evaluation

Our implementation is derived from a formal model, constructed
for the purpose of proof (see Theorem 4.1). Not surprisingly, to
simplify reasoning about the correctness of our code, we overlook
several possible optimizations. For example, we heavily rely on
lazy evaluation and garbage collection in the underlying language
for reasonable performance of our code. It is plausible that this per-
formance can be improved with explicit management. We also rely
on fair scheduling in the underlying language to prevent starvation.

Nevertheless, preliminary experiments indicate that our code is
already quite efficient. In particular, we compare the performance
of our library against OCaml’s Event module (Leroy et al. 2008).
The implementation of this module is directly based on Reppy’s
original design of CML (Reppy 1999). Furthermore, it supports
wrapabort, unlike recent versions of CML that favor an alterna-
tive primitive, withnack, which we do not support (see footnote
1, p.7). Finally, most other implementations of CML-style prim-
itives do not reflect the standard semantics (Reppy 1999), which
makes comparisons with them meaningless. Indeed, some of our
benchmarks rely on the symmetry of choose—see, e.g., the swap
channel abstraction implemented below; such benchmarks cannot
work correctly on a previous implementation of events in Haskell
(Russell 2001).°

For our experiments, we use several small benchmark programs
that rely heavily on higher-order concurrency. We describe these
benchmarks below; their code is available online (Chaudhuri 2009).
These benchmarks are duplicated in Haskell and OCaml to the
extent possible. Furthermore, to minimize noise due to inherent
differences in the implementations of these languages, we avoid the
use of extraneous constructs in these benchmarks. Still, we cannot
avoid the use of threads, and thus our results may be skewed by
differences in the implementations of threads in these languages.
We compile these benchmarks using ghc 6.8.1 and ocamlc 3.10.2
(using the —vmthread option in the latter). All these benchmarks
run faster using our library than using OCaml’s Event module.

Our benchmarks are variations of the following programs.

Extended example Recall the example of Section 3.5. This is a
simple concurrent program that involves nondeterministic com-
munication; either there is communication on channels x and
z, or there is communication on channel y. To observe this
nondeterminism, we add guard, wrap, and wrapabort func-
tions to each communication event, which print messages such

3 Nevertheless, we did consider comparing Russell’s implementation with
ours on other benchmarks, but failed to compile his implementation with
recent versions of ghc; we also failed to find his contact information online.

as "Trying", "Succeeded", and "Failed" for that event at
run time. Both the Haskell and the ML versions of the program
exhibit this nondeterminism in our runs.

Primes sieve This program uses the Sieve of Eratosthenes
(Wikipedia 2009) to print all prime numbers up to some n > 2.
We implement two versions of this program: (I) uses choose,
(II) does not.

(I) In this version, we create a “prime” channel and a “not
prime” channel for each ¢ € 2..n, for a total of 2 x (n — 1)
channels. Next, we spawn a thread for each ¢ € 2..n, that
selects between two events: one receiving on the “prime”
channel for ¢ and printing 4, the other receiving on the “not
prime” channel for ¢ and looping. Now, for each multiple
7 < nofeacht € 2..n, we send on the “not prime” channel
for j. Finally, we spawn a thread for each ¢ € 2..n, sending
on the “prime” channel for 7.

(II) In this version, we create a “prime/not prime” channel for
each ¢ € 2..n, for a total of n — 1 channels. Next, we
spawn a thread for each ¢ € 2..n, receiving a message on
the “prime/not prime” channel for ¢, and printing ¢ if the
message is true or looping if the message is false. Now,
for each multiple ;7 < n of each ¢ € 2..n, we send false
on the “prime/not prime” channel for j. Finally, we spawn
a thread for each ¢ € 2..n, sending true on the “prime/not
prime” channel for 4.

Swap channels This program implements and uses a swap channel
abstraction, as described in (Reppy 1994). Intuitively, if x is a
swap channel, and we run the program

forkI0O (do {y <- sync (swap x M); ...});
do {y’ <- sync (swap x M’); ...}

then M’ is substituted for y and M is substituted for y’ in the
continuation code (elided by . . .s).

type swapChannel tau = channel (tau, channel tau)

swap :: swapChannel tau -> tau -> event tau
swap ch msgOut = guard (do {
inCh <- new;
choose [
wrap (receive ch)

(\x -> let (msgIn, outCh) = x in do {
sync (transmit outCh msgQOut) ;
return msgln

LD
wrap (transmit ch (msgOut, inCh))
(_ -> sync (receive inCh))]

)

Communication over a swap channel is already highly nonde-
terministic, since one of the ends must choose to send its mes-
sage first (and accept the message from the other end later),
while the other end must make exactly the opposite choice. We
add further nondeterminism by spawning multiple pairs of swap
on the same swap channel.

Buffered channels This program implements and uses a buffered
channel abstraction, as described in (Reppy 1992). Intuitively,
a buffered channel maintains a queue of messages, and chooses
between receiving a message and adding it to the queue, or
removing a message from the queue and sending it.

Our library performs significantly better for all except one of
these benchmarks—for the swap channels benchmark, the differ-
ence is only marginal. Note that in this case, our protocol possi-

bly wastes some rounds by matching points that have the same
synchronizer (and eventually canceling these matches, since such
points can never be selected together). An optimization that elimi-
nates such matches altogether should improve the performance of
our implementation.

Beyond total running times, it should also be interesting to com-
pare performance relative to each CML-style primitive, to pinpoint
other possible sources of inefficiency. We defer a more detailed
investigation of these issues, as well as a more robust account of
implementation differences between the underlying languages (es-
pecially those of threads), to future work.

All the code that appears in this paper is available online at:

http://code.haskell.org/cml/

Additional resources on this project are available at (Chaudhuri
2009; Chaudhuri and Franksen 2009).

9. Related work

We are not the first to implement CML-style concurrency prim-
itives in another language. In particular, Russell (2001) presents
an implementation of events in Concurrent Haskell. The imple-
mentation provides guarded channels, which filter communication
based on conditions on message values (as in Section 7). Unfortu-
nately, the implementation requires a rather complex Haskell type
for event values. In particular, a value of type event tau needs
to carry a higher-order function that manipulates a continuation of
type I0 tau -> IO (). Further, a critical weakness of Russell’s
implementation is that the choose combinator is asymmetric. As
observed in (Reppy and Xiao 2008), this restriction is necessary for
the correctness of that implementation. In contrast, we implement
a (more expressive) symmetric choose combinator, following the
standard CML semantics. Finally, we should point out that Rus-
sell’s CML library is more than 1300 lines of Haskell code, while
ours is less than 150. Yet, guarded communication as proposed by
Russell is already implemented in our setting, as shown in Sec-
tion 7. In the end, we believe that this difference in complexity is
due to the clean design of our synchronization protocol.

Independently of our work, Reppy and Xiao (2008) recently
pursue a parallel implementation of a subset of CML, with a dis-
tributed protocol for synchronization. As in (Reppy 1999), this im-
plementation builds on ML machinery such as continuations, and
further relies on a compare-and-swap instruction. Unfortunately,
their choose combinator cannot select among transmit events,
that is, their subset of CML cannot express selective communica-
tion with transmit events. It is not clear whether their implemen-
tation can be extended to account for the full power of choose.

Orthogonally, Donnelly and Fluet (2006) introduce transac-
tional events and implement them over the software transactional
memory (STM) module in Concurrent Haskell. More recently,
Effinger-Dean et al. (2008) implement transactional events in ML.
Combining all-or-nothing transactions with CML-style concur-
rency primitives is attractive, since it recovers a monad. Unfortu-
nately, implementing transactional events requires solving NP-hard
problems (Donnelly and Fluet 2006), and these problems seem to
interfere even with their implementation of the core CML-style
concurrency primitives. In contrast, our implementation of those
primitives remains rather lightweight.

Other related implementations of events include those of Flatt
and Findler (2004) in Scheme and of Demaine (1998) in Java. Flatt
and Findler provide support for kill-safe abstractions, extending
the semantics of some of the CML-style primitives. On the other
hand, Demaine focuses on efficiency by exploiting communication
patterns that involve either single receivers or single transmitters. It
is unclear whether Demaine’s implementation of non-deterministic
communication can accommodate event combinators.

Distributed protocols for implementing selective communica-
tion date back to the 1980s. The protocols of Buckley and Silber-
schatz (1983) and Bagrodia (1986) seem to be among the earliest in
this line of work. Unfortunately, those protocols are prone to dead-
lock. Bornat (1986) proposes a protocol that is deadlock-free as-
suming communication between single receivers and single trans-
mitters. Finally, Knabe (1992) presents the first deadlock-free pro-
tocol to implement selective communication for arbitrary channel
communication. Knabe’s protocol appears to be the closest to ours.
Channels act as locations of control, and messages are exchanged
between communication points and channels to negotiate synchro-
nization. However, Knabe assumes a global ordering on processes
and maintains queues for matching communication points; we do
not require either of these facilities in our protocol. Furthermore, as
in (Demaine 1998), it is unclear whether the protocol can accom-
modate event combinators.

Finally, our work should not be confused with Sangiorgi’s trans-
lation of the higher-order m-calculus (HO7) to the w-calculus (San-
giorgi 1993). While HOr allows processes to be passed as values,
it does not immediately support higher-order concurrency. For in-
stance, processes cannot be modularly composed in HO7. On the
other hand, it may be possible to show alternate encodings of the
process-passing primitives of HO7 in 7-like languages, via an in-
termediate encoding with CML-style primitives.

10. Conclusion

In this paper, we show how to implement higher-order concurrency
in the 7-calculus, and thereby, how to encode CML’s concurrency
primitives in Concurrent Haskell, a language with first-order mes-
sage passing. We appear to be the first to implement the standard
CML semantics for event combinators in this setting.

An interesting consequence of our work is that implementing
selective communication a la CML on distributed machines is re-
duced to implementing first-order message passing on such ma-
chines. This clarifies a doubt raised in (Peyton-Jones et al. 1996).

At the heart of our implementation is a new, deadlock-free pro-
tocol that is run among communication points, channels, and syn-
chronization applications. This protocol seems to be robust enough
to allow implementations of sophisticated synchronization primi-
tives, even beyond those of CML.

Acknowledgments Thanks to Cormac Flanagan for suggesting
this project for his Spring 2007 Concurrent Programming course
at UC Santa Cruz. Thanks to Martin Abadi, Jeff Foster, and several
anonymous referees of Haskell’07 and ICFP’09 for their comments
on this paper. Finally, thanks to Ben Franksen for maintaining
the source package for this library at HackageDB. This work was
supported in part by NSF under grants CCR-0208800 and CCF-
0524078, and by DARPA under grant ODOD.HR00110810073.

References

R. Bagrodia. A distributed algorithm to implement the general-
ized alternative command of CSP. In ICDCS’86: International
Conference on Distributed Computing Systems, pages 422—427.
IEEE, 1986.

R. Bornat. A protocol for generalized Occam. Software Practice
and Experience, 16(9):783-799, 1986. ISSN 0038-0644.

G. N. Buckley and A. Silberschatz. An effective implementation
for the generalized input-output construct of CSP. ACM Trans-
actions on Programming Languages and Systems, 5(2):223-235,
1983. ISSN 0164-0925.

A. Chaudhuri. A Concurrent ML library in Concurrent Haskell,
2009. Links to proofs and experiments at http://www.cs.
umd.edu/~avik/projects/cmllch/.

Avik Chaudhuri and Benjamin Franksen. Hackagedb cml pack-
age, 2009. Available at http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/cml.

E. D. Demaine. Protocols for non-deterministic communication
over synchronous channels. In IPPS/SPDP’98: Symposium on
Parallel and Distributed Processing, pages 24-30. IEEE, 1998.

K. Donnelly and M. Fluet. Transactional events. In ICFP’06:
International Conference on Functional Programming, pages

124-135. ACM, 2006.

L. Effinger-Dean, M. Kehrt, and D. Grossman. Transactional events
for ML. In ICFP’08: International Conference on Functional
Programming, pages 103—-114. ACM, 2008.

M. Flatt and R. B. Findler. Kill-safe synchronization abstractions.
In PLDI’04: Programming Language Design and Implementa-
tion, pages 47-58. ACM, 2004. ISBN 1-58113-807-5.

A. D. Gordon. Functional programming and Input/Output. Cam-
bridge University, 1994. ISBN 0-521-47103-6.

C. A. R. Hoare. Communicating sequential processes. Communi-
cations of the ACM, 21(8):666-677, 1978.

F. Knabe. A distributed protocol for channel-based communica-
tion with choice. In PARLE’92: Parallel Architectures and Lan-
guages, Europe, pages 947-948. Springer, 1992. ISBN 3-540-
55599-4.

X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouil-
lon. The Objective Caml system documentation: Event mod-
ule, 2008. Available at http://caml.inria.fr/pub/docs/
manual-ocaml/libref/Event.html.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses, parts I and II. Information and Computation, 100(1):
1-77, 1992.

S. L. Peyton-Jones and P. Wadler. Imperative functional program-
ming. In POPL’93: Principles of Programming Languages,
pages 71-84. ACM, 1993.

S. L. Peyton-Jones, A. D. Gordon, and S. Finne. Concurrent
Haskell. In POPL’96: Principles of Programming Languages,
pages 295-308. ACM, 1996.

J. H. Reppy. Concurrent programming in ML. Cambridge Univer-
sity, 1999. ISBN 0-521-48089-2.

J. H. Reppy. Higher-order concurrency. PhD thesis, Cornell
University, 1992. Technical Report 92-1852.

J. H. Reppy. First-class synchronous operations. In TPPP’94:
Theory and Practice of Parallel Programming. Springer, 1994.

J. H. Reppy and Y. Xiao. Towards a parallel implementation of
Concurrent ML. In DAMP’08: Declarative Aspects of Multicore
Programming. ACM, 2008.

G. Russell. Events in Haskell, and how to implement them. In
ICFP’01: International Conference on Functional Program-
ming, pages 157-168. ACM, 2001. ISBN 1-58113-415-0.

D. Sangiorgi. From pi-calculus to higher-order pi-calculus, and
back. In TAPSOFT’93: Theory and Practice of Software Devel-
opment, pages 151-166. Springer, 1993.

Wikipedia. Sieve of Eratosthenes, 2009. See http://en.
wikipedia.org/wiki/Sieve_of_Eratosthenes.

