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ABSTRACT
We study formal security properties of network-attached
storage (NAS) in an applied pi calculus. We model NAS
as an implementation of a specification based on traditional
centralized storage. We show the correctness of the imple-
mentation by proving that it is fully abstract with respect
to the specification. Our result can be viewed as a strong
guarantee of security for a basic network-attached storage
design.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; H.3.4
[Information Storage and Retrieval]: Systems and Soft-
ware—Distributed Systems; D.4.6 [Operating Systems]:
Security and Protection

General Terms
Security, Verification, Languages, Theory

Keywords
Secure storage, full abstraction, applied pi calculus

1. INTRODUCTION
In recent years, formal techniques have played a significant

role in the design and analysis of secure communication pro-
tocols. In particular, there has been much research in devel-
oping process calculi, type systems, logics, and verification
methods [6, 3, 2, 12, 8, 7, 1, 5, 4] to describe and reason
about such protocols. In comparison, there has been far less
formal work in studying secure storage. At the same time, it
may be argued that storage is fast assuming a pervasive role
in modern computing—and secure storage, perhaps, becom-
ing as important a subject to understand as secure commu-
nication. We aim to bring to the study of secure storage the
same level of formal treatment—and through similar tech-
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niques, with the hope that they will prove as successful as
they have been in the study of secure communication.

In this paper, we model an implementation of storage that
separates disk operation services from file system adminis-
tration. Such systems are called network-attached storage
(NAS) systems [9], since disks are put on the network, as
opposed to being indirectly interfaced via the file system.
Clients can request operations directly at the disks; such
requests are guided by previous communication with file
servers that provide metadata, authorization tokens, etc. to
ensure correct service. The key advantage of such an imple-
mentation over centralized storage is that each disk opera-
tion request need not pass through a file server; information
provided by the file servers can be reused for multiple disk
operation requests. Not surprisingly, this scheme allows re-
markable improvements in performance.

However, decoupling file system administration and disk
operation services makes NAS harder to analyze. In par-
ticular, centralized storage systems employ mechanisms like
access control lists to allow straightforward security assur-
ances; it is not immediately obvious whether such guarantees
hold in the distributed architecture of NAS. We approach
this problem by comparing NAS with a specification based
on traditional centralized storage. More precisely, we formu-
late a strong security criterion for NAS based on the well-
known notion of full abstraction [17], and prove the correct-
ness of the NAS implementation with respect to the speci-
fication under this notion. Full abstraction has been stud-
ied as an important concept for understanding the problem
of implementing secure systems [1]; it has also been used
for establishing security properties of various communica-
tion mechanisms [5, 4].

The rest of the paper is organized as follows. Section 2
gives an overview of the formal language we use to de-
scribe our models, which is an applied pi calculus. Section 3
presents a specification of storage based on centralized stor-
age systems; Section 4 presents a basic NAS implementa-
tion. Section 5 develops some theory and states our main
theorem, namely full abstraction of NAS. Section 6 outlines
the proofs. Section 7 discusses related work; Section 8 con-
cludes with an discussion of contributions and future work.
We include the semantics of the calculus in Appendix A,
and a simple type system that identifies well-formed NAS
systems in Appendix B.

2. MODELING LANGUAGE
We use an applied polyadic synchronous pi calculus [18,

3] to describe and reason about processes. The syntax is



standard, except for the addition of a constructor for gen-
erating keyed message authentication codes (MACs), and a
destructor to extract messages from them.
Terms M, N ::=

m, n, . . . name
| 〈M, N〉 pair
| 0 zero
| suc(M) successor
| mac(M, N) keyed MAC
| x, y, . . . variable

The term mac(M, N) stands for the cryptographic hash of
message M under key N . The term M can be extracted
using a MAC extraction process (see below). Moreover, the
terms mac(M, N) and mac(M ′, N ′) are equal iff M ′ = M
and N ′ = N ; thus it is not possible to forge a MAC using
an incorrect message or an incorrect key. We use the let-
ters u, v, . . . to represent names or variables. The notation
�t stands for a vector t1, . . . , tk with k ≥ 0.
Processes P, Q ::=

u〈 �M〉.P output
| u(�x).P input
| P | Q composition
| (νn)P restriction
| !P replication
| [M = N ]P else Q match branch
| 0 nil
| let 〈x, y〉 = M in P split
| case M of 0 : P suc(x) : Q integer case
| M codes x in P else Q MAC extraction

Input, split, integer case, and MAC extraction processes
bind variables; restriction processes bind names. The sets
fv(P ) and fn(P ) collect free variables and free names in P
respectively. We write P{M/x} for the capture-free substi-
tution of each free occurrence of x in P by M . A process P
is closed iff fv(P ) = ∅. We identify processes upto renaming
of bound names and variables.

Intuitively, the constructs of the language have the follow-
ing meanings:
– An output process m〈 �M〉.P is ready to output on channel

m. If an interaction occurs, term sequence �M is communi-
cated on m and then process P runs.
– An input process m(�x).P is ready to input from channel

m. If an interaction occurs in which term sequence �M is
communicated on m, then process P{ �M/�x} runs.
– A composition P |Q behaves as processes P and Q running
in parallel. Each may interact with the other on channels
known to both, or with the outside world, independently of
the other.
– A restriction (νn)P is a process that makes a new, private
name n, and then behaves as P .
– A replication !P behaves as an infinite number of copies
of P running in parallel.
– A match branch [M = N ]P else Q behaves as P if terms
M and N are the same, as Q otherwise.
– The nil process 0 does nothing.
– A split process let 〈x, y〉 = M in P behaves as P{M1/x,
M2/y} if term M is 〈M1, M2〉. Otherwise, the process is
stuck, that is, it does nothing.
– An integer case process case M of 0 : P suc(x) : Q
behaves as P if term M is 0, as Q{N/x} if M is suc(N).
Otherwise, the process is stuck.
– A MAC extraction process M ′ codes x in P else Q be-

haves as P{M/x} if term M ′ is mac(M, N), as Q otherwise.
The operational semantics of the language is given via a

reduction relation and a commitment relation, straightfor-
ward variants of those of the spi calculus [6]. For the sake
of completeness, the semantics of the language is included
in Appendix A.

Some other useful syntactic constructs can be encoded
using the basic syntax [18].

− processes with internal choice: P + Q;
− parameterized process and function definitions:

P (�x) = Q, f(�x) = M ;
− process invocations and function calls within

processes: P ( �M), let 〈�z〉 = f( �M) in P ;
− booleans, lists, membership conditions: [M ∈ N ]P .

We use the following common syntactic abbreviations.
− u(�x) = u(�x).0, u〈 �M〉 = u〈 �M〉.0
− 〈M1, M2, . . . , Mk〉 = 〈M1, 〈M2, . . . , Mk〉〉 (k ≥ 3)
− Suppose I = {i1, . . . , ik},

then (νi∈Ini)P = (νni1) . . . (νnik )P
Πi∈IPi = Pi1 | . . . | Pik

and Σi∈IPi = Pi1 + · · · + Pik

− [M = N ]P = [M = N ]P else 0
− [M �= N ]P else Q = [M = N ]Q else P
− let x = M in P = let 〈x, z〉 = 〈M,0〉 in P ,

where z is fresh.
− let 〈x1, x2, . . . , xk〉 = M in P

= let 〈x1, z〉 = M in let 〈x2, . . . , xk〉 = z in P ,
where z is fresh (k ≥ 3).

− M codes 〈x1, . . . , xk〉 in P else Q
= M codes z in let 〈x1, . . . , xk〉 = z in P else Q,

where z is fresh (k ≥ 2).
− M codes x in P = M codes x in P else 0

3. SPECIFYING IDEAL STORAGE
We show the specification of an “ideal” storage system

based on a centralized storage model. The aim of such a
specification is two-fold. We try to capture the essence of a
storage system interacting with clients in a distributed en-
vironment, while still keeping the model straightforward to
reason about. We also use the model as an abstraction for
studying the more detailed network-attached storage imple-
mentation in subsequent sections.

We view storage state as a generic map from terms to
terms. In other words, given an identifier (which may be
a file handle, block address, etc., encoded as a name, inte-
ger, or a more complex data structure), the storage state
returns some contents (encoded as a ground term). In what
follows, we use the word “file name” to mean arguments
to the storage state, with the understanding that the exact
implementation of a storage system may use any suitable
representation for identifying storage contents. The disk is
an interface to the storage state—in other words, it provides
well-defined functions that allow external entities to access
or modify the storage state via file names. We denote each of
these functions by a symbol, and collect these function sym-
bols in O. A term of the form o(M1, . . . , Mk) with o ∈ O
is called a “file operation”. An operation can be thought
of as a symbolic command, that is, a function symbol with
argument terms, for example, write(M); the function sym-
bol itself is separated out when specifying access tuples, as
shown later in the section. We let f range over file names,
op over file operations, and s over storage states. The ab-



stract function do(op, f, s) returns a pair 〈s′, r〉, where s′

is the storage state after performing operation op on file f
in state s, and r is the result of the operation. A possible
specification of semantics is shown below.

do(read,f, s) = 〈s, s(f)〉
do(write(M), f, s) = 〈s[f �→ M ], ◦〉

This specification could, for example, be implemented with
storage states as lists:

s(f) ≡ case s of
nil : ⊥
cons(〈f ′, M〉, s′) : if f = f ′ then M else s′(f)

s[f �→ M ] ≡ cons(〈f, M〉, s)

For the sake of simplicity, we assume that the file system in-
terface is the same as the disk interface, that is, the same file
names and operations are used at both levels. This assump-
tion abstracts away various details of an actual implem-
entation—file names may be (an appropriate encoding of)
strings at the file system interface, which might then be
translated to integer handles or block numbers to interface
with the disk; parts of a file may be stored on different
drives; and so on. Typically an implementation would also
maintain tables that map identifiers across levels; one could
substitute these mappings to obtain a uniform interface at
all levels.

We also assume secure communication channels as nec-
essary, by declaring new names in the modeling language
(using restriction) and preventing such names from being
leaked outside their intended scope. Such channels may be
made secure physically, by using cryptography, or by some
other means.

In what follows, we describe the components of an ideal
storage system in a distributed environment. The system
has as participants a group of honest clients (defined later
in the section), a file server, and a disk. We allow the sys-
tem to run in a potentially hostile environment, which we
leave unspecified. While analyzing the security of the sys-
tem, we allow this environment to be an arbitrary process
which may contain dishonest clients, etc. The file server me-
diates requests for file operations from all clients (honest or
dishonest), based on a local table of access tuples. If it finds
a request authorized, it forwards the request to the disk via
a secure channel, and the disk replies back with the result
of the operation.

We assume that each client is identified by a distinct index
(example, port number) that it uses to authenticate itself
when sending operation requests. To enforce discipline in
the way requests are constructed and sent to the server,
we demand that honest clients use high-level “macros” to
request operations. These macros get compiled into secure
low-level code.

Definition 3.1 (Action on port i).
The macro leti r = op(f) in P , which expands to

(νn) βi〈op, f, n〉. n(r). P

(where n /∈ fn(P )), is used to request a file operation.

Intuitively, a client may request the operation op on file
f on port i, get the result in variable r, and continue as
process P . The compiled low-level code works as follows:
a fresh channel n is created, the request tuple 〈op, f, n〉 is

sent on channel βi (to the server), the result r received on
n, and P continued. By creating and forwarding a fresh
“return” channel, and keeping the channel βi secret, we wish
to guarantee that the result is unambiguously associated
with the request, and is not leaked to or tampered by the
attacker on its way back from the disk. Dishonest clients
send requests in much the same way—by sending the tuple
〈op, f, n〉 on a channel βj—except that n need not be fresh
and neither n nor βj need be kept secret.

Let K be the set of client indices. Further, let I ⊆ K
index honest clients, as defined next.

Definition 3.2. An honest client is any closed process C
with the following properties:

• it does not contain any explicit occurrence of the names
βk for any k ∈ K, that is, βk /∈ fnmacros(C) for all k ∈
K, where fnmacros collects free names before expanding
macros,

• all action macros use the same port, that is, if C con-
tains two action macros, one on port i1 and the other
on port i2, then i1 = i2.

In what follows, we shall index honest clients by I, and let
an honest client with index i ∈ I use only action macros on
port i. (There is, however, no such restriction on dishon-
est clients, as noted above—they are part of an arbitrary
attacker.)

Indices are subjects in access control in our model, and
an index is indicated by the channel a request is sent on. In
other words, when the server receives a request on channel
βk, it decides access rights for subject k. Next we define
access tuples, which form the basis of access control.

Definition 3.3. An access tuple is of the form 〈k, o, f〉
where k ∈ K and o ∈ O.

We write eop to denote the function symbol in op (for ex-

ample, gread = read and ˜write(M) = write for all M). The
access tuple 〈k, o, f〉 gives subject k the right to perform on
file f any operation op such that eop = o.

We now show the code that specifies an ideal storage sys-
tem. As mentioned earlier, the participants are a group of
honest clients Ci (i ∈ I), a file server S, and a disk D.
The file server mediates requests for file operations from all
clients: it listens on channels βk (k ∈ K) for requests of
the form 〈op, f, n〉, and enforces access control with the help
of a local table T of access tuples. If it finds the request
authorized, it forwards the request to the disk on a private
channel γ, and the disk replies back directly with the result
of operation op on f on the return channel n.

Definition 3.4. An ideal storage system is of the form
(νi∈Iβi)(Πi∈ICi | (νγ)(S | D)), where

• each Ci is an honest client, containing action macros
on port i,

• S is the file server (νδ)(T
| Πk∈K !βk(op, f, n). (νt) δ〈k, op, f, t〉.

t(). γ〈op, f, n〉),
• T is an access table

!δ(k, op, f, t). [〈k, eop, f〉 ∈ A] t〈〉,
where A is a set of access tuples,



• D is the disk (νd) (d〈s0〉
| !γ(op, f, n). d(s). let 〈s′, r〉 = do(op, f, s)

in n〈r〉. d〈s′〉),
where s0 is the initial storage state.

Note that the request channels {βi |i ∈ I} are restricted to
use within honest clients and the server. It follows that an
attacker cannot modify a request made by an honest client,
nor can it intercept the response from the disk.

To allow for sufficient concurrency, the table T is modeled
as a separate process capable of handling multiple requests
from the server S on a private channel δ for resolving access.
Access is resolved by checking the membership of the corre-
sponding access tuple in A. Each such request is of the form
〈k, op, f, t〉, where t is a fresh channel invented to recognize
the outcome of the particular test. We do not provide means
to change A; in other words, we assume that access rights
are initialized once and never modified (see Section 8). This
restriction may be removed in various ways; however we do
not further deal with this issue in this paper.

The disk D uses a private channel d to pass the storage
state within itself. The current state s is first obtained by
listening on d, then the abstract function do is called to
get the result r and new state s′; r is sent back on the
return channel, and s′ emitted on d. A subtle consequence
of this protocol is that d serves as a lock to guarantee mutual
exclusion of operations.

4. NETWORK-ATTACHED STORAGE
Next we describe an implementation of network-attached

storage (NAS). The key difference between this and tradi-
tional storage systems is that the tasks of mediating access
and servicing requests for file operations are managed by
separate entities over a network. In particular, file servers
are responsible for providing metadata and issuing capabili-
ties to authorized clients; disks are responsible for directly
servicing file-operation requests that are certified by capa-
bilities obtained from the server. This separation of tasks
can result in performance gains. When clients send requests
directly to the disk, authorization checks and metadata pro-
cessing are not performed for every request; server load is
thus reduced.

We study NAS as a refinement of the ideal storage system
specified in the previous section. As such, the NAS model
builds on ideas and definitions introduced earlier. As in Sec-
tion 3, we extend the syntax of processes with some macro
definitions, meant to be used by clients.

Definition 4.1 (Authorization on port i).
The macro authi κ for op(f) in P , which expands to

(νc) αi〈op, f, c〉. c(κ). P

(where c /∈ fn(P )), is used to request authorization. The
variable κ gets bound to a capability at runtime.

Definition 4.2 (Action using κ on port i).
The macro leti r = op(f) using κ in P , which expands to

(νn) βi〈κ, op, f, n〉. n(r). P

(where n /∈ fn(P )), is used to request an authorized file op-
eration.

We require honest clients to use the authorization macro
to obtain capabilities from the file server. A capability is

an unforgeable token that certifies that a particular file op-
eration is authorized. In the model, a capability for oper-
ation op on f is implemented as a keyed MAC of the form
mac(〈k, op, f〉, K), where K is a secret key shared between
the server and the disk and 〈k, eop, f〉 is the access right that
witnesses the capability. A file-operation request is serviced
by the disk only if it is accompanied by a correct capability.
Verification is easy using the shared secret key.

Intuitively, a client may request authorization for an op-
eration op on f on port i, get back a capability in variable
κ, and continue as P . The low-level code works as follows: a
fresh private channel c is created, and the request 〈op, f, c〉
sent to the server on channel αi; the capability is received
back on c, and P continued. Once a capability is obtained
for a particular file operation, it may be used any number of
times for requesting service at the disk. This is done using
action macros on port i. Intuitively, the operation op on f
may be requested with a previously acquired capability κ
for the same operation, the result stored in variable r and
P continued. At the low level, a new return channel n is
created and the request 〈κ, op, f, n〉 is sent on βi to the disk;
r is received on n and P continued.

A client is honest if it uses only authorization and ac-
tion macros to request file operations. Moreover, capabili-
ties are used responsibly—that is, any capability obtained
by an honest client via an authorization request may be
used only in a subsequent disk service request by itself; con-
versely, every capability used in a disk service request must
be previously obtained by itself via an authorization request.

Definition 4.3. An honest NAS client C′ is any closed
process (with macros) with the following properties:

• it does not contain explicit occurrences of the names
αk or βk for any k ∈ K, that is, αk, βk /∈ fnmacros(C

′)
for all k ∈ K, where fnmacros collects free names before
expanding macros,

• all authorization and action macros use the same port,
that is, if C′ contains two macros, one on port i1 and
the other on port i2, then i1 = i2,

• any capability obtained with an authorization macro
may only be used to accompany an enclosed action
macro—thus for each subprocess authi κ for op(f)
in P , the only uses of κ in P are in processes of the
form leti r = op(f) using κ in Q,

• the capability accompanying any action macro is bound
by an appropriate enclosing authorization macro—thus
for every subprocess leti r = op(f) using κ in P ,
there is some subprocess authi κ for op(f) in Q, with
Q containing the former, such that no other subprocess
of Q containing the former binds κ, op, or f .

The first two conditions are similar to those on honest clients
in ideal storage systems. The third condition ensures that
capabilities obtained by an honest client are never passed on
to any other client, either by direct communication or via
the disk; further, capabilities are never used in match-branch
or MAC message extraction processes by an honest client.
The last condition ensures that any capability accompany-
ing a file-operation request by an honest client is obtained
by itself, and is a correct capability for the particular file
operation.



Observe that client honesty is a static property—we show
some simple well-formedness rules in Appendix B that pro-
vide a sufficient condition for client honesty. Of course, dis-
honest clients may also obtain capabilities from the server
and request operations with capabilities at the disk (see be-
low), except that they need not follow any of the rules.

We now show the code implementing a network-attached
storage system. The participants are, as in Section 3, a sys-
tem of honest clients C′

i, a file server S′, and a disk D′,
running in an unspecified environment. The file server me-
diates access requests from all clients—it listens on channels
αk (k ∈ K) for requests of the form 〈op, f, c〉, and enforces ac-
cess control with the help of a local table T of access tuples.
If it finds the request authorized, it sends back a capability
to certify this fact. The disk services file-operation requests
from all clients: it listens on channels βk (k ∈ K) for requests
of the form 〈κ, op, f, n〉, verifies that κ is indeed a capability
for op on f , and replies back with the result of the operation.
We use the abbreviation [κ cap of 〈op, f〉, K]P for

κ codes 〈k, , 〉 in [κ = mac(〈k, op, f〉, K)]P ,
where k is fresh in P .

Definition 4.4. A network-attached storage system is of
the form (νi∈Iαiβi)(Πi∈IC′

i | (νKK⊥)(S′ | D′)), where

• each C′
i is an honest NAS client containing authoriza-

tion and action macros on port i,

• S′ is the file server (νδ)(T
| Πk∈K !αk(op, f, c). (νt) δ〈k, op, f, t〉. t(y).

[y = 
] c〈mac(〈k, op, f〉, K)〉
else c〈mac(〈k, op, f〉, K⊥)〉),

• T is an access table
!δ(k, op, f, t). [〈k, eop, f〉 ∈ A] t〈
〉 else t〈⊥〉,

where A is a set of access tuples,

• D′ is the disk (νd) (d〈s0〉
| Πk∈K !βk(κ, op, f, n).

[κ cap of 〈op, f〉, K] d(s).
let 〈s′, r〉 = do(op, f, s)
in n〈r〉. d〈s′〉),

where s0 is the initial storage state.

The key K⊥ is used by the server to generate fake capabil-
ities. NAS clients cannot distinguish between real and fake
capabilities until they use them for disk operations. We as-
sume that s0 satisfies the following condition: for all file
names f , K, K⊥ /∈ fn(s0(f)). This ensures that no client
can obtain a capability by reading from the initial disk state.
Similarly, we assume that A satisfies the following condition:
for all access tuples 〈k, o, f〉 ∈ A, K, K⊥ /∈ fn(〈k, o, f〉).

The code for the access table T does not change much from
the previous section; the only difference is that an access
lookup always returns with a “capability-like” term. This
property is necessary to obtain a faithful map of behaviors
between NAS and ideal storage.

5. SECURITY IN NETWORK-ATTACHED
STORAGE

We study security properties of network-attached storage
by viewing the NAS model of the previous section as an im-
plementation of the ideal storage specification of Section 3.
To this end, we define an abstraction function Φ that maps a

NAS system to an ideal storage system. The purpose of the
abstraction function is much the same as that of a refinement
mapping [14]—it is used to prove that network-attached
storage is a “correct” implementation of ideal storage. How-
ever a refinement mapping would not suffice, since a NAS
system is not necessarily a refinement of its abstraction in
the sense of Lamport [14] (namely, inclusion of behaviors)—
indeed, NAS observably uses capabilities while ideal storage
does not.

The abstraction function Φ is defined below.

Definition 5.1 (Abstraction).

Let NAS = (νi∈Iαiβi)(Πi∈IC′
i | (νKK⊥)(S′ | D′)) be an ar-

bitrary network-attached storage system. Then ΦNAS =
(νi∈Iβi)(Πi∈I�C′

i� | (νγ)(S | D)),
where

�0� = 0
�(νn)P � = (νn) �P �
�P | Q� = �P � | �Q�
�u(�x).P � = u(�x). �P �
�u〈 �M〉.P � = u〈 �M〉. �P �
�!P � = !�P �
�[M = N ]P else Q� = [M = N ]�P � else �Q�
�let 〈x, y〉 = M in P � = let 〈x, y〉 = M in �P �
�case M of 0 : P suc(x) : Q�

= case M of 0 : �P � suc(x) : �Q�
�M codes x in P else Q� = M codes x in �P � else �Q�
�authi κ for op(f) in P � = �P �
�leti r = op(f) using κ in P �

= leti r = op(f) in �P �
The code for the NAS server-disk subsystem is simply re-
placed by the code for the ideal server-disk subsystem. To
abstract honest NAS clients, we “erase” the use of capabil-
ity variables in the code—thus NAS authorization macros
authi κ for op(f) in P are recursively replaced by residues
P , and NAS action macros leti r = op(f) using κ in P
are recursively replaced by ideal storage action macros leti

r = op(f) in P . Observe that the definition of NAS client
honesty precludes incorrect usage of capability variables in
action macros, or their usage in other kinds of processes,
thus making the abstraction function almost trivial to write.
Without these assumptions (as with dishonest clients), how-
ever, it might be expected that abstraction would be more
involved. Indeed, the proof of the main theorem (Section 6)
relies on defining abstraction on arbitrary code employing
dishonest clients; in this case, the abstraction function uses
dynamic checks to enforce correspondence between the con-
crete and abstract levels.

The following definition introduces attackers formally;
these act as environments for our storage systems.

Definition 5.2. An attacker is an arbitrary closed pro-
cess.

We think of an attacker as arbitrary code running in par-
allel with a system. In particular, it could contain code for
dishonest clients, code for exploiting them, colluding with
them, and more.

Definition 5.3. A test is a pair 〈E, c〉 where E is an
attacker and c is a name.

Since we are primarily interested in safety properties, we use
may-testing [19, 6] as a means of observing the system. A



test on a system may be viewed as an attacker that tries to
induce a ground output action by executing in composition
with the system. A successful test, also called an attack,
is one in which the attacker may induce the ground output
action.

Definition 5.4 (Successful test). A closed process

P passes the test 〈E, c〉 iff E | P τ→� c→.

The notation P
τ→� c→ means that the process P may commit

zero or more silent actions followed by an output on c (see
Appendix A).

We next define correctness for the NAS implementation
in terms of full abstraction. Informally, an implementation
is fully abstract if it preserves equivalence, that is, if two
concrete systems are equivalent if and only if their abstrac-
tions are equivalent. We say that two closed processes are
equivalent if they pass the same tests, that is, if no attacker
can distinguish between them.

Definition 5.5 (Testing approximation). Let P
and Q be a pair of closed processes. Then P � Q iff Q
passes all tests passed by P .

Informally, P � Q means that P is “safer” than Q, in the
sense that P does not allow any more observations than Q
does.

Definition 5.6 (Testing equivalence). Let P and
Q be two closed processes. Then P is equivalent to Q (P �
Q) iff P and Q pass the same tests, that is, P � Q and
Q � P .

We now state our main result, namely full abstraction of
NAS.

Theorem 5.7 (Full abstraction). Let NAS1 and
NAS2 be two arbitrary network-attached storage systems.
Then NAS1 � NAS2 iff ΦNAS1 � ΦNAS2.

Full abstraction is proved in two parts. The first part states
that testing approximation is preserved on abstraction, that
is, a pair of NAS systems related under testing approxima-
tion remain related when they are abstracted.

Theorem 5.8. Let NAS1 and NAS2 be a pair of network-
attached storage systems. If NAS1 � NAS2, then ΦNAS1 �
ΦNAS2.

This theorem may be read as an adequacy result. The sec-
ond part is more interesting, and states the converse.

Theorem 5.9. Let NAS1 and NAS2 be a pair of network-
attached storage systems. If ΦNAS1 � ΦNAS2, then NAS1 �
NAS2.

Full abstraction is a powerful property, and implies many
interesting security properties. Recall that two systems are
equivalent if no attacker can distinguish them. A system
can be proved secure by showing its equivalence to another
system, whose security has already been established, or is
easy to see. Full abstraction of NAS implies that if two
ideal storage systems are indistinguishable, then any corre-
sponding NAS implementations of these systems are indis-
tinguishable as well. We show two examples that illustrate
how full abstraction yields specific guarantees for NAS sys-
tems. The first example concerns secrecy; the second one
concerns authenticity.

Example 5.10 (Secrecy). Consider an ideal storage
system Ideal with one honest client
leti = write(M)(f),

with A = {〈i, write, f〉} and M a closed term. An attacker
cannot know that what has been written to f , since it cannot
read it. This is a secrecy property, and can be expressed as
Ideal � Ideal′, where Ideal′ is an ideal storage system with
one honest client
leti = write(0)(f),

and the same A. Let NAS′ be a trivial implementation of
Ideal′, with one honest client
authi κ for write(0)(f) in

leti = write(0)(f) using κ.
Theorem 5.7 guarantees that for any implementation NAS
such that ΦNAS = Ideal, NAS � NAS′ holds, that is, no
attacker can get any information about M from NAS.

Example 5.11 (Authenticity). Let Ideal consist of
two honest clients
(νm)leti1 = write(m)(f) in m(x). [x �= 0] c〈〉

and
leti2 m = read(f) in m〈0〉,

with A = {〈i1, write, f〉, 〈i2, read, f〉}. An attacker cannot
forge a different message on m, since it cannot know m—m
is a fresh name that it cannot guess, and is written to a file
it cannot read. This is an authenticity property, and may be
expressed by stating that an attacker cannot induce output
on c. Thus we may write Ideal � Ideal′, where Ideal′ is an
ideal storage system with two honest clients
leti = write(0)(f) and 0,

and the same A. Let NAS′ be a trivial implementation of
Ideal′. Theorem 5.7 guarantees that for any implementation
NAS such that ΦNAS = Ideal, NAS � NAS′ holds, so no
attacker can forge a different message on s in NAS.

6. OUTLINE OF PROOFS
We state some definitions and lemmas that help to prove

the main result.
The concretization function Ψ translates an arbitrary ideal

storage system to a network-attached storage system, as fol-
lows.

Definition 6.1 (Concretization). Let Ideal be any
ideal storage system (νi∈Iβi)(Πi∈ICi | (νγ)(S | D)). Then
ΨIdeal = (νi∈Iαiβi)(Πi∈I�Ci� | (νKK⊥)(S′ | D′)), where

�0� = 0
�(νn)P � = (νn) �P �
�P | Q� = �P � | �Q�
�u(�x).P � = u(�x). �P �
�u〈 �M〉.P � = u〈 �M〉. �P �
�!P � = !�P �
�[M = N ]P else Q� = [M = N ]�P � else �Q�
�let 〈x, y〉 = M in P � = let 〈x, y〉 = M in �P �
�case M of 0 : P suc(x) : Q�

= case M of 0 : �P � suc(x) : �Q�
�M codes x in P else Q� = M codes x in �P � else �Q�
�leti r = op(f) in P �

= authi κ for op(f) in

leti r = op(f) using κ in �P �,
where κ is fresh in P .

Proposition 6.2 (Sanity). Φ◦Ψ is the identity func-
tion on ideal storage systems.



We define concretization and abstraction functions for en-
vironments as well. The concretization function Ψ trans-
lates attackers for ideal storage systems to attackers for con-
cretized NAS systems. Let J = K\I.

Definition 6.3 (Concretization of attackers).

Let E be an ideal storage attacker. ΨE = �E�, where

�0� = 0
�(νn)P � = (νn) �P �
�P | Q� = �P � | �Q�
�u(�x).P � = u(�x). �P �
�u〈op, f, n〉.P �

= Σj∈J [u = βj ] authj κ for op(f) in

βj〈κ, op, f, n〉. �P �
+ u〈op, f, n〉. �P �

�u〈 �M〉.P � = u〈 �M〉. �P �, if | �M | �= 3
�!P � = ! �P �
�[M = N ]P else Q� = [M = N ]�P � else �Q�
�let 〈x, y〉 = M in P � = let 〈x, y〉 = M in �P �
�case M of 0 : P suc(x) : Q�

= case M of 0 : �P � suc(x) : �Q�
�M codes x in P else Q� = M codes x in �P � else �Q�

Concretization of attackers closely follows concretization of
honest clients, except that we need to keep in mind that
attackers may not satisfy the conditions imposed on honest
clients. In particular there may be no discipline in the use
of the names βj and capabilities obtained from the server.

Proposition 6.4. For any network-attached storage sys-
tem NAS, ΦNAS passes 〈E′, c〉 iff NAS passes 〈ΨE′, c〉.

Proof of Theorem 5.8. If ΦNAS1 passes 〈E′, c〉, then
by Proposition 6.4, NAS1 passes 〈ΨE′, c〉, which implies that
NAS2 passes 〈ΨE′, c〉, which implies (again by Proposition
6.4) that ΦNAS2 passes 〈E′, c〉.
The abstraction function Φ for NAS attackers is given next.

Definition 6.5 (Abstraction of attackers). Let
E be a NAS attacker, A = {αj ∈ fn(E) | j ∈ J }, and
B = {βj ∈ fn(E) | j ∈ J }. We abbreviate the code

κ codes 〈j, , 〉 in
([κ = mac(〈j, op, f〉, K⊥)] βj〈op, f, n〉. Q else Q)

else Q
as sim(κ, op, f, n)/K⊥/Q. Then ΦE = (νK⊥)(�E� | SE),
where

�0� = 0
�(νn)P � = (νn) �P �
�P | Q� = �P � | �Q�
�u(�x).P � = u(�x). �P �
�u〈κ, op, f, n〉.P �

= Σb∈B[u = b] sim(κ, op, f, n)/K⊥/�P �
+ u〈κ, op, f, n〉. �P �

�u〈 �M〉.P � = u〈 �M〉. �P �, if | �M | �= 4
�!P � = ! �P �
�[M = N ]P else Q� = [M = N ]�P � else �Q�
�let 〈x, y〉 = M in P � = let 〈x, y〉 = M in �P �
�case M of 0 : P suc(x) : Q�

= case M of 0 : �P � suc(x) : �Q�
�M codes x in P else Q� = M codes x in �P � else �Q� , and

SE = Παj∈A !αj(op, f, c). c〈mac(〈j, op, f〉, K⊥)〉.

The abstract attacker simulates the effects of obtaining ca-
pabilities from the NAS server by creating a dummy server
that issues fake capabilities (that is, under a different secret
key). Given a fake capability, an abstracted attacker can
extract the subject whose rights are certified by the asso-
ciated original capability in the NAS system, and use this
information to request the file operation on the subject’s
port.

The function b translates terms and actions in network-
attached storage systems to “appropriate” terms and actions
in ideal storage systems.

Definition 6.6. The function b homomorphically maps
capabilities issued by the NAS server to similar terms (issued
by the dummy server) under a different secret key.bK = K⊥

̂〈M, N〉 = 〈cM, bN〉
̂suc(M) = suc(cM)

̂mac(M, N) = mac(cM, bN)
̂o(M1, . . . , Mk) = o( cM1, . . . , dMk)bs = s′ such that for all f , s′(f) = ds(f)b� = � (otherwise)

The following relation shows correspondence between states
of a NAS implementation and states of its abstraction as an
ideal storage system.

Definition 6.7 (Abstraction relation). Let NAS
be a network-attached storage system, and E be an attacker.
In any run of E | NAS, every state can be written in the
form (νKK⊥)(ν�n)(e | (νi∈Iαiβi)(Πi∈Ic′i | ς ′)) upto structural
equivalence [6], where e, ς ′, and c′i (i ∈ I) are components
of the state for the attacker, the server-disk subsystem, and
the honest clients, and �n contains shared bound names.
The notation close(S) means {〈σ P ′, bσ P 〉 s.t. 〈P ′, P 〉 ∈ S;

σ maps free variables in P ′ to ground terms; and bσ = b◦σ}.
We assume (without loss of generality) that E and each C′

i

are written so that distinct variable binding instances bind
distinct variables. The relations RC′

i
, RS′|D′ and RE are

defined in Figures 1, 2, and 3. The abstraction relation
R =

{〈(νKK⊥)(ν�n)(e | (νi∈Iαiβi)(Πi∈Ic′i | ς ′)),
(νK⊥)(ν�n)(e′ | (νi∈Iβi)(Πi∈Ici | (νγ)ς))〉

such that 〈c′i, ci〉 ∈ RC′
i
, 〈ς ′, ς〉 ∈ RS′|D′ , 〈e, e′〉 ∈ RE , and �n

contains shared bound names}.
Observe that R contains the pair 〈E | NAS, ΦE | ΦNAS〉.

Lemma 6.8. Let R be the abstraction relation derived from
NAS and E, and let 〈N, I〉 be an arbitrary pair in R. Then

– if N
τ→ N ′, then there exists I ′ such that I

τ→�
I ′

and 〈N ′, I ′〉 ∈ R; conversely, if I
τ→ I ′, then there exists

N ′ such that N
τ→�

N ′ and 〈N ′, I ′〉 ∈ R;

– if N
c→, then I

c→; conversely, if I
c→, then N

τ→� c→.

Theorem 6.9 (Testing refinement). Let NAS be a
network-attached storage system and 〈E, c〉 be a test. Then
NAS passes 〈E, c〉 iff ΦNAS passes 〈ΦE, c〉.

Proof. By induction on test runs, using Lemma 6.8.

Observe that fn(ΦE) ⊆ fn(E) follows from the definition of
Φ on attackers. Theorem 6.9 is interesting in itself—it can
be read as a safety preservation theorem. Informally, it says



RC′
i

= close(‖C′
i‖), where the function ‖ ‖ is as defined below.

‖0‖ = {〈0, 0〉}
‖(νn)P‖ = {〈(νn)P ′, (νn)X′〉

: 〈P ′, X′〉 ∈ ‖P‖}
‖P | Q‖ = {〈P ′|Q′, X′|Y ′〉

: 〈P ′, X′〉 ∈ ‖P‖, 〈Q′, Y ′〉 ∈ ‖Q‖}
‖u(�x).P‖ = {〈u(�x).P, u(�x).X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖
‖u〈 �M 〉.P‖ = {〈u〈 �M〉.P, u〈 �M〉.X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖
‖!P‖ = {〈!P | Πr

l=1Pl, !X| Πr
l=1Xl〉

: 〈P, X〉, 〈P1, X1〉, . . . , 〈Pr , Xr〉 ∈ ‖P‖}
‖[M = N ]P else Q‖ = {〈[M = N ]P else Q, [M = N ]X else Y 〉

: 〈P, X〉 ∈ ‖P‖, 〈Q, Y 〉 ∈ ‖Q‖} ∪ ‖P‖ ∪ ‖Q‖
‖let 〈x, y〉 = M in P‖ =

{〈let 〈x, y〉 = M in P, let 〈x, y〉 = M in X〉
: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖

‖case M of 0 : P suc(x) : Q‖ =
{〈case M of 0 : P suc(x) : Q, case M of 0 : X suc(x) : Y 〉

: 〈P, X〉 ∈ ‖P‖, 〈Q, Y 〉 ∈ ‖Q‖} ∪ ‖P‖ ∪ ‖Q‖
‖M codes x in P else Q‖ =

{〈M codes x in P else Q, M codes x in X else Y 〉
: 〈P, X〉 ∈ ‖P‖, 〈Q, Y 〉 ∈ ‖Q‖} ∪ ‖P‖ ∪ ‖Q‖

‖authi κ for op(f) in P‖ =
{〈(νc) αi〈op, f, c〉. c(x). P, X〉,
〈c(x). P, X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖
‖leti r = op(f) using κ in P‖ =

{〈(νn) βi〈κ, op, f, n〉. n(r). P, (νn) βi〈op, f, n〉. n(r). X〉,
〈n(r). P, n(r). X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖

Figure 1: Abstraction relation between honest
clients

that an observation that can be induced by an attacker on
a NAS system can also be induced by an attacker with as
much initial knowledge on the abstracted system.

Proof of Theorem 5.9. Assume ΦNAS1 � ΦNAS2.
Suppose NAS1 passes 〈E, c〉, then ΦNAS1 passes 〈ΦE, c〉
by Theorem 6.9. By assumption, ΦNAS2 passes 〈ΦE, c〉,
and finally by Theorem 6.9, NAS2 passes 〈E, c〉.

The following is a corollary to Theorem 5.9, and can be
read as dual to Proposition 6.2. Abstraction followed by
concretization may rearrange, prune, or replicate authoriza-
tion requests in honest clients; the resulting NAS system is
equivalent to the original.

Proposition 6.10. Let NAS be a network-attached stor-
age system, then ΨΦNAS � NAS.

Proof. Assume the contrary. Then ΦΨΦNAS �� ΦNAS
by Theorem 5.9. But ΦΨΦNAS = ΦNAS by Proposition
6.2—this contradicts the assumption.

7. RELATED WORK
There has been a lot of interest in the security architec-

ture of network-attached storage ever since its inception [9,
11, 10, 20, 16, 21]. However the design of security in most
NAS implementations (NASD [11], SCARED [20], SNAD
[16], SNARE [21]) has been semi-formal. Schemes for se-
cure storage have often been described in detail using a mix
of cryptography and clever data structures; yet the targeted
security properties have seldom been formally articulated
or proved. Some exceptions are the work of Mazières and

Let S0 and S′0 be parts of server code such that S = (νδ)S0

and S′ = (νδ)S′0. Let D? be part of disk code such that

D = (νd)(d〈s0〉 | D?); define Ds as d〈s〉 | D?. Similarly, suppose

D′ = (νd)(d〈s0〉 | D′
?); define D′

s as d〈s〉 | D′
?. Write {k, op, f}Key

for mac(〈k, op, f〉, Key), and define the abbreviations:

repl(op, f, s)/n/d = let 〈s′, r〉 = do(op, f, s) in n〈r〉.d(s′).
cert(k, op, f)/y/c = [y = �]c〈{k, op, f}K〉 else c〈{k, op, f}K⊥ 〉.

Let ‖S′‖E =

{〈(νt) δ〈i, op, f, t〉. t(y). cert(i, op, f)/y/c, 0〉,
〈(νt) δ〈j, op, f, t〉. t(y).cert(j, op, f)/y/c, c〈{j, op, f}K⊥ 〉〉,
〈(νt) t(y). cert(i, op, f)/y/c | [〈i, eop, f〉 ∈ A] t〈�〉 else t〈⊥〉, 0〉,
〈(νt) t(y). cert(j, op, f)/y/c | [〈j, eop, f〉 ∈ A] t〈�〉 else t〈⊥〉,

c〈{j, op, f}K⊥ 〉〉,
〈cert(i, op, f)/y/c, 0〉,
〈cert(j, op, f)/y/c, c〈{j, op, f}K⊥ 〉〉,
〈c〈{i, op, f}K〉, 0〉,
〈c〈{j, op, f}K〉, c〈{j, op, f}K⊥ 〉〉,
〈c〈{i, op, f}K⊥ 〉, 0〉,
〈c〈{j, op, f}K⊥ 〉, c〈{j, op, f}K⊥ 〉〉 : i ∈ I, j ∈ {j′ | αj′ ∈ A}}

‖D′‖S =
{〈[κ cap of 〈op, f〉, K] d(s). repl(op, f, s)/n/d,

(νt) t(). γ〈 bop, bf, n〉 | [〈k, ebop, bf〉 ∈ A] t〈〉〉
: κ = {k, op, f}K ⇔ 〈k, eop, f〉 ∈ A}

‖D′‖ =
{〈D′

s, Dŝ〉, 〈repl(op, f, s)/n/d |D′
?, repl(op, f, s)/n/d |D?〉}

RS′|D′ =

{〈(νδ)(Πps′p|S′0) | (νd)(Πqd′q |d′r),

(Πpsp|SE) | (νδ)(Πqsq|S0) | (νd)(dr)〉
: 〈s′p, sp〉 ∈ close(‖S′‖E), 〈d′q , sq〉 ∈ close(‖D′‖S),

〈d′r , dr〉 ∈ close(‖D′‖) and p, q, r index finite sets}

Figure 2: Abstraction relation between server-disk
subsystems

RE = close(‖E‖), where the function ‖ ‖ is defined as below.

‖0‖ = {〈0, 0〉}
‖(νn)P‖ = {〈(νn)P ′, (νn)X′〉

: 〈P ′, X′〉 ∈ ‖P‖}
‖P | Q‖ = {〈P ′|Q′, X′|Y ′〉

: 〈P ′, X′〉 ∈ ‖P‖, 〈Q′, Y ′〉 ∈ ‖Q‖}
‖u(�x).P‖ = {〈u(�x).P, u(�x).X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖
‖u〈κ, op, f, n〉.P‖ =

{〈u〈κ, op, f, n〉.P,
Σb∈B[u = b]sim(κ, op, f, n)/K⊥/X
+ u〈κ, op, f, n〉.X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖
‖u〈 �M〉.P‖ = {〈u〈 �M〉.P, u〈 �M〉.X〉

: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖ if | �M | 	= 4
‖!P‖ = {〈!P | Πr

l=1Pl, !X| Πr
l=1Xl〉

: 〈P, X〉, 〈P1, X1〉, . . . , 〈Pr , Xr〉 ∈ ‖P‖}
‖[M = N ]P else Q‖ = {〈[M = N ]P else Q, [M = N ]X else Y 〉

: 〈P, X〉 ∈ ‖P‖, 〈Q, Y 〉 ∈ ‖Q‖} ∪ ‖P‖ ∪ ‖Q‖
‖let 〈x, y〉 = M in P‖ =

{〈let 〈x, y〉 = M in P, let 〈x, y〉 = M in X〉
: 〈P, X〉 ∈ ‖P‖} ∪ ‖P‖

‖case M of 0 : P suc(x) : Q‖ =
{〈case M of 0 : P suc(x) : Q, case M of 0 : X suc(x) : Y 〉

: 〈P, X〉 ∈ ‖P‖, 〈Q, Y 〉 ∈ ‖Q‖} ∪ ‖P‖ ∪ ‖Q‖
‖M codes x in P else Q‖ =

{〈M codes x in P else Q, M codes x in X else Y 〉
: 〈P, X〉 ∈ ‖P‖, 〈Q, Y 〉 ∈ ‖Q‖} ∪ ‖P‖ ∪ ‖Q‖

Figure 3: Abstraction relation between attackers



Shasha on a formal notion of data integrity for a system
with untrusted remote storage (SUNDR [15]), and Gobioff’s
analysis of the NASD protocol using belief logics [10].

Our approach towards formalizing “what security means”
in the context of NAS derives various ideas from verification
and programming languages theory. Proofs of correctness
of the NAS implementation with respect to the abstracted
ideal storage specification rely in part on techniques similar
to refinement mappings [14]. Full abstraction as a security
property has been studied in [1], and used, for example, in
proving the correctness of secure implementations of channel
abstractions [5] and authentication primitives [4], and also
in the analysis of programming language security guarantees
[1, 13].

8. CONCLUSION
In this paper we show a formal approach to modeling se-

cure storage systems. We state and prove the correctness
of NAS in terms of a powerful notion of security, namely
full abstraction, by comparing the implementation with a
specification of traditional centralized storage.

Our result is quite general, and says that NAS systems are
as secure as their abstractions as “ideal” centralized storage
systems. This result may be applied to derive specific guar-
antees for specific schemes. Furthermore, by making mini-
mal assumptions on the behavior of clients, our result scales
to systems where interaction with storage devices is only a
part of client behavior. One might imagine that security
analysis for such composite systems would be made simpler
by “plugging in” abstracted ideal storage subsystems wher-
ever NAS subsystems were used.

We have only begun our study in this direction; in par-
ticular, the NAS design we analyze is fairly basic. One im-
mediate line of future work includes allowing multiple disks,
dynamic administration of access, revocation of capabilities,
etc., in the NAS implementation to scale up the analysis to
more realistic systems. Along similar lines, it would be in-
teresting to investigate richer models for access control and
data representation, with varying trust assumptions on file
servers and disks.
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APPENDIX
The appendix includes a formal semantics of the calculus
(directly based on one for the spi calculus [6]) and a simple
type system for establishing honesty of NAS clients.

A. FORMAL SEMANTICS OF THE CAL-
CULUS

Reduction is defined on closed processes.

!P > P | !P
[M = M ]P else Q > P
[M = N ]P else Q > Q if M �= N
let 〈x, y〉 = 〈M, N〉 in P > P{M/x, N/y}
case 0 of 0 : P suc(x) : Q > P
case suc(M) of 0 : P suc(x) : Q > Q{M/x}
mac(M, N) codes x in P else Q > P{M/x}
M ′ codes x in P else Q > Q if M ′ �= mac(M, N)

The grammar of processes is extended to a grammar of
agents, which include processes, abstractions, and concre-
tions.

Abstractions F ::= (�x).P

Concretions C ::= (ν�n)〈 �M〉.P
Agents A ::= P | F | C

The following syntactic rearrangements are defined to ex-
tend the scope of abstractions and concretions beyond re-
striction and composition constructs.

(νm)(�x).P
∆
= (�x).(νm)P

R | (�x).P
∆
= (�x).(R | P ) if �x �⊆ fv(R)

(νm)(ν�n)〈 �M〉.P ∆
=

(νm,�n)〈 �M〉.P if m ∈ fn( �M)\�n
(ν�n)〈 �M〉.(νm)P if m /∈ fn( �M) ∪ �n

R | (ν�n)〈 �M〉.P ∆
= (ν�n)〈 �M〉.(R | P ) if �n ∩ fn(R) = ∅

Abstractions and concretions reduce to give back processes.
Suppose F = (�x).P and C = (ν�n)〈 �M〉.Q such that �n ∩
fn(P ) = ∅, then

F @ C
∆
= (ν�n)(P{ �M/�x} | Q)

C @ F
∆
= (ν�n)(Q | P{ �M/�x})

An action may be silent, input on a name, or output on a
name.

Actions α ::= τ (silent)
| m (input)
| m (ground output)

The commitment relation −→⊆ Processes×Actions×Agents
is shown in Figure 4.

m(�x).P
m−→ (�x).P m〈 �M〉.P m−→ (ν)〈 �M 〉.P

P
m−→ F Q

m−→ C

P | Q τ−→ F @ C

P
m−→ C Q

m−→ F

P | Q τ−→ C @ F

P
α−→ A

P | Q α−→ A | Q

Q
α−→ A

P | Q α−→ P | A

P
α−→ A α 	∈ {n, n}
(νn)P

α−→ (νn)A

P > Q Q
α−→ A

P
α−→ A

Figure 4: The commitment relation

B. TYPING HONESTY OF NAS CLIENTS
We define typing judgments of the form ρ, i � P , where

ρ is a function from variables to terms, i ∈ K, and P is
a process with NAS authorization and action macros. Let
occ(ρ) = dom(ρ)∪ fn(range(ρ))∪ fv(range(ρ)), and occ(M) =
fn(M) ∪ fv(M). The typing rules are shown in Figure 5.

We define NAS client honesty as a well-typedness prop-
erty: A closed process P is an honest NAS client iff fn(P )∩
{αk, βk | k ∈ K} = ∅ and ∅, i � P for some i ∈ K.

ρ, i � 0
ρ, i � P ρ, i � Q

ρ, i � P | Q
ρ, i � P

ρ, i �!P

�x ∩ occ(ρ) = ∅, occ(u) ∩ dom(ρ) = ∅ ρ, i � P

ρ, i � u(�x).P

occ(u, �M) ∩ dom(ρ) = ∅ ρ, i � P

ρ, i � u〈 �M 〉.P

n /∈ occ(ρ) ρ, i � P

ρ, i � (νn)P

occ(M, N) ∩ dom(ρ) = ∅ ρ, i � P ρ, i � Q

ρ, i � [M = N ]P else Q

{x, y} ∩ occ(ρ) = ∅, occ(M) ∩ dom(ρ) = ∅ ρ, i � P

ρ, i � let 〈x, y〉 = M in P

x /∈ occ(ρ), occ(M) ∩ dom(ρ) = ∅ ρ, i � P ρ, i � Q

ρ, i � case M of 0 : P suc(x) : Q

x /∈ occ(ρ), occ(M) ∩ dom(ρ) = ∅ ρ, i � P ρ, i � Q

ρ, i � M codes x in P else Q

κ /∈ occ(ρ), occ(op, f) ∩ dom(ρ) = ∅ ρ[κ �→ 〈op, f〉], i � P

ρ, i � authi κ for op(f) in P

r /∈ occ(ρ) ρ(κ) = 〈op, f〉 ρ, i � P

ρ, i � leti r = op(f) using κ in P

Figure 5: Typing rules for honest NAS clients


