
SCanDroid: Automated Security Certification of Android Applications

Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster
University of Maryland, College Park
{afuchs,avik,jfoster}@cs.umd.edu

Abstract

Android is a popular mobile-device platform developed
by Google. Android’s application model is designed to
encourage applications to share their code and data with
other applications. While such sharing can be tightly con-
trolled with permissions, in general users cannot determine
what applications will do with their data, and thereby can-
not decide what permissions such applications should run
with. In this paper we present SCANDROID, a tool for rea-
soning automatically about the security of Android appli-
cations. SCANDROID’s analysis is modular to allow in-
cremental checking of applications as they are installed on
an Android device. It extracts security specifications from
manifests that accompany such applications, and checks
whether data flows through those applications are consis-
tent with those specifications. To our knowledge, SCAN-
DROID is the first program analysis tool for Android, and
we expect it to be useful for automated security certification
of Android applications.

1 Introduction

Android [3] is Google’s open-source platform for mobile
devices, which is recently enjoying wide adoption by the in-
dustry. Designed to be a complete software stack, Android
includes an operating system, middleware, and core appli-
cations. Furthermore, it comes with an SDK that provides
the tools and APIs necessary to develop new applications
for the platform in Java [3]. Developers of new applications
have full access to the same framework APIs used by the
core applications.

Android’s application model has several interesting fea-
tures. First, applications must follow a specific structure,
i.e., they must be composed of some basic kinds of com-
ponents understood by Android. This design encourages
sharing of code and data across applications. Next, inter-
actions between components can be tightly controlled. By
default, components within an application are sandboxed
by Android, and other applications may access such com-
ponents only if they have the required permissions to do so.
This design promises some measure of protection from ma-
licious applications.

However, enforcing permissions is not sufficient to pre-
vent security violations, since permissions may be misused,
intentionally or unintentionally, to introduce insecure data
flows. Indeed, suppose that Alice downloads and installs a
new application, developed by Bob, on her Android-based
phone. Say this application, wikinotes, interacts with a core
application, notes, to publish some notes from the phone to
a wiki, and to sync edits back from the wiki to the phone. Of
course, Alice would not like all her notes to be published,
and would not like all her published notes to be edited; for
instance, her notes may include details of her ongoing re-
search. How can she know whether it is safe to run the
application? Can she trust the application to safely access
her data? Conversely, Bob may want to be able to convince
Alice that his application can be run safely on her phone.

In this paper, we present SCANDROID,1 a tool for
automated security certification of Android applications.
SCANDROID statically analyzes data flows through An-
droid applications, and can make security-relevant deci-
sions automatically, based on such flows. In particular, it
can decide whether it is safe for an application to run with
certain permissions, based on the permissions enforced by
other applications. Alternatively, it can provide enough con-
text to the user to make informed security-relevant deci-
sions. SCANDROID can also be useful in various proof-
carrying code (PCC) [11] settings. For example, applica-
tions can be reviewed offline with SCANDROID by an appli-
cation store [2], and Android devices can check certificates
of security issued by the application store at install time.
Alternatively, the developer can construct a safety proof for
the application by using our analysis, and the device can
verify that proof before installing the application.

At the heart of SCANDROID is a modular data flow anal-
ysis for Android applications, designed to allow incremen-
tal checking of applications as they are installed on an An-
droid device. Our analysis tracks data flows through and
across components, while relying on an underlying abstract
semantics for Android applications. The data flows can be
fairly complicated, due to sophisticated protocols run by
Android to route control between components. Our abstract
semantics for Android applications exposes these control
routes to our analysis.

1The name is intended to abbreviate “Security Certifier for anDroid”,
although various puns might be intended as well.

1

We formalize the basic elements of our data flow analy-
sis as a constraint system, based on an existing core calcu-
lus to describe and reason about Android applications [7].
We show how end-to-end security can be enforced with our
data flow analysis. In our formalism, we focus only on
constructs that are unique to Android, while ignoring the
other usual Java constructs that may appear in Android ap-
plications. This simplification allows us to study Android-
specific features in isolation. Our system relies on the ac-
cess control mechanisms already provided by Android, and
enforces “best practices” for developing secure applications
with these mechanisms. The resulting guarantees include
standard data-flow security properties for well-constrained
applications described in the calculus.

Next, we extend and implement this core analysis to rea-
son about actual Android applications. For this purpose,
we must consider the usual Java constructs in combination
with Android-specific constructs. This poses some signifi-
cant challenges: for instance, we need a string analysis to
recover addresses of components; we need a pointer analy-
sis to track flows through the heap; we need to handle inter-
procedural flows through JVML bytecode, and so on. Our
implementation is built over WALA, an open-source col-
lection of libraries for Java program analysis. Although we
have not proved so, we expect that our formal guarantees
should carry over to our implementation.

In sum, our contributions in this paper are as follows.

• We design a modular data flow analysis for Android
applications, which tracks data flows through and
across components, while relying on an abstract se-
mantics for Android applications.

• We formalize the basic elements of our analysis in a
core calculus to describe and reason about Android ap-
plications. We prove that applications verified by our
analysis have standard data-flow security properties.

• We present a tool, SCANDROID, that extends and im-
plements this analysis to reason about actual Android
applications. Although we have not proved so, we ex-
pect that our formal guarantees can be carried over to
our implementation.

• We indicate how SCANDROID can be useful for auto-
mated security certification of Android applications.

To our knowledge, SCANDROID is the first program
analysis tool for Android. While we focus on security in
this paper, we believe that SCANDROID’s data flow analysis
will be useful in other contexts as well. For instance, it may
be used to prove the safety of type casts, which are common
for Android’s data structures; it may also be used to infer
minimal sets of permissions required for functionality. At
the very least, we believe that this setting provides an ideal

opportunity to bring language-based security to the main-
stream: the idea of certified installation should certainly be
attractive to a growing and diverse Android community.

The remainder of the paper is organized as follows. In
Section 2 we present an overview of Android, focusing on
its application model, data structures, and security mech-
anisms. In Section 3, we provide a series of examples to
illustrate data flows through Android applications. In Sec-
tion 4, we formalize our analysis and outline its security
guarantees. In Section 5, we describe the details of our
implementation. In Section 6, we discuss limitations and
future extensions. In Section 7, we discuss some closely
related work. Finally, in Section 8, we conclude.

2 Overview of Android

Android implements a complete software stack for run-
ning mobile device applications. At the lowest layer is a
Linux kernel that provides device drivers, memory man-
agement, power management, and networking. Next, An-
droid provides some native libraries for graphics, database
management, and web browser functionality, which can be
called through Java interfaces. Furthermore, Android in-
cludes core Java libraries, and a virtual machine for running
customized bytecode (called dex) derived from JVML byte-
code. Above this layer is the application framework, which
serves as an abstract machine for applications. Finally, the
top layer contains application code, developed in Java with
the APIs provided by an SDK.

Next, we describe Android’s application model, focusing
on how applications are developed and run in detail.

2.1 Application components

An Android application is a package of components,
each of which can be instantiated and run as necessary (pos-
sibly even by other applications) [3]. Components are of the
following types:

Activity components form the basis of the user interface.
Usually, each window of the application is controlled
by some activity.

Service components run in the background, and remain ac-
tive even if windows are switched. Services can expose
interfaces for communication with other applications.

BroadcastReceiver components react asynchronously to
messages from other applications.

ContentProvider components store data relevant to the
application, usually in a database. Such data can be
shared across applications.

2

Consider, for example, a music-player application for an
Android-based phone. This application may include sev-
eral components. There may be activities for viewing the
songs on the phone and for editing the details of a particu-
lar song. There may be a service for playing a song in the
background. There may be broadcast receivers for pausing
a song when a call comes in, and for restarting the song
when the call ends. Finally, there may be a content provider
for sharing the songs on the phone.

The Android SDK provides a base class for each type
of component, with callback methods that are run at var-
ious points in the life cycle of the associated component.
Each component of an application is defined by extending
one of the base classes and overriding the methods in that
class. (The methods have default implementations, so it is
not necessary to override all such methods in the class.) The
following is a simplified version of the interfaces defined
for each of the four component types. (The types Bundle,
Intent, Cursor, ContentValues, Uri, and IBinder describe data
structures that are used to pass data through and between
components; we will explain these data structures later.)

1 class Activity ... {
2 public void onCreate(Bundle ...) {...}
3 public void onActivityResult(..., Intent data) {...}
4 ...
5 }
6 class Service ... {
7 public IBinder onBind(Intent data) {...}
8 ...
9 }

10 class BroadcastReceiver ... {
11 public void onReceive(..., Intent data) {...}
12 ...
13 }
14 class ContentProvider ... {
15 public Cursor query(Uri queryUri, ...) {...}
16 public int update(Uri updateUri, ContentValues data, ...) {...}
17 ...
18 }

Effectively, each of these methods is an entry point (i.e.,
a main method) that can be called at various points in the
lifecycle of the component. Our implementation carries out
a modular analysis over all such entry points. However, in
this paper we focus only on the methods shown above for
simplicity.

2.2 Environment

Each Android application publishes its contents to the
framework via a manifest. The manifest contains a list of
components that are hosted by an application, some infor-
mation used to link components at run time, and informa-
tion about the permissions enforced and requested by the
application. The manifests for all the applications installed

on a device together form what we will call the environ-
ment. The environment affects Android’s run-time deci-
sions about control flow and data flow between application
components, and is therefore a critical consideration for any
flow analysis.

2.3 Data structures

We now explain some of the data structures that ap-
pear in the signatures above. In Android, data is usually
passed around as hashes of key/value pairs. Containers for
such data include Bundles, Cursors, and ContentValues (and
there are others, e.g., to share preferences across compo-
nents in an application). Sometimes, it is convenient to tag
data with an address, especially to construct messages for
inter-component communication. Containers for such mes-
sages, i.e., data/address pairs, include Intents. Addresses for
data can be specified as Uris. Finally, IBinder is a higher-
order data structure that may contain Java interfaces for
inter-process communication on Android.

2.4 Inter-component communication

Besides managing the lifecycles of individual compo-
nents, Android’s application framework is also responsi-
ble for calling components from other components and
for passing messages between components. In application
code, these interactions occur through various method calls
and callback methods. In particular, inflow methods are
used to import data to the application, and outflow meth-
ods are used to export data from the application. Some of
the inflow methods are shown in the interfaces above, e.g.,
ContentProvider.query and Activity.onActivityResult; there
are others that are not shown, such as Activity.getIntent. In
general, each inflow method can be matched with an out-
flow method. For instance, Activity.getIntent() is matched by
Activity.startActivityForResult(), Activity.onActivityResult() is
matched by Activity.setResult(), and ContentProvider.query
is matched by ContentProvider.update().

Much of the complexity of orchestrating inter-
component interactions lies in linking outflow methods
with components that provide the corresponding inflow
methods. As explained above, addresses can be specified
either as Uris to address ContentProviders or inside Intents
to address Activitys, Services, or BroadcastReceivers.
Furthermore, additional linking information is provided in
the manifest.

Ultimately, addresses influence how control flows across
components, and permissions (described later) can restrict
such flows based on those addresses. Thus, our analysis
needs to track Uris and Intents very precisely. Next we dis-
cuss the addressing mechanisms through Uris and Intents in
more detail.

3

Uri-based addressing In application code, query and up-
date calls to ContentProviders must be addressed through
Uris. A ContentProvider is specified in the manifest
along with the address of its authority. For exam-
ple, a ContentProvider that shares code certificates from
some domain might have domain.certificates as its au-
thority. A query or update on an Uri of the form con-
tent://domain.certificates/... would then be directed to that
ContentProvider.

Intent-based addressing On the other hand, components
such as Activitys, Services, or BroadcastReceivers must be
addressed through Intents. For example, Intents are passed
as parameters in inter-component calls for launching ac-
tivities (via startActivityForResult), binding to services (via
bindService), and sending messages to broadcast receivers
(via sendBroadcast). An Intent can specify the component
to call either by name (e.g., ‘‘domain.services.PostBlog’’),
or more abstractly by action (e.g., ‘‘POSTBLOG’’). As ex-
plained above, Intents may also carry data, usually in a
Bundle.

If the address in an Intent is an action rather than a name,
the Intent is matched against intent filters that are speci-
fied alongside component descriptions in the manifest. The
action specified in the Intent is checked against the action
specified in the intent filter to find a suitable component for
processing the call.

Finally, we should point out that some components, such
as BroadcastReceivers and Services, may be constructed
dynamically by application code. As such, linking informa-
tion about such components is provided at run time in their
constructors, rather than statically in the manifest. More
generally, components that handle events in Android, such
as notification managers and user interfaces, follow a simi-
lar pattern. In our formal analysis, we conveniently gener-
alize such components as listeners.

2.5 Security mechanisms

An application can share its data and functionality with
other applications by letting such applications access its
components. Clearly, these accesses must be carefully con-
trolled for security. Android provides the following key ac-
cess control mechanisms [3].

Permissions Any application needs explicit permissions
to access the components of other applications. Crucially,
such permissions are set at install time, not at run time. An
application’s manifest must declare any permissions that the
application may require. The package installer sets these
permissions via dialog with the user. No further decisions
are made at run time; if the application’s code needs a per-
mission at run time that is not set at install time, it blocks,
and its resources are reclaimed by Android.

Conversely, an application’ manifest declares any per-
missions required by other applications to access its com-
ponents. For dynamic components, this information is pro-
vided in their constructors. In particular, an application can
enforce permissions for launching its activities, binding to
its services, sending messages to its broadcast receivers or
receiving messages from any of its components, and query-
ing and updating data stored by its content providers.

Isolation and Signatures Going further, Android derives
several protection mechanisms from the Linux kernel. Ev-
ery application runs in its own Linux process, on its own
VM. Android starts the application’s process when any of
the application’s code needs to be run, and stops the process
when another application’s code needs to be run. The ap-
plication’s code runs in isolation from the code of all other
applications. Finally, each application is assigned a unique
Linux UID, so the application’s files are not visible to other
applications.

That said, it is possible for several applications to share,
through signatures, the same UID (see below), in which
case their files become visible to each other. Such appli-
cations can also run in the same process, sharing the same
VM. In particular, any Android application must be signed
with a certificate whose private key is held by the developer.
The certificate does not need to be signed by a certificate
authority; it is used only to establish trust between applica-
tions by the same developer. Thus, such applications may
share the same UID or the same permissions.

3 Examples

In this section we show a series of examples to illustrate
how data may flow through Android applications. In par-
ticular we are concerned about flows between Uris, which
address content providers, since ultimately they are the data
sources and sinks across applications.

Intra-component flows We begin with an example of a
simple flow from one Uri to another within an activity.

Example (i)

19 public class Util {
20 private static String authorityA = ‘‘some.authority’’;
21 private static String authorityB = ‘‘some.other.authority’’;
22

23 public static final Uri uriA = Uri.parse(‘‘content://’’+authorityA);
24 public static final Uri uriB = Uri.parse(‘‘content://’’+authorityB);
25

26 public static String readA(ContentResolver handle) {
27 Uri queryUri = Uri.withAppendedPath(uriA, ‘‘param’’);
28 Cursor result = handle.query(queryUri, ...);
29 return result.toString();
30 }

4

Uri A

Activity1.onCreate

 (i)

Activity2.onCreate

 (ii)

Activity4.onCreate

 (iii)

Activity6.onCreate

 (iv)

Uri B

 (i)

Activity3.onCreate

 (ii)

Activity2.onActivityResult

 (ii)

 (ii)

Service5.onBind

 (iii)

connection.onServiceConnected

 (iii)

IService5.Stub.rpc

 (iii)

 (iii)

receiver.onReceive

 (iv)

 (iv)

Figure 1. Data flows from Uri A to Uri B

31

32 public static void writeB(ContentResolver handle, String s) {
33 Uri updateUri = uriB;
34 ContentValues values = new ContentValues();
35 values.put(‘‘param’’, data);
36 handle.update(updateUri, values, ...);
37 }
38 }
39

40 public class Activity1 extends Activity {
41 public void onCreate(...) {
42 ...
43 String s = Util.readA(getContentResolver());
44 Util.writeB(getContentResolver(), s);
45 }
46 }

The class Util defines some methods that will be used
throughout this section. One of these methods, readA
(lines 27–31), is used to issue a query on the Uri con-
tent://some.authority/param (line 29), which we will call
Uri A; this returns a Cursor object over some data at that
Uri (line 30). The other method, writeB (lines 33–38), is
used to package such data into a ContentValues object (line
36) and send it off to update the contents at the Uri con-
tent://some.other.authority (line 37), which we will call Uri
B. (Both of these methods take a ContentResolver object as
parameter, which can be obtained simply by calling a built-
in method getContentResolver.)

Suppose that we launch an instance of Activity1. This
passes control to the onCreate method of that activity (line
42). Next, readA is called to query Uri A (line 44), and
writeB is called with the result to update Uri B (line 45).
Thus, we have a flow of data from Uri A to Uri B; this flow
is shown via the edges marked (i) in the graph in Figure 1.

Such a flow may have unintended security consequences.

• Suppose that the data at Uri A is intended to be secret,
i.e., reading data at Uri A requires permission >. At
the same time, suppose that the data at Uri B is pub-
lic, i.e., reading data at Uri B requires permission ⊥.
Clearly this admits a secrecy violation, because any-
body who has ⊥ permission can effectively read data
from Uri A.

• Dually, suppose that the data at Uri B is intended to be
trusted, i.e., writing data at Uri B requires permission
>. At the same time, suppose that the data at Uri A is
tainted, i.e., writing data at Uri A requires permission
⊥. Clearly this admits an integrity violation, because
anybody who has ⊥ permission can effectively write
data to Uri B.

To prevent such violations, our analysis enforces that the
permission required to read Uri B should be at least as high
as the permission required to read Uri A; and conversely,
the permission required to write Uri A should be at least as
high as the permission required to write Uri B.

Inter-component flows Our next example involves a sim-
ilar overall flow from Uri A to Uri B, but split across multi-
ple activities, i.e., the overall flow is a transitive composition
of simpler flows within and through these activities.

Example (ii)

47 public class Util {
48 ...
49 public static Intent pack(String s) {
50 Intent intent = new Intent();
51 intent.putExtra(‘‘param’’, s);
52 return intent;
53 }
54

55 public static String unpack(Intent data) {
56 return data.getStringExtra(‘‘param’’);
57 }
58 }
59 public class Activity2 extends Activity {
60 public void onCreate(...) {
61 ...
62 String s = Util.readA(getContentResolver());
63 Intent intent = Util.pack(s);
64 intent.setClass(this, Activity3.class);
65 startActivityForResult(intent, ...);
66 }
67

5

68 public void onActivityResult(..., Intent data) {
69 String s = Util.unpack(data);
70 Util.writeB(getContentResolver(), s);
71 }
72 }
73

74 public class Activity3 extends Activity {
75 public void onCreate(...) {
76 ...
77 Bundle input = getIntent().getExtras();
78 Intent data = new Intent();
79 i.putExtras(input);
80 setResult(..., i);
81 }
82 }

The class Util defines the following new methods: pack,
which bundles data in an intent (line 52) and returns it, and
unpack, which extracts data from such an intent (line 57)
and returns it.

Suppose that we launch an instance of Activity2. As
usual, control passes to the onCreate method (line 61),
where readA is called to issue a query on Uri A (line 63).
Next, pack is called to bundle the returned data into an Intent
object (line 64), and an instance of Activity3 is launched with
it (lines 65–66). This passes control to the onCreate method
of that activity (line 76), where the data in the intent is ex-
tracted and bundled back into another intent (lines 78–80),
and that intent is set as the result of this activity (line 81).
Control now passes back to the onActivityResult method of
the calling activity (line 69), where unpack is called to ex-
tract the data in the returned intent (line 70), and finally
writeB is called to, as usual, package the data and use it to
update the contents at Uri B (line 71).

Thus, effectively, we have another flow of data from Uri
A to Uri B; this flow is shown via the edges marked (ii) in
the graph on the left in Figure 1. This flow may have the
same unintended security consequences as in the previous
example, so our analysis enforces the same constraints on
the permissions required for reading from and writing to
Uri A and Uri B, to account for this flow.

Flows through dynamic components Of course, transi-
tive flows may not only involve activities, but also other
components. Tracking data flow across components is al-
ready nontrivial since control flow across such components
is orchestrated implicitly, via reflection, by Android’s ap-
plication framework. Further complications arise when the
components involved in such flows are dynamic, rather than
static. Our next example involves data flow through a ser-
vice that dynamically exposes an RPC interface.

Example (iii)

83 public class Activity4 extends Activity {
84 public void onCreate(...) {
85 ...

86 String s = Util.readA(getContentResolver());
87 Intent intent = Util.pack(s);
88 intent.setClass(this, Service5.class);
89 ServiceConnection connection = new ServiceConnection() {
90 public void onServiceConnected(..., IBinder service) {
91 IService5.Stub.asInterface(service).rpc();
92 }
93 ...
94 }
95 bindService(intent, connection, ...);
96 }
97 }
98

99 public interface IService5 extends IInterface {
100 // autogenerated from IService5.aidl
101 ...
102 public void rpc();
103 }
104

105 public class Service5 extends Service {
106 public IBinder onBind(final Intent data) {
107 return new IService5.Stub() {
108 public void rpc() {
109 String s = Util.unpack(data);
110 Util.writeB(getContentResolver(), s);
111 }
112 }
113 }
114 }

Let us fast-forward to line 88, where data has been read
from Uri A and bundled into an intent. This intent is used
to bind to an instance of Service5 (line 89—96). Binding
to a service actually involves a complicated protocol than
simply connecting to the service; in particular, it allows ar-
bitrary RPC calls into the service. This requires passing a
dynamic ServiceConnection object (lines 90–95) together
with the intent at binding time. Control then passes to the
onBind method of the service (line 125), which must re-
turn an implementation of some RPC interface with which
the connection can interact. Such an interface is typically
autogenerated from an AIDL (Android Interface Descrip-
tion Language) specification, as shown in lines 100–104;
in this example, the interface just exposes a method named
rpc. The implementation of this method (lines 109–112)
causes the data bundled in the intent of onBind to flow
to Uri B. This implementation is implicitly passed to the
onServiceConnected method (line 91) of the connection re-
ceived at binding time, where it is called (line 92) to finally
trigger the flow. The overall flow is shown via the edges
marked (iii) in the graph on the left in Figure 1.

Such complicated flows may also involve other dynamic
components, including notification managers and user inter-
faces. In the following example, a dynamically registered
broadcast receiver is involved in a similar flow.

Example (iv)

115 public class Activity6 extends Activity {

6

116 public void onCreate(...) {
117 ...
118 BroadcastReceiver listener = new BroadcastReceiver() {
119 public void onReceive(..., Intent intent) {
120 String s = Util.unpack(data);
121 Util.writeB(getContentResolver(), s);
122 }
123 };
124 registerReceiver(listener, new IntentFilter(‘‘ACTION’’));
125 String s = Util.readA(getContentResolver());
126 Intent intent = Util.pack(s);
127 intent.setAction(‘‘ACTION’’);
128 sendBroadcast(intent);
129 }
130 }

A BroadcastReceiver object (lines 119–124) is regis-
tered to listen to intents directed at “ACTION” (line 125).
Then, data is read from Uri A, bundled into an intent, and
broadcast to any receiver listening to “ACTION”. In par-
ticular, this passes control to the onReceive method of the
registered receiver (line 120), whence the data flows to Uri
B. The overall flow is shown via the edges marked (iv) in
the graph on the left in Figure 1.

These examples illustrate some possible ways for data to
flow through application code. The goal of our analysis is
to track all such flows between Uris, so as to generate suit-
able constraints on the permissions enforced by those Uris.
In particular, we want to guarantee that those permissions
soundly enforce end-to-end security.

4 Formalization

In this section, we formalize our flow analysis in a core
calculus that was developed specifically to describe and rea-
son about Android applications. For simplicity, the calcu-
lus does not model general classes and methods; instead, it
treats component classes and methods as idealized, primi-
tive constructs. Furthermore, it considers permissions as the
only mechanisms to control cross-component interactions.

4.1 Syntax and informal semantics

Let there be a partial order ≥ over permissions (which
are written in uppercase typewriter font, as in PERM). Com-
ponents are identified by addresses n, which model class
names or actions. Values include variables x and a con-
stant any (which stands for any concrete data); we do not
consider addresses as values for simplicity. These values
suffice for our purposes, since we consider only (explicit)
data flows in our analysis—by definition, such flows do not
depend on the values of the data involved. The syntax of
programs is as follows:

Program syntax

v ::= x | any value
t ::= code

begin(n, v) launch activity
end(v) finish activity
listen(SEND, n, λx.t) register listener
send(LISTEN, n, v) send to listener
query(n) read from provider
update(n, v) write to provider
let x = t in t′ evaluate
� t fork
t+ t′ choice
v result

The meanings of programs are described informally be-
low, after introducing some additional concepts; a formal
operational semantics appears elsewhere [7].

A program runs in an environment that maps addresses
to components. The calculus considers three kinds of com-
ponents: activities, listeners, and stores. (As argued previ-
ously, listeners generalize services, broadcast receivers, no-
tification managers, and various user interfaces; and stores
generalize content providers, databases, files, URIs, and
other data containers [7].) An environment is derived from
the set of applications installed on the system. The syntax
of environments is as follows:

Environment syntax

κ ::= component
activity(LAUNCH, PERM, λx.t, λx.t′) activity
listener(SEND, PERM, λx.t) listener
store(READ, WRITE, v) store

E ::= ∅ | E , n 7→ κ environment

• The component activity(LAUNCH, PERM, λx.t, λx.t′)
describes an activity that enforces permission LAUNCH
on its callers, that runs with permission PERM, and
whose onCreate and onActivityResult methods are
modeled by the functions λx.t and λx.t′; the param-
eter of λx.t is the value used to launch this activity,
and the parameter of λx.t′ is the value returned to this
activity by any other activity launched by it.

• The component listener(SEND, PERM, λx.t) describes a
listener (e.g., a service or a broadcast receiver) that en-
forces permission SEND on its callers, that runs with
permission PERM, and whose listener method (e.g.,
onBind or onReceive) is modeled by the function λx.t;
the parameter of λx.t is the value sent to this listener.

• The component store(READ, WRITE, v) describes a
store (such as a content provider) that enforces permis-
sions READ and WRITE for accessing its contents, and
whose (current) content is v.

7

Furthermore, a program runs with a permission, which is
the permission of the context, i.e., the permission of the ap-
plication that the code belongs to. The program itself may
be run on a stack of windows (produced by launching activ-
ities) or in a pool of threads (produced by forking).

• The program begin(n, v) checks that n is mapped to
a component activity(LAUNCH, PERM, λx.t, λx.t′), and
that the current context has permission LAUNCH. A new
window is pushed on the stack, and the program t is
run with permission PERM and with x bound to v.

• Conversely, end(v) pops the current window off the
stack and returns control to the previous activity; if
that activity is activity(LAUNCH, PERM, λx.t, λx.t′), the
program t′ is run with permission PERM and with x
bound to v.

• The program listen(SEND, n, λx.t) maps n to the com-
ponent listener(SEND, PERM, λx.t) in the environment;
here, PERM is the permission of the current context.

• Conversely, send(LISTEN, n, v) checks that n is
mapped to a component listener(SEND, PERM, λx.t),
that the current context has permission SEND, and that
PERM includes LISTEN. The program t is run with per-
mission PERM, and with x bound to v.

• The program query(n) checks that n is mapped to a
component store(READ, WRITE, v), and that the current
context has permission READ; the value v is returned.

• Conversely, update(n, v) checks that n is mapped to
a component store(READ, WRITE, v′), and that the cur-
rent context has permission WRITE; n is then mapped
to store(READ, WRITE, v) in the environment.

• The program let x = t in t′ evaluates t, and then evalu-
ates t′ with x bound to the result; x is a local variable.

• The program � t forks a thread that runs t. Forking
allows connection to services in the background.

• The program t + t′ evaluates either t or t′. Choice al-
lows nondeterministic interaction with user interfaces.

4.2 Some encoded examples

Below we encode some of the examples of Section 3 in
this calculus. Our intention is to illustrate that these encod-
ings can serve as convenient intermediate representations
for analysis of actual bytecode. In particular, the concise
syntax makes the flows in these examples easy to identify.

Recall example (ii), which involved an inter-component
flow across two activities. For simplicity, we assume that
both activities run with and enforce > permissions.

E(Activity2) = activity(>,>,
λ . let x = query(uriA) in begin(Activity3, x),
λy. update(uriB, y))

E(Activity3) = activity(>,>,
λz. end(z),
λ .)

Next, recall example (iv), which involved a similar flow
through a dynamic receiver. Once again, for simplicity we
assume that the activity as well as the receiver involved in
this flow run with and enforce > permissions.

E(Activity6) = activity(>,>,
λ . listen(>,ACTION,

λw. update(uriB, w));
let x = query(uriA) in send(>,ACTION, x))

λ .)

4.3 Constraint system

We analyze programs by tracking data flows and then
checking whether these flows are secure. Recall that we are
ultimately interested in flows from stores to stores. How-
ever, since flows may be transitively composed, we need
to track for each value in a program the set of stores from
which it may flow. Thus, our analysis is best described
as a constraint system that derives judgments of the form
∆ � t 7→ F , where ∆ is a set of hypotheses, t is a program,
and F identifies a set of stores from which data may flow to
the result of t. If such a judgment can be derived, we say
that F collects the sources of t under ∆.

Our constraint system is modular, in the following sense.
For any function λx.t, we assume some set of stores F
from which x may flow in order to track flows through t.
Conversely, for any call to such a function with value v,
we guarantee that the set of stores from which v flows is
a subset of F . In the calculus, such functions appear in
definitions of components such as activities and listeners,
so we require appropriate hypotheses for these definitions.
Furthermore, we need to approximate the activity stack, to
track flows of values returned from activities to activities
that may have launched them.

In sum, hypotheses in our flow judgments may be of the
following forms:

• n 7→ F , where n identifies a store and F identifies a
set of stores from which contents may flow into n;

• n 7→ 〈Send : F 〉, where n identifies a listener and F
collects the sources of values that may be sent to this
listener (via send);

• n 7→ 〈↓: N, Begin: F, End: F ′〉, where n identifies an
activity, N identifies a set of activities that may launch

8

this activity, F collects the sources of values that may
be used to launch this activity (via begin), and F ′ col-
lects the sources of values that may be returned to this
activity from other activities launched by it (via end);

• x 7→ F , where F identifies a set of stores from which
contents may flow into local variable x;

• self 7→ N , where N identifies a set of activities that
may be running the current code.

Given a set of hypotheses ∆, let ∆(α) retrieve the entry
mapped to identifier α in ∆ (where α is one of x, n, or self);
and let ∆(α).φ look up the field φ of that entry, if possible
(where φ is one of Send, ↓, Begin, or End).

The rules for deriving constraint judgments for programs
are shown in Figure 2. By (Con query), the set of stores
from which data may flow to a query on n is {n}. On the
other hand, by (Con update), the set of stores from which
values v may flow into n via an update must be contained
in ∆(n). Recall that for each store n, ∆(n) should identify
the set of stores from which contents may flow into n; this
will ultimately be the basis of our security analysis.

Moving on, by (Con listen), the body of a listener func-
tion (such as onReceive) must be well-constrained assum-
ing that the values sent to it flow from ∆(n).Send. Con-
versely, by (Con send), values v that may be sent to a lis-
tener n must flow from stores in ∆(n).Send. (Con let),
(Con fork), (Con choice), (Con var), and (Con any) are
straightforward. Finally, by (Con begin), values v that may
be used to launch an activity n must flow from stores in
∆(n).Begin; furthermore, the current activity (collected in
N), must be contained in the ∆(n). ↓. Conversely, by (Con
end), values v that may be returned by the current activity
(collected inN) must flow from ∆(m).End for everym that
may have launched the current activity.

Based on constraint judgments for programs, we derive
constraint judgments for environments, which are of the
form ∆ � E . Such a judgment is defined pointwise, i.e.,
we have ∆ � E if and only if for each mapping n 7→ κ in
E , we have ∆ � n 7→ κ. The rules for deriving the latter
judgments are also shown in Figure 2. By (Con activity),
the bodies of the onCreate and onActivityResult functions
of an activity n must be well-constrained assuming that the
set of activities that may run these functions is {n}, and the
values passed to these functions flow from ∆(n).Begin and
∆(n).End. (Con listener) is similar to (Con listen), except
that the set of activities that may run the listener function
is unknown, and is conservatively taken to be the set of all
activities N. In particular, this means that for any activity m
launched by a listener, ∆(m). ↓ must be unknown, and our
analysis must consider values returned by m to flow to the
onActivityResult methods of all activities. While in general
this may introduce imprecision, in our experience it typi-
cally does not since activities launched by listeners (such

Well-constrained programs ∆ � t 7→ F

(Con query) ∆ � query(n) 7→ {n}

(Con update)
∆ � v 7→ F F ⊆ ∆(n)

∆ � update(n, v) 7→ {}

(Con listen)
∆, x 7→ ∆(n).Send � t 7→ {}

∆ � listen(SEND, n, λx.t) 7→ {}

(Con send)
∆ � v 7→ F F ⊆ ∆(n).Send

∆ � send(LISTEN, (n, v)) 7→ {}

(Con let)
∆ � t 7→ F ∆, x 7→ F � t′ 7→ F ′

∆ � let x = t in t′ 7→ F ′

(Con fork)
∆ � t 7→ {}

∆ � � t 7→ {}

(Con choice)
∆ � t 7→ F ∆ � t′ 7→ F

∆ � t+ t′ 7→ F

(Con var) ∆ � x 7→ ∆(x)

(Con any) ∆ � any 7→ {}

(Con begin)

∆ � v 7→ F ∆(self) = N
F ⊆ ∆(n).Begin N ⊆ ∆(n). ↓

∆ � begin(n, v) 7→ {}

(Con end)

∆ � v 7→ F ∆(self) = N
∀n ∈ N. ∀m ∈ ∆(n). ↓: F ⊆ ∆(m).End

∆ � end(v) 7→ {}

Well-constrained environment ∆ � E , defined pointwise

(Con activity)

∆, self 7→ {n}, x 7→ ∆(n).Begin � t 7→ {}
∆, self 7→ {n}, x 7→ ∆(n).End � t′ 7→ {}

∆ � n 7→ activity(LAUNCH, PERM, λx.t, λx.t′)

(Con listener)
∆, self 7→ N, x 7→ ∆(n).Send � t 7→ {}

∆ � n 7→ listener(SEND, PERM, λx.t)

(Con provider)
∆ � v 7→ F F ⊆ ∆(n)

∆ � n 7→ store(READ, WRITE, v)

Figure 2. Constraint system

as user interfaces) seldom return interesting values, i.e., the
flow sets for such values is often {}.

In our implementation (described in the next section),
we essentially derive these flow judgments by inference, by
initializing each of flow sets in the hypotheses to ∅ and then
computing a fixpoint of these sets by applying the derivation
rules in reverse. The solution of the constraint system is
then the least set of consistent hypotheses ∆.

Finally, we analyze these hypotheses in conjunction with
the environment for security. (Recall that an environment
essentially describes the state of an Android-based device.)
Formally, we consider environment E to be data flow secure
if, for some set of hypotheses ∆, we have ∆ � E , such that
whenever m ∈ ∆(n), E(m) = store(READ, WRITE,), and
E(n) = store(READ′, WRITE′,), we have READ′ ≥ READ

9

and WRITE ≥ WRITE′. In other words, E is data flow se-
cure if the permissions enforced in E are consistent with the
flows through E , as inferred by solving ∆ � E for ∆.

4.4 The encoded examples, revisited

Let us run our analysis on the examples encoded above.
Example (ii) is well-constrained under the following
hypotheses.

∆(uriA) = {}
∆(Activity2) = 〈↓: {},Begin : {},End : {uriA}〉
∆(Activity3) = 〈↓: {Activity2},Begin: {uriA},End: {}〉
∆(uriB) = {uriA}

Clearly there is a flow from uriA to uriB, since the set
∆(uriB) includes uriA. In addition, the set ∆(Activity3).↓
includes Activity2 (which makes the activity stack evident),
and the sets ∆(Activity3).Begin and ∆(Activity2).End in-
clude uriA, showing intermediate flows from uriA.

Similarly, example (iv) is well-constrained under the
following hypotheses.

∆(uriA) = {}
∆(Activity6) = 〈↓: {},Begin : {},End : {}〉
∆(ACTION) = 〈Send : {uriA}〉
∆(uriB) = {uriA}

Again, clearly there is a flow from uriA to uriB, and the
other sets encode a possible path for that flow.

4.5 Soundness of our analysis

We prove that our analysis is sound by reduction to a type
system proposed in [7]. The soundness of that type system
immediately implies the soundness of our analysis.

Theorem 4.1. If an environment is data flow secure, then it
is well-typed according to [7].

Specifically, the key property of that type system is that
well-typed environments preserve end-to-end secrecy and
integrity of data: a value can flow from store m to store n
only if readers of n may already read from m, and writers
ofmmay already write to n. By the above theorem, any en-
vironment that we consider data flow secure by our analysis
enjoys the same property.

The correspondence between the two analyses is not a
coincidence. Indeed, our flow judgments may be viewed
as type inference judgments, in the following sense. In [7],
values are assigned types of the form Any(READ, WRITE),
meaning that such values may flow from contexts with at
most permission WRITE to contexts with at least permission

READ. Such types are related by a subtyping rule (where Γ
is a set of type hypotheses, analogous to ∆):

(Sub any)
READ

′ ≥ READ WRITE ≥ WRITE
′

Γ ` Any(READ, WRITE) <: Any(READ′, WRITE′)

Instead of associating values with types, we associate
them with sets of stores whose permissions encode the rel-
evant types; and the subtyping rule is analogous to our rule
involving permission constraints for data flow security.

This analogy is also evident in the modular, assume-
guarantee style reasoning in our analysis, which is remi-
niscent of type systems. In particular, the types assigned
to activities and listeners in [7] carry similar information
as flow sets in our analysis. For example, the type of a
listener carries the parameter type of its listener function
(which is similar to our Send flow set). Similarly, the type
of an activity carries the parameter types of its onCreate and
onActivityResult functions (which are similar to our Begin
and End flow sets); in addition, it also carries the type of
results returned by that activity, and has a special rule to
connect stacks of activities (all of which are encoded con-
veniently by our ↓ flow sets).

Significantly, our analysis requires absolutely no annota-
tions; in contrast, the type system in [7] requires type anno-
tations for each component. In essence, our analysis is able
to infer all of those annotations by generating the required
constraints and solving them.

5 Implementation

We have implemented our analysis using WALA, a col-
lection of open-source libraries for Java code analysis [6].
While the formal language of the previous section conve-
niently introduces several abstractions to simplify the anal-
ysis, applying the analysis to actual bytecode presents some
significant challenges. For instance, we need a string anal-
ysis to recover addresses of components; we need a pointer
analysis to track flows through the heap; we need to han-
dle interprocedural flows through JVML bytecode; and so
on. In this section we review some of the utilities provided
by WALA and describe the various elements of our analysis
that we construct using these utilities.

5.1 Background on WALA

WALA provides a simple interface to parse a set of Java
classes and generate a call graph over all reachable meth-
ods. Each node of the call graph is the control flow graph
of some method. In addition, WALA provides interfaces to
explode the call graph into an interprocedural “supergraph”
over basic blocks of instructions.

Furthermore, WALA provides implementations of sev-
eral standard program analysis frameworks. In particular, it

10

supplies fixpoint solvers for intraprocedural data flow anal-
ysis and for interprocedural data flow analysis based on the
RHS (Reps-Horwitz-Sagiv) algorithm [13]. Such problems
can be set up by specifying the appropriate transfer func-
tions across nodes and edges.

Finally, WALA implements a flexible pointer analysis
framework. A pointer analysis maps local variables, fields,
and other pointers to sets of objects they may point to; these
sets of objects are represented by instance keys. The pre-
cision of a pointer analysis depends on the level of context
sensitivity used to disambiguate objects created at the same
program location, and WALA provides interfaces to cus-
tomize this level of context sensitivity as necessary.

5.2 Elements of our analysis

Our analysis is composed of several elements, as shown
in Figure 3. By separating each element of our analysis,
we leave open the future possibility of replacing those el-
ements with improved ones, or reusing those elements for
other analyses.

Overall, our inputs include the classes and manifests of
a set of applications, and our output is a set of permission
constraints ≥ that are induced by data flows through those
applications, which must be satisfied for end-to-end secrecy
and integrity guarantees. We assume that a policy is speci-
fied as a partial order over permissions. The default policy
considers permissions to be sets of string identifiers, inter-
preting≥ as the superset relation over such sets. The verifi-
cation condition is simply that the constraints generated by
the checker are always admitted by such a policy.

To keep our analysis tractable, we hide Android’s appli-
cation framework code from WALA. Thus, control flows
across components are not immediately visible to WALA.
Our solution is to implement a modular analysis of flows
within each component, followed by a final phase that con-
nects and analyzes flows across all components. This al-
lows us to analyze applications incrementally as they are
installed, and better reflects the reusability of components
across applications.

Bytecode loader Our bytecode loader parses and gener-
ates a call graph from a given set of application classes and
a fixed set of APIs exposed by Android. We retain only
the code of the application, and prune away the APIs dur-
ing analysis. Furthermore, instead of passing in the con-
crete implementations of the Android APIs, we pass in
simple, abstract stubs—most of which come with the An-
droid SDK, and some of which we extend with our own
implementations where necessary. For example, we need
to implement the APIs for manipulating Uri objects in an-
droid.net.Uri so that WALA’s pointer analysis is able to ac-
count for objects created in and returned by such method

Bytecode (Application + Android Model)

Bytecode Loader

String/Data Analysis

Inflow Filter

Flows for Application

Flow Analysis

Outflow Filter

Checker

Constraints

Further Analysis

Additional Information

Manifest 1

Manifest Loader

Manifest 2

Flows for Application 1 Flows for Application 2

Figure 3. Architecture of analysis

calls. Similar implementations are required for code deal-
ing with other Android data structures (such as Intent in an-
droid.content.Intent).

Furthermore, we customize the pointer analysis to add
some necessary context-sensitivity for specific method
calls. In particular, we force disambiguation of strings and
other data structures returned by methods, based on infor-
mation about their call sites, receivers, and so on. This pre-
cision becomes crucial in subsequent phases of our analysis.

Finally, for a modular analysis we consider multiple root
methods, or entry points, for call graph generation. In
particular, such entry points include callback methods for
each component (e.g., Activity.onCreate), callback methods
that may be invoked by the UI thread (e.g., Button.onClick),
and all Runnable.run methods executed by threads that are
launched within the application.

The outputs of the bytecode loader are a pruned call
graph, an exploded interprocedural supergraph, and a
pointer analysis.

11

String/data analysis Strings are used pervasively as iden-
tifiers in Android applications. For example, Uris are con-
structed from strings, and permissions are associated with
strings in manifests. Strings are also used as query and up-
date parameters, as keys into various data structures such as
Bundles and ContentValues, and as class names or actions
in Intents. Thus, precise tracking of data flows in Android
requires a precise approximation of the values of various
strings that appear in application code.

Technically, this is quite challenging. As we have seen in
our examples, such strings may be stored in fields and vari-
ables and subjected to stateful operations (such as append).
Thus, we must rely on a precise pointer analysis for strings,
as well as partially evaluate any method calls that manipu-
late strings. In bytecode, strings are typically constructed
and manipulated through StringBuilder objects, and coerced
to and from such objects. We approximate the values of
these objects as follows: first we construct a subgraph that
focuses on operations over such objects, and next we de-
sign an analysis built on top of WALA’s intraprocedural
flow solver that uses this subgraph to compute approximate
prefixes of the strings these objects may evaluate to at run
time. Approximation is necessary because the pointer anal-
ysis may not be fully precise, and strings with imprecise
values may be, for example, appended to StringBuilder ob-
jects.

This information is then propagated to other data struc-
tures (such as Uris) that may use those strings. Typically the
strings we care about behave as constants, and it is possible
to recover them fully (i.e., the prefixes we compute are to-
tal). Otherwise, even incomplete prefixes can provide useful
information: even if we cannot recover the parameter string
in the suffix of a Uri, recovering the base Uri is sufficient to
look up permissions for that Uri in a manifest.

The output of the string/data analysis is a map from in-
stance keys for Strings and Uris (derived by the pointer anal-
ysis) to strings.

Inflow filter As described in section 2.4, data can only
flow into an application through inflow methods. We treat
each of the inflow methods in our application as a sepa-
rate source. Each such source introduces an instance key in
WALA, which we map to a unique tag. These tags contain
enough information to solve inter-component flows, and are
passed around by reference during the flow analysis. For ex-
ample, we tag the Cursor returned by a call to query with an
object that contains the Uri instance key that was passed to
that query. A set of such tags corresponds to a flow set in
our formal analysis (Section 4.1).

The output of the inflow filter is a map from instance
keys (that identify sources) to tags. This map is used to
seed our flow analysis.

Flow analysis Our flow analysis is best specified as an
interprocedural flow problem, and we use WALA’s built-
in RHS solver in our implementation. Our specification
includes a supergraph, a domain, and transfer functions
that define how data flows between domain elements across
edges in the supergraph.

In general, data may flow from instance keys and local
variables to other instance keys and local variables. We in-
clude such instance keys and local variables in a set of flow
identifiers. Flow identifiers correspond to values in our for-
mal analysis (Section 4.1). Recall that unlike usual “taint”
analysis, our analysis needs to simultaneously track flows
of several tags for these flow identifiers. These tags are ob-
tained from the output of the inflow filter. We define the
domain used for our analysis to be the cross product of flow
identifiers and tags. Thus, a set of domain elements with
flow identifier v and some tag in F corresponds to a map-
ping v 7→ F in our formal analysis (Section 4.3).

The transfer functions are identical across tags, so we
can define them simply over flow identifiers. For any in-
struction that is not a method call, let D be the set of local
variables and instance keys that are defined and U be the set
of the instance keys that are used in that instruction (these
sets can be readily obtained through WALA’s representation
of the instruction with the general pointer analysis). Let B
be the basic block containing this instruction, and Pred(B)
be the predecessors of B in the supergraph. We specify a
flow from each u ∈ U in eachB′ ∈ Pred(B) to each d ∈ D
in B.

Invoke instructions (i.e., method calls) require special
handling. A method call is either explicitly represented in
the supergraph as a set of interprocedural edges, or it is an
Android API call for which we have pruned the interproce-
dural edges. If the call is represented in the call graph we
can simply specify flows of parameters across call edges
and of results across return edges. However, when the call
is not represented in the call graph we must consider all
possible side effects of the invoke instruction at the location
of the call. Android restricts side effects in its API calls to
the objects that were passed to the call, so to be sound we
must add flows from each flow identifier used by the invoke
instruction to each other flow identifier used or defined by
that instruction. Note that for non-static methods, the uses
of the instruction will also include a flow identifier repre-
senting the receiver of that call. For example, consider an
instance v of some Android object, a non-static method p of
the object, and a parameter v′. An instruction x = v.p(v′)
would result in flows from (the flow identifiers for) v to (the
flow identifiers for) x and v′, and from v′ to x and v.

There are a few points to note about our transfer func-
tions. First, tracking flows through instance keys (derived
by the pointer analysis) is crucial for an interprocedural
analysis, since methods can have side effects through the

12

heap that cannot be tracked by flows through local variables
alone. Next, we focus only on explicit flows in our analysis,
i.e., we ignore implicit flows. Finally, our transfer func-
tions specify a flow-sensitive analysis of local variables but
a flow-insensitive analysis of heap variables (instance keys).
This is important when considering multi-threaded applica-
tions, as we do not need to account for interleaving of multi-
ple threads to achieve a sound analysis using this technique.

Given the supergraph constructed by the bytecode
loader, the transfer functions as defined above, and the ini-
tial seeds provided by the inflow analysis, WALA’s solver
can calculate the domain elements that are active at each
basic block. The result of the flow analysis is a map from
flow identifiers to the tags they might have at each basic
block. Thus, each entry in the map corresponds to a map-
ping v 7→ F in our formal analysis (Section 4).

Outflow filter Next, we identify sinks to which data may
flow out of the application. Those sinks are the outflow
methods described in section 2.4. The analysis in the out-
flow filter combines the set of all sinks in the application
with the result of the flow analysis to derive all of the end-
to-end, intra-component flows within the application. The
output of the outflow filter is a map from (inflow) tags to
sets of (outflow) tags. For example, the output for Activity1
would map the query inflow characterized by the instance
key for uriA to the update outflow characterized by the in-
stance key for uriB.

Manifest loader The manifest loader is responsible for
characterizing the environment in which applications run,
as described in section 2.2. Since our analysis must account
for many different environments that are not fully defined at
the time of analysis, we can only load a partial representa-
tion. In our manifest loader we typically load the manifests
for the applications we are analyzing, coupled with man-
ifests for core Android applications. Some of the charac-
teristics of the manifests that our analysis requires include
links between Uris and permissions, links between Uris and
the ContentProviders that host those Uris, and the set of per-
missions that each application requests at install time. All
such information is passed to the checker.

Checker The results of the outflow filter encode, in par-
ticular, flows between query and update calls that are rep-
resented by instance keys for Uri objects. We rely on our
string analysis to recover approximate prefixes of these Uris,
and we then look up the results of the manifest loader for
any permissions known to be associated with these pre-
fixes. Based on this information, we generate permission
constraints ≥ that are induced by the flows.

We force the relation ≥ to be a partial order, i.e., ≥ must
remain reflexive, transitive, and anti-symmetric. This al-

lows incremental checking as new applications are installed
on an Android device; the system gets monotonically more
constrained until we have a contradiction, which indicates
a possible security violation. For example, suppose that a
pre-installed application generates the constraint px ≥ py

and a new application generates the constraint py ≥ pz . If
as policy we know that px 6≥ pz (i.e., pz denotes an unre-
lated or strictly higher privilege than px), then we have a
contradiction, which means that it is dangerous to let these
applications coexist on the same Android device: either the
former application should be uninstalled, or the latter appli-
cation should not be installed.

Note that not all flows detected by our flow analysis may
be permissible at run time. In particular, inter-component
flows require that the relevant components have sufficient
permissions to access each other. Thus, any constraints gen-
erated by the checker due to those flows are in fact condi-
tional on such facts. For example, suppose that an overall
flow from uriA to uriB is a composition of the following
(intra-component) flows: within an activity in App1, there
is a flow from uriA to an intent used to launch another ac-
tivity in App2; and within that activity in App2, there is a
flow from the intent used to launch it to uriB .

Suppose that uriA requires permissions readA and
writeA, and uriB requires permissions readB and writeB .
Suppose further that (any activity in) App1 has permission
perm1 and App2 enforces, via its manifest, that calling any
of its activities requires permission perm2. Then the con-
straints that are generated by our checker are in fact:

• perm1 ≥ perm2 ⇒ readB ≥ readA for data secrecy

• perm1 ≥ perm2 ⇒ writeA ≥ writeB for data integrity

We expect these constraints to be useful for further anal-
ysis (which we do not implement). For instance, some in-
teresting scenarios arise if either App1 or App2 is a new (not
yet installed) application.

• Suppose that App1 is a new application requesting
some permission in its manifest. Rather than generate
constraints with perm1 as that permission, we could
assume perm1 to be unknown and solve for an opti-
mal solution. For example, an optimal solution may be
to request the least privilege necessary to ensure func-
tionality without compromising security.

• Similarly, suppose that App2 is a new application en-
forcing some permission in its manifest. Again, rather
than generate constraints with perm2 as that permis-
sion, we could assume perm2 to be unknown and solve
for an optimal solution. For example, an optimal solu-
tion may be to enforce the greatest privilege sufficient
to ensure security without compromising functionality.

13

5.3 Results

We have tested our analysis on all of the examples in
Section 3, as well as on several other examples that exhibit
longer chains of flows through other components and data
structures, elided in this paper. The test cases we chose
are designed to cover the space of inter-component Android
flows. In each test case, we assigned permissions READ1
and WRITE1 to ‘some.authority’ and permissions READ2
and WRITE2 to ‘some.other.authority’. Our analysis suc-
cessfully solved for all such flows to find the constraints
‘[READ2] can read [READ1]’ and ‘[WRITE1] can write
[WRITE2]’. The time taken to analyze all of our simple
test applications was only a few seconds, and we expect that
our modular approach will scale nicely to typical Android
application sizes and complexities. As we continue with
this work we will be applying this analysis to real-world ap-
plications. Section 6 discusses some minor extensions that
might be required to analyze such applications.

6 Limitations and future extensions

A slight current limitation of our analysis is that it re-
quires either the Java source code or the compiled JVML
bytecode of applications to be available. While this may be
a reasonable model for offline certification (say, by the An-
droid market), our analysis cannot be immediately applied
to packaged applications on an Android device. This is be-
cause internally, Android works with a customized byte-
code language for which there is (as yet) no known spec-
ification. Fortunately, there are ongoing efforts on building
decompilers from that language to JVML [1] which, when
available, can be plugged in as a front end to our analysis.

There are several ways of improving the precision of our
analysis. The current modeling of API calls into Android’s
application framework is quite coarse; such calls can be
modeled more accurately if we make our analysis aware of
the semantics of those APIs. For example, we should be
able to distinguish the flows of elements in a Bundle that
are keyed with distinct strings, since we can already track
such keys precisely with our string analysis. Furthermore,
our current modeling of heap objects is flow insensitive, to
conservatively tackle threading issues. We have not yet ex-
plored whether a thread-sensitive analysis will be necessary.

No matter how precise our analysis is, we expect that
some of the flows we flag as security violations will in fact
be “expected” flows. For example, a typical mail reader ap-
plication will have permissions to read and write the user’s
contact list, as well as to send and receive messages across
the Internet. Our analysis would likely find flows that ex-
ercise these capabilities in combination, and (without fur-
ther information) flag those flows as security violations. In
handling such an application, we have several options. We

could either nominate the application for further (manual)
review, or we could include some mechanism in our analy-
sis to admit controlled downgrading [14] of flows through
the relevant components. The latter may be desirable if we
want to support automated security certification, and would
require some lightweight annotations on the application that
could be included in manifests alongside other declarations.

7 Related work

There is a huge body of work on program analysis for se-
curity; see [14] for a survey. We focus here on most closely
related work.

Our basic approach is similar to that proposed in a recent
study of language-based security on Android [7]. That pa-
per studies a core formal language to describe Android ap-
plications, and proposes a type system to reason about end-
to-end security of such applications. Our analysis tracks
data flows rather than types; while types are useful for spec-
ifications, data flows seem to be more suited for implemen-
tations. Still, we are able to prove that our analysis es-
sentially provides the same guarantees as that type system,
by formalizing our core analysis in that language (Section
4). However, there are some significant differences between
this work and [7]. First, [7] does not provide an implemen-
tation of their analysis; indeed, it does not even discuss any
possible implementation issues. In contrast, we describe an
implementation of our analysis that works on actual An-
droid applications. Our implementation has to tackle sig-
nificant challenges to justify the abstractions in the formal
language. For instance, we need a string analysis to re-
cover addresses of components; we need a pointer analysis
to track flows through the heap; we need to handle inter-
procedural flows through JVML bytecode, and so on. Next,
our analysis is fully automatic, and requires absolutely no
annotations. On the other hand, the analysis proposed in [7]
requires complicated type annotations for each component,
which would impose an unreasonable burden on developers
in an actual implementation. We find it remarkable that all
the information in these annotations can be inferred auto-
matically by our analysis.

A related line of work [9, 8, 12] reports a logic-based
tool, Kirin, for determining whether the permissions de-
clared by an application satisfy a certain global safety pol-
icy. Typically, this policy bans “dangerous” combinations
of permissions that may admit insecure data flows across
applications. Despite this apparent similarity, however, our
work takes a radically different approach from theirs, in
the following ways. First, the policy enforced by Kirin
is a “blacklist,” meaning that any combination of permis-
sions not specified as dangerous is considered fine. Un-
fortunately, applications may define and enforce their own
permissions, and in general it seems impossible to specify

14

a sound blacklist policy that eliminates all possible security
violations. Next, a Kirin policy is typically subsumed by
our general data flow security rule for generating permis-
sion constraints, i.e., the permission combinations banned
by such a policy can be usually derived as special cases of
our permission constraints. Finally, Kirin does not track ac-
tual data flows through applications—it analyzes only man-
ifests, not code. Thus, Kirin’s analysis is necessarily less
precise than ours. In particular, for an application that has
several components, each of which require a disjoint set
of permissions, Kirin conservatively considers the union of
those permissions when deciding the safety of the applica-
tion. In contrast, we track precise dependencies among the
components, and thus may recognize the application to be
safe even if Kirin cannot. This precision is important in the
presence of signatures, which allow possibly unrelated ap-
plications to share the same set of permissions.

There are existing tools for verifying information-flow
security of Java code, including, most notably, Jif [10]. We
decided not to use Jif for the following reasons. First, Jif re-
quires security type annotations throughout code, which we
believe would force an unreasonable overhead for develop-
ers of Android applications. Furthermore, Jif is designed to
enforce noninterference, which is a much stronger security
guarantee than data-flow security. While noninterference is
certainly attractive, we believe that its sensitivity to implicit
flows makes it unsuitable as a general-purpose guarantee for
Android applications.

Also closely related is TAJ, a tool for taint analysis in
Java [15], which is primarily designed to verify web ap-
plications. Unlike that analysis, we need to track multi-
commodity flows, i.e., flows from multiple stores rather
than a distinguished “taint source.” Another important dif-
ference is that our analysis of applications is modular, and
relies on an abstract semantics of applications rather than
an analysis of Android’s application framework code; this
makes our analysis potentially more lightweight than theirs.

Two additional related projects are Mobius [4], support-
ing the checking of proof-carrying-code certificates on mo-
bile devices, and S3MS [5], a framework for enforcing
contract-based security for applications on mobile devices.

8 Conclusion

Android’s access control mechanisms provide some ba-
sis for reasoning about the security of applications. How-
ever, without some sort of data flow analysis, the precision
of reasoning by the user (and by extension any security re-
viewer) is necessarily limited. We provide a formal analysis
for reasoning about data flows in Android applications. We
also describe a technique for implementing data flow analy-
sis on Java code for Android applications, and a tool that im-
plements this technique. Although we have not yet applied

our analysis to real-world applications, we have verified that
our technique is sound on a set of applications that are rep-
resentative of typical Android applications. We expect that
our research will be particularly useful for providing auto-
mated security certification for Android applications.

References

[1] W. Enck. Personal communication.

[2] The Android “market” (application store). http://www.
android.com/market/.

[3] The Android project (source code and SDK). http://
source.android.com/.

[4] The Mobius project: Mobility, ubiquity and security. http:
//mobius.inria.fr/twiki/bin/view/Mobius.

[5] The S3MS project: Security of software and services for mo-
bile systems. http://www.s3ms.org/index.jsp.

[6] WALA: Watson Libraries for Analysis (source code and
plugins). http://wala.sourceforge.net/wiki/
index.php/Main_Page.

[7] A. Chaudhuri. Language-based security on Android. In
PLAS’09: Programming Languages and Analysis for Secu-
rity, pages 1–7. ACM, 2009.

[8] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mo-
bile phone application certification. In CCS ’09: Computer
and communications security, pages 235–245. ACM, 2009.

[9] W. Enck, M. Ongtang, and P. McDaniel. Understanding An-
droid security. IEEE Security & Privacy Magazine, 7(1):10–
17, 2009.

[10] A. C. Myers, N. Nystorm, L. Zheng, and S. Zdancewic. Jif:
Java + information flow. http://www.cs.cornell.
edu/jif.

[11] G. C. Necula. Proof-carrying code. In POPL’97: Principles
of Programming Langauges, pages 106–119. ACM, 1997.

[12] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Se-
mantically Rich Application-Centric Security in Android. In
ACSAC ’09: Annual Computer Security Applications Con-
ference, 2009.

[13] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In POPL ’95:
Principles of programming languages, pages 49–61. ACM,
1995.

[14] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on selected areas in communi-
cations, 21(1):5–19, 2003.

[15] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. Taj: effective taint analysis of web applications. In
PLDI ’09: Programming language design and implementa-
tion, pages 87–97. ACM, 2009.

15

