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ABSTRACT
In May 2009, Google conducted a company wide FindBugs
“fixit”. Hundreds of engineers reviewed thousands of Find-
Bugs warnings, and fixed or filed reports against many of
them. In this paper, we discuss the lessons learned from
this exercise, and analyze the resulting dataset, which con-
tains data about how warnings in each bug pattern were
classified. Significantly, we observed that even though most
issues were flagged for fixing, few appeared to be causing
any serious problems in production. This suggests that most
interesting software quality problems were eventually found
and fixed without FindBugs, but FindBugs could have found
these problems early, when they are cheap to remediate. We
compared this observation to bug trends observed in code
snapshots from student projects.

The full dataset from the Google fixit, with confidential
details encrypted, will be published along with this paper.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; D.2.4 [Software/Program Verification]:
Reliability

General Terms
Experimentation, Reliability, Security

Keywords
FindBugs, static analysis, bugs, software defects, bug pat-
terns, false positives, Java, software quality

1. INTRODUCTION
Static analysis tools scan software looking for issues that

might cause defective behavior. They can quickly find prob-
lems anywhere in code without needing to execute it. Their
search is exhaustive for some classes of problems and they
build on the wisdom of experts to identify problems devel-
opers may not be aware of.
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Despite this promise, static analysis tools can be challeng-
ing to use in practice. Sometimes warnings are found in code
that is owned by someone else and the analyst may not un-
derstand the context of the warning. Unlike unit testing,
some mistakes found by static analysis do not cause incor-
rect behavior. Even when a warning identifies a real defect,
it may not represent a quality dimension an organization
is interested in. And sometimes assumptions made by the
analysis are incorrect, leading to false alarms; this causes
much skepticism among developers and managers.

Many modern static analysis tools have made significant
improvements to minimize the number of spurious warnings,
including using heuristics, improved analysis techniques, an-
notations and even symbolic checking or other forms of dy-
namic analysis. FindBugs, a popular open source static
analysis tool for Java, uses finely tuned analyzers called Bug
Detectors to search for simple bug patterns [7]. These bug
detectors contain numerous heuristics to filter out or depri-
oritize warnings that may be inaccurate, or that may not
represent serious problems in practice.

Even with these improvements, we have observed that
static analysis tools may receive limited use, depending on
how warnings are integrated into the software development
process. At Google, we conducted a large scale engineering
review, involving hundreds of engineers and thousands of
warnings. The goal was to bring potential defects to the at-
tention of engineers, discover which bug patterns were most
important to them, and assess the value of FindBugs and
other tools.

The chief lesson from this exercise was that engineers
viewed FindBugs warnings as worth fixing. Over 77% of
the reviews identified the warnings as real defects and rec-
ommended fixing the underlying problems. In addition, the
engineers’ perceptions of the importance of defects generally
matched the rankings in FindBugs, and many of the impor-
tant issues were flagged for fixing. However, and interest-
ingly, none of the serious bugs appeared to be associated
with any serious incorrect behaviors in Google’s production
systems. We found serious bugs in code that had not yet
been pushed to production, and in code that was not ex-
ecuted in production systems. And when the buggy code
was executed in production, it was often in situations that
did not result in serious misbehavior, though we sometimes
observed subtle effects such as performance degradation.

We attribute these observations to the success of Google’s
testing and monitoring practices at identifying misbehav-
ior in productions systems, not to a failure of static analy-
sis. As code is written, it contains a set of coding mistakes,



some of which can be detected by static analysis. Mistakes
that cause noticeable problems in unit tests, system tests,
or production are generally quickly resolved. Thus, when
static analysis is applied to code that has been in produc-
tion, the only mistakes that remain are those that have not
yet caused problems that attract attention. Of the resid-
ual issues found by static analysis, some might cause serious
problems under some circumstance not yet experienced, but
we’ve found that many of the residual issues are in code that
isn’t executed in production (and is unlikely to ever be) or
is never executed in a way that causes the defect to manifest
itself as incorrect behavior. We discuss some of these sce-
narios in Section 4.1, and conclude that the primary value of
static analysis for correctness issues is it can be used early,
before testing, and that doing so will identify mistakes more
quickly and cheaply than testing would. In addition, static
analysis is good at finding certain subtle problems related to
security, performance, and concurrency that are not easily
found by testing and production monitoring and often do
escape into productions systems.

One way to study potentially serious bugs, that are found
by static analysis and resolved before they get into produc-
tion, is to go back through the code history and identify
warnings that are removed at significant rates. We study
this using code from student projects and from the Google
code repository. A quantitative analysis of a large code base
may indicate which bug patterns are consistently fixed, even
when the developers are not using static analysis. However,
we worry about the possibility that some bug removals may
be the result of code changes and refactoring that is unre-
lated to the bug itself. For example, a source file may be
deprecated and deleted, causing all contained warnings to
disappear. To account for this “code churn”, we introduce
and experiment with Noise Detectors, described in Section
3.3, which insert spurious warnings that are associated with
common code structures, not with bugs.

We provide some background on FindBugs and on the pro-
cess at Google in Section 2; then we describe the methodolo-
gies used for the various studies in Section 3, and our results
and findings in Section 4.

2. BACKGROUND

2.1 FindBugs
FindBugs is an open source static analysis tool for Java,

that relies primarily on simple intraprocedural analysis to
find known patterns of defective code. It does not aim to be
sound (i.e. find all instances of a class of defect) but rather
tries to filter out warnings that may be incorrect or low
impact. FindBugs warnings are grouped into over 380 Bug
Patterns which in turn are grouped into Categories such as
Correctness, Bad Practice, and Security.

Much of the focus during the development of FindBugs
has been on the Correctness category, which looks for possi-
ble logic errors in the program that can lead to null pointer
dereferences, bad casts, infinite recursive loops and other
problems. Much tuning goes into these detectors to ensure
that users will want to fix at least 50% of the warnings they
receive.

Each warning is assigned a priority (high, medium, or low)
based on the severity of the associated problem. The pri-
ority allows users to compare two issues of the same bug
pattern, but cannot be used to compare issues across dif-

ferent bug patterns. To facilitate this latter comparison,
FindBugs recently started ranking warnings on a scale from
1 to 20, where 1 is assigned to the “scariest” issues. (For
this study, we only consider issues ranked 1 to 12.) This
bug rank is subjective and based on our experience review-
ing warnings in practice over the last few years. In addition
to the severity and impact of the issue, the bug rank factors
in the likelihood that the underlying mistake may be quickly
found when the code is executed. For example, an Infinite
Recursive Loop occurs when a method unconditionally calls
itself. We find that in practice, this bug pattern is either
found quickly (because the program crashes with a mean-
ingful stack trace), or it occurs in dead code. So we give it
a reduced bug rank.

FindBugs can be run in many modes including from the
command line, as a stand-alone application (which can also
be deployed over the web using Java Web Start), or as a plu-
gin for several popular IDEs and continuous build systems.
The stand-alone application includes features to allow users
to classify and comment on each issue and file new bugs in
a central bug database.

2.2 The Google FindBugs Fixit
Google has been using FindBugs for several years [1] as

part of a system called BugBot. BugBot incorporated re-
sults from several static analysis tools, including FindBugs,
a commercial C/C++ tool, and an in-house Java static anal-
ysis tool. Through this system, FindBugs warnings were
generally available a day or two after being committed to
the version control repository, but developers often had to
actively seek them out in order to review them. There were
facilities that allowed an engineer to review all of the issues
in a particular codebase or product, but the web interface
was slow and difficult to use. The results from the commer-
cial C/C++ tool were considered to be of very low quality,
and too many of the FindBugs warnings in BugBot were low
priority issues. Very few engineers at Google were making
active use of the BugBot infrastructure, and in the Fall of
2008 the engineers who had been assigned to BugBot were
all assigned to other tasks.

Despite these disappointing outcomes, we still believed
FindBugs could provide value to the development process.
We decided to coordinate with some engineers and managers
to pursue a relaunch of FindBugs, with the following goals:

• Perform a broad review of which issues Google engi-
neers thought were worth reviewing, and keep a per-
sistent record of the classifications of individual issues.
We used the techniques implemented in FindBugs and
described in [14] to track issues across different builds
of the software so that we could identify issues that
were new and track reviews of previously seen issues.

• Deploy a new infrastructure that would allow for very
efficient review of issues matching specified search cri-
teria. Engineers could search for issues within a par-
ticular project, issues that were introduced recently,
issues that have a high bug rank, and other reviews of
a particular issue.

• Allow FindBugs to be run in continuous builds in a
way that could be checked against records of which
issues were new and which had already been examined
and marked as unimportant. This would allow projects



to choose to have their continuous builds fail when a
new, high priority and unreviewed FindBugs issue was
introduced into their code base.

• Integrate with Google’s internal bug tracking and source
code version control system, so that from FindBugs de-
velopers could easily file bugs, see the status of bugs
that had already been filed against issues, and see the
version history of a file.

• Collect copious data from the use of FindBugs so that
we could evaluate how it was being used.

On May 13-14, Google held a global fixit for FindBugs (for
Java code) and ValGrind (for C/C++ code). Google has
a tradition of company-wide engineering fixits [11], during
which engineers focus on some specific problem or technique
for improving its systems. A fixit might focus on improving
web accessibility, on internal testing, on removing TODO’s
from internal software, etc. The primary focus of the Find-
Bugs fixit was to have engineers use the new infrastructure,
evaluate some of the issues found, and decide which issues,
if any, needed fixing.

Most of the infrastructure developed for the Google Find-
Bugs fixit was contributed to the open source FindBugs ef-
fort. Significant parts of it are specific to Google’s internal
system (such as integration with Google’s internal bug track-
ing tool), but work is underway to provide these capabilities
in a general framework that can be used by other companies
and by open source efforts.

3. METHODOLOGY

3.1 Planning the Fixit
The Google fixit was primarily an engineering effort rather

than a controlled research study. Engineers from dozens of
offices across Google contributed to this effort. Developers
were free to choose to review any of the issues, and were
given no guidance on how to classify warnings. And while
the primary focus of the fixit was over a two day period,
a number of engineers had early access to the system, and
usage continues, at a lower rate, since the fixit. Nevertheless,
this effort provided a rich dataset of user opinions, as well as
information on which issues were fixed. The results reported
in this paper cover all the data collected through the end of
June 2009.

During the fixit, users ran FindBugs from a web interface
which launched a Java Web Start instance that contained
all the warnings and was connected to a central database.
Users could classify each issue using one of the classifications
in Table 1, and could also enter comments. Reviews were
stored in the database each time the user selected a classi-
fication. Users could also easily create an entry in Google’s
bug tracking system; many fields were populated automati-
cally to facilitate this task.

The FindBugs infrastructure is designed to encourage com-
munal reviews – each user reviewing an issue can see reviews
on that issue from other users. However, during the two day
fixit, the interface was modified slightly such that a user ini-
tially could not see any other reviews of an issue, or whether
a bug report had been filed. Once the user entered a review
for a particular issue, this information was provided. This
setup allows us to assume that reviewers were mostly acting
independently when classifying issues.

Engineers were not required to complete a certain number
of reviews, but incentives, such as t-shirts for top reviewers,
were provided to encourage more reviews. Incentives were
also used to encourage users to provide detailed comments
exploring the impact of the bug in practice.

3.2 Analyzing the Data
Prior to analyzing the data from the fixit, we anonymized

certain confidential details, such as file names, reviewer iden-
tities, and any evaluations provided by engineers. Anonymiza-
tion was done using one-way hashing functions so that it is
still possible to group issues from the same file or package,
or to identify all reviews by the same engineer.

We also captured the change histories of the files contain-
ing warnings, and information about which engineers owned
each file. This information allows us to compare the re-
views from file owners with those from non-owners. Within
Google, any change to a source file requires a code review
from someone who is an owner for the file. In general, all
developers on a project are owners for all source files that
comprise that project.

In the end, this study produced a large dataset with many
variables. Most of our analysis focused on looking for cor-
relations between variables, especially with the user classi-
fication. In some cases, we can only imprecisely infer the
action we are trying to measure. For example, to determine
if an issue has been fixed we can confirm that the issue is no
longer flagged by the latest FindBugs runs, or we can search
the bug tracking system for a corresponding report that is
marked as fixed. The former approach would contain false
positives, while the latter would contain false negatives.

We describe some of these challenges and considerations
in this section.

3.2.1 Comparing Bug Rank with User Opinions
One of our goals is to compare the classifications users

provide for an issue with the bug rank of the issue. Are the
scariest issues more likely to receive a Must Fix classifica-
tion? We approach this problem by clustering reviews into
groups, with all issues in each group having the same bug
rank. We can then compute the percentage of reviews in
each group that have a particular classification, and corre-
late these percentages with the bug rank of the group. We
use Spearman’s rank-order coefficient because the bug rank
is an ordinal variable. This method converts values into
ranks within the variables before computing the correlation
coefficient [5].

We experimented with several approaches to grouping re-
views for this comparison:

Group By Issue: In this clustering, we can put all reviews
of a particular issue in one group. This provides the
finest level of grouping for this method, but can be
very noisy since some issues will only receive one or
two reviews. We can mitigate this a little, by only
considering those issues with more than a threshold of
reviews. Grouping at this level is interesting because
it separates out each independent issue, and allows us
to identify issues that buck the expected trend.

Group By Bug Pattern: This clustering groups all re-
views of the same bug pattern and bug rank. Some
bug patterns produce issues in different bug ranks, de-
pending on the variety and inferred severity of the is-



sue. Again, grouping at this level allows us to identify
bug patterns that have unexpectedly strong or weak
user classifications.

Group By Bug Rank: This coarse clustering creates 12
groups, one for each bug rank. This will give us the
high level trends describing how bug rank correlates
with user classifications.

3.2.2 Determining the Fix Rate
Ultimately researchers and managers at Google would like

to see issues get fixed, and understand which groups of issues
are more likely to be fixed. This information can influence
how warnings are filtered or presented to developers. As
we mentioned earlier, it is difficult to get a precise count of
the issues that are fixed. We can count the issues that stop
appearing in FindBugs runs, but this leads to an overcount
since some warnings will be removed by code churn. In
Section 3.3, we describe an experimental approach that uses
Noise bug patterns to try to separate significant removal
rates from code churn. Of course the noise detectors were
not used during the fixit, and this technique only applies to
our analysis of the Google codebase.

The other approach for computing fix rate is to look for
fixes in the bug tracking system. This only applies to data
from the fixit. Unfortunately, not all issues fixed during
the fixit were tracked in the bug tracking system; develop-
ers were not required to use it, and may have quickly fixed
simple issues on their own.

In addition to considering the overall fix rate, and the
fix rate for individual bug patterns, we are interested in
examining different subgroups of issues that we suspect are
likely to be fixed at higher rates. Specifically, we group
issues in the following ways and consider the fix rates in
each group:

By Category: Do issues in the Correctness category have
a higher fix rate than other issues?

By Bug Rank: Do the scariest issues have a higher fix rate
than other issues?

By Age: Do newer issues have a higher fix rate than older
issues?

The last grouping reflects the fact that older issues are
more likely to be in code that has been battle-tested. Any
significant issues in this code are likely to be removed, and
the issues left should largely have little impact on program
behavior. Of course, there is no bright line separating old
issues from new issues; we simply consider any issues intro-
duced in the six weeks before the fixit as being new.

3.2.3 Checking for Consensus
We would also like to investigate if there is consensus be-

tween independent reviews of the same issue. Obviously
the classifications made by users are subjective, but if users
tend to give similar classifications to each issue, then we
have more confidence in their decisions. In past lab studies,
we have observed that independent reviewers generally are
consistent about how they review issues [2, 3].

Unlike some of our earlier lab studies we do not control
who reviews each issue. Some issues have only one reviewer,
but one issue has 25, and users choose which issue they want
to review. Still the large number of reviews allows us to make

Table 1: Grouping and Ordering User Classifications

Classification Ord1 Ord2 Ord3 Ord4

Must Fix 1 2 1 1

Should Fix 2 3 1 2

I Will Fix 3 1 1

Needs Study 4 4

Mostly Harmless 5 5 2 3

Not a Bug 6 6 3 4

Bad Analysis 7 7 3

Obsolete code 8 8

some general observations about how often users agree with
each other.

Another confounding factor is that some of the classifica-
tions are very close in meaning and each reviewer may use
different criteria to choose between them. For example Must
Fix and Should Fix are close in meaning, and reviewers may
have different opinions about which issues are Mostly Harm-
less and which are Not a Bug. Other classifications such as
Obsolete code and Needs study are orthogonal to the pri-
mary classifications and do not necessarily signal disagree-
ment. (Fortunately there are few of these classifications.)
Our method for studying consensus accounts for these prob-
lems by grouping the classifications in different ways, using
the schemes shown in Table 1. For example, in the Ord3
ordering, we group Must Fix, Should Fix and I Will Fix
classifications into one class, Mostly Harmless into another,
and Not a Bug and Bad Analysis into a third; reviews with
other classifications are left out of the analysis. (The scheme
in Table 1 also represents different ways to order the clas-
sifications based on how serious the reviewer may view the
problem, an idea we discuss in Section 4.3.3.)

3.2.4 Measuring Review Time
The review time is an important measure when trying

to compute the cost of using static analysis. In previous
studies, we have observed a relatively low average review
time between 1 to 2 minutes for each issue [2]. A large study
like this one gives us another opportunity to characterize
how much time users spend reviewing issues. Nailing down
representative review times is difficult because review times
can vary widely for different issues and our users are not
starting a stopwatch immediately before each review and
stopping it immediately after.

In past studies, we have estimated review time as the time
between each evaluation. In this study, this is complicated
by the fact that users are not in a controlled environment
and may not use the period between each evaluation ex-
clusively for reviewing warnings. They may engage in other
work activities, take a phone call, go out for lunch or even go
home for the day returning the next day to continue evaluat-
ing warnings. A histogram showing the frequencies of review
times shows many issues have low review times under 30 sec-
onds, and some issues have very long review times. Closer
inspection indicates that some users may have reviewed sev-
eral issues together, giving their classifications all at once.
We chose to filter out review times that were longer than 1
hour. This still left us with about 92% of the review times
for analysis.



Another complication is that each time a user selects a
classification in the drop down button or enters a comment,
a timestamp is sent to our server. So a user can change
their classification multiple times during one review, either
because they accidentally clicked on the wrong review, or
because they genuinely changed their mind. In the data
there were 2001 classifications that were duplicates of ex-
isting reviews (i.e. the same reviewer and the same issue)
usually within a few seconds of each other. To deal with
this problem, we filter out many of the duplicate reviews for
each issue and person, keeping only the last review, and any
preceding reviews that have a different classification and oc-
cur more than 5 seconds before the review that immediately
follows.

3.3 Analyzing Google’s Repository
In addition to user reviews from the fixit, we collected and

analyzed snapshots of Google’s code repository. This data
allows us to compare some of the trends extracted from the
subjective reviews in the fixit, to more objective measures
of which warnings were actually removed, and which ones
tend to persist. These measures have been used as a proxy
of the relative importance of bug patterns [10, 9].

To conduct this analysis, we detected each warning in each
snapshot, and recorded its bug pattern, and the first and last
snapshot in which it was observed. As we mentioned earlier,
we do not actually know why issues are no longer reported,
though we can detect the cases where an issue disappears
because its containing source file is deleted. An issue may be
removed because it caused a real problem, because someone
used a static analysis tool that reported a warning, because a
global cleanup of a style violation was performed, or because
a change completely unrelated to the issue caused it to be
removed or transformed so that it is no longer reported as
the same issue. For example, if a method is renamed or
moved to another class, any issues in that method will be
reported as being removed, and new instances of those issues
will be reported in the newly named method. The snapshots
used in this analysis were taken between the shutdown of the
BugBot project and the FindBugs fixit. Thus, we suspect
that the number of issues removed because the warning was
seen in FindBugs is small.

To provide a control for this study, we recently introduced
new “noise bug detectors” into FindBugs that report issues
based on non-defect information such as the md5 hash of the
name and signature of a method containing a method call
and the name and signature of the invoked method. There
are 4 different such detectors, based on sequences of oper-
ations, field references, method references, and dereferences
of potentially null values. These are designed to depend on
roughly the same amount of surrounding context as other
detectors. Our hope is that the chance of a change unrelated
to a defect causing an issue to disappear will be roughly the
same for both noise detectors and more relevant bug detec-
tors. Thus, we can evaluate a bug pattern by comparing its
fix rate to both the fix rate over all issues and the “fix” rate
for the noise bug patterns.

3.4 Collecting Snapshots from Student Data
In order to more closely observe warnings being intro-

duced and removed during development, we need a finer
granularity of snapshots. The most extreme case would be
observing developers as they program, capturing each key

stroke. A project that comes close to this is the Marmoset
project, at the University of Maryland [15]. Over several
years, this project has captured snapshots of student de-
velopment, in addition to providing an avenue for them to
submit and test their projects. Specifically, this project has
captured snapshots from students learning to program in
Java, with snapshots taken every time the student saves a
source file, and stored in a source repository. The project
also marks those snapshots that were submitted to the cen-
tral server, indicating when students received some feedback
about their performance. Students exhibit different behav-
iors from professionals, but this dataset can still reveal or
confirm expected trends about how warnings are added and
removed during development.

3.5 Threats to Validity
The goal of the fixit was to bring issues to the atten-

tion of engineers, not to conduct a controlled study. Hence
there are internal threats to its validity, including the fact
that reviewers were free to choose which issues to review.
Some reviewers sought out potential bugs their own code,
and were likely more motivated to fix those issues. These
threats are unavoidable when conducting a review this big
with real engineers, and some the biases are offset by the
large size of the dataset. In addition, the fixit and the anal-
ysis of Google’s code repository may not generalize to other
projects or organizations.

The analysis of student snapshots is limited by the fact
that we can only approximately infer students’ activities;
we do not know when they run tests or see exceptions. In
addition, the granularity of snapshots may be very different
for different students, because we can only analyze com-
piling snapshots, and some students save often (including
incomplete code fragments with syntax errors), while others
make substantial code changes between saves. Ultimately,
the student projects provide an opportunity to illustrate the
introduction and removal of warnings, which we would be
unable to do with confidential commercial data.

4. RESULTS
Table 2 overviews some high level numbers from this re-

view. More than 700 engineers ran FindBugs from dozens of
offices, and 282 of them reviewed almost 4,000 issues. There
were over 10,000 reviews, and most issues (58%) received
more than 1 review. Many of the scariest issues received
more than 10 reviews each. Engineers submitted changes
that made more than 1,000 of the issues go away. Engineers
filed more than 1,700 bug reports, and 640 of these had
fixed status by the time we stopped collecting data on June
25, 2009. Many of the unfixed bug reports were never as-
signed to an appropriate individual, which turned out to be
a difficult challenge and a key step in getting defect reports
attended to.

The choice of which issue to review was left up to the user,
so it is interesting to see which issues they chose to review
(Figure 1). Reviewers overwhelmingly focused on issues in
the Correctness category, reviewing 71% of them compared
to just 17% of issues from other categories, which matches
our expectations that these are the issues most interesting to
users. We identified 288 reviews in which the engineer was
identified in the changelist as one of the owners of the file
containing the issue; most users were reviewing code they



Table 2: Overall summary
Issues overall 9473

Issues reviewed 3954

Total reviews 10479

Issues with exactly 1 review 1680

Median reviews per issue 2

Total reviewers 282

Bug reports filed 1746

Reviews of issues with bug reports 6050

Bug reports with FIXED status 640

Figure 1: Recommendations Grouped by Bug Rank
and Category

did not own. We talk more about the differences between
code reviewed by owners and non-owners in Section 4.4.3.

Figure 1 also shows the percent of reviews that received
Must Fix and Should Fix classifications. A casual glance
at the results suggests that scarier issues were more likely
to receive a Must Fix designation, while lower ranked is-
sues were more likely to receive a Should Fix designation.
Meanwhile, Correctness and Security issues were viewed as
the most serious. We explore these trends in more detail in
Section 4.2.

4.1 Evaluating FindBugs
The fixit brought many issues to the attention of devel-

opers and managers, and many problems were fixed. In
addition, over 77% of reviews were Must Fix and Should
Fix classifications, and 87% of reviewed issues received at
least one fix recommendation. But we were surprised that
few of the issues actually caused noticeable problems in pro-
duction. One defect that was identified was committed to
the code base on the first day of the fixit, and picked up
in the overnight FindBugs analysis. That same night, the
defect identified by FindBugs caused a number of internal
map reduce runs to fail and an automatic rollback of the
change.

This is an example of what we call the “survivor effect”,
and it illustrates why real defects found in production code
often have low impact. When code flies off a developer’s fin-
ger tips, it contains many bugs, some that matter, and some
that do not. The problems that matter usually come up dur-
ing testing or deployment, causing the software to crash or
behave incorrectly. Hence, they are mostly removed as the
software matures. The ones that do not matter remain, and

August 3, 12:55pm: adds buggy code

public String getVerticesNames() {
...

+ vertices.substring(0, vertices.length()-2);
+ return vertices;

}

12:55 to 1:37 pm (42 minutes): adds code to other methods.
Project is failing two local tests. Takes a BREAK for 22 hours.

August 4, 11:59am: attempts to fix. Local tests still failing.

- vertices.substring(0, vertices.length()-2);
+ vertices.substring(0, vertices.lastIndexOf(","));

12:01pm: fixes the bug. Local tests now passing.

- vertices.substring(0, vertices.lastIndexOf(","));
+ vertices = vertices.substring(0, vertices.lastIndexOf(","));

Figure 2: Bug: Ignoring the Return Value of
String.substring()

private LinkedList<Edge<E>> edges;
public int getAdjEdgeCost(Vertex<E> endVertex) {

if(edges.contains(endVertex)){
throw new IllegalArgumentException("Edge already in graph");

}
...

}

Figure 3: Bug: Unrelated Types in Generic Con-
tainer

the developer is usually oblivious to their existence. Static
analysis is good at finding both kinds of problems, and is
cheap to run. Furthermore static analysis can find these
problems at any point in the development cycle, while test-
ing and deployment can only find them later on, when they
are more expensive to fix.

All these observations lead us to conclude that the real
value of static analysis for correctness issues is its ability
to find problems early and cheaply, rather than in finding
subtle but serious problems that cannot be found by other
quality assurance methods. Also, static analysis tools gen-
erally point to the cause of defective behavior, as opposed
to testing which only discloses their symptoms. Of course,
early in the process, the developer may not be able to distin-
guish between problems that matter and those that do not,
and so the developer needs to fix all, an additional cost.
Still, it often only takes a minute or two to fix problems
early on, compared to the hours or days it takes to debug
and remediate problems later on.

These observations do not apply to security bugs, which
generally do not cause test failure or deployment problems.
Static analysis can detect some of these, and often finds seri-
ous exploitable problems that have been missed throughout
the development process.

4.1.1 Observations from Student Development
We would like to see the survivor effect in action; one way

to do this is to look at fine grained snapshots of development.
To do this, we turn to the data collected from student devel-
opment by Marmoset. In this dataset we observe that 60%
of all warnings introduced during development are fixed be-
fore the student’s final submission. That number goes up to
90% if we only consider the scariest issues (bug ranks 1 to



Figure 4: Correlating Bug Ranks with Reviewer
Classifications

4). In some cases, students may have fixed the code in re-
sponse to a FindBugs warning. Specifically, when students
sent a submission to the central server, they got feedback on
any FindBugs warnings found, and some students may have
responded to this. But many of the cases we examined rep-
resented scenarios where the student had to figure out the
problem, perhaps because a local unit test was failing before
they even made a submission. In the final revision, most of
the problems left over had no effect on the project’s correct-
ness, especially for students who successfully completed the
assignment.

Sometimes a student would notice the problem soon af-
ter introducing it, and fix it immediately. About 20% of
issues were fixed after 1 snapshot. Other times, the prob-
lem would persist for several snapshots before being fixed.
A manual investigation of some of these cases reveals that
in many cases, the student is advancing the development of
their project, oblivious to the problem because they have
not tried to run it yet. At some point, they may run local
tests that fail; this leads to a period of debugging and the
student needs to make a context switch to edit the older
code.

An example of this sequence of events is shown in Figure
2. Here the student ignores the return value of String.sub-
string(). The student continues development for about an
hour, then takes a break and returns the next day with-
out noticing the bug. At some point, it is likely that the
student ran local unit tests, and would have noticed that
two of them were failing. The process of debugging these
failures would have revealed that a critical string contained
the wrong value. After iterating through some fix attempts,
the student recognizes the problem, almost 24 hours after
FindBugs could have flagged it.

An example of one of the warnings left in the final revi-
sion for a student that did not affect program correctness is
shown in Figure 3. Here the student checks if a container of
Edge<E> elements contains a Vertex<E>. This check will al-
ways return false, but it appears to be purely defensive since
the student throws a runtime exception when the condition
is true.

4.2 Comparing Reviews with Bug Rank
A large fixit like this gives us an excellent opportunity to

check if the opinions of engineers match the bug ranks es-
tablished by FindBugs’ developers. Of course, each organi-
zation has quality dimensions that it cares about above oth-
ers, and the bug rank should be tailored accordingly. Here,
we compare the engineers’ reviews to the default ranking in
FindBugs.

Figure 4 presents correlations between the bug rank and
the percent of reviews that received a particular classifica-
tion when issues are grouped by bug rank, by bug pattern
and by issue (as described in Section 3.2.1). For example,

Figure 5: Must Fix Classifications By Rank

we measure a strong negative correlation (-0.93) when issues
are grouped by bug rank and we compare the bug rank and
the percent of issues in each group that received a Must Fix
designation. The results show that when we cluster issues
coarsely (by bug rank), we observe strong and significant
(p<0.01) correlations with different classifications. Specifi-
cally, reviews associated with scarier issues are more likely to
contain Must Fix classifications, while review for less scary
issues are more likely to contain Should Fix or Mostly Harm-
less classifications.

The correlations observed when grouping by bug pattern
are also interesting. While the correlations are weak, it is
instructive to examine the patterns that have severe bug
ranks but low Must Fix rates, and vice versa. In the scatter
diagram in Figure 5, each point represents the percent of
reviews for a particular bug pattern that were Must Fix. As
this diagram shows, there were many among the scariest bug
patterns that users were unlikely to classify as Must Fix.

When we look closely at this trend, we find it useful to
make a distinction between Loud and Silent bug patterns.
Loud bug patterns manifest as an exception or a program
crash, and are often easy to detect without static analysis
if they are feasible. So these defects, when found in pro-
duction software, generally occur in infeasible situations or
dead code; FindBugs often assigns a less severe bug rank to
them. Silent bug patterns include those mistakes that cause
the program to subtly run incorrectly. Many times, these
subtle errors do not matter, but sometimes they do, and we
think they should be reviewed. So FindBugs often gives this
patterns a severe bug rank.

In many cases in our review, engineers were more inclined
to give a Must Fix classification to loud issues than to silent
issues. For example, one of the loud bug patterns is the in-
finite recursive loop: a method that, when invoked, always
invokes itself recursively until the stack is exhausted. Sun’s
JDK has had more than a dozen such issues over its history,
and Google’s codebase has had more than 80 of them. Obvi-
ously this bug pattern is usually detected immediately if the
method is ever called, and there are no known instances of
this defect causing problems in production; either the defect
is quickly removed or it occurs in dead code. So FindBugs
assigns this bug pattern a less severe bug rank of 9. On
the flip side, a classic silent pattern occurs when the type of
an argument of a generic container’s method is unrelated to
the container’s generic parameter. For example, a program



may check to see if a Collection<String> contains a String-
Buffer. Such a check will always return false, and this error
usually indicates a typo has occurred. This bug pattern has
the bug rank of 1. In this review 52% of reviews classified
infinite recursive loops as Must Fix, compared to 30% for
the incompatible generic container argument pattern.

A related observation is the many instances where the
subtle bug patterns had a large number of Should Fix clas-
sifications, together with few Must Fix classifications. This
may indicate that the reviewer recognized the problem as a
bug but did not think it was severe. For many of these bug
patterns, around 20% of the reviews were Must Fix, while
60% were Should Fix.

There is largely no correlation when we group by issue,
which is not surprising. Individual issues may display dif-
ferent characteristics from the bug pattern as a whole.

4.3 Which warnings are fixed?
We found evidence that certain subgroups of issues were

more likely to be fixed. Specifically, issues that were new,
issues in the Correctness category, or issues that were high
priority all had higher fix rates than other issues. We ob-
served this trend both in the fixit and in our subsequent
analysis of the Google repository. We describe the evidence
in these two datasets in Sections 4.3.1 and 4.3.2. In addition,
we observed that issues receiving the strongest reviews from
engineers were quickly fixed. In particular, issues that were
marked as “I Will Fix” were quickly fixed by the reviewer,
as described in Section 4.3.3.

4.3.1 Fix Rates from the Fixit
In Table 3, we compute the percent of issues that are fixed

for all issues, and for different sub-groups of issues. In this
case, we regard issues that no longer appear in the nightly
FindBugs runs as being fixed. As described in Section 3.2.2,
this approach over-counts the number of fixed issues, but
since our primary goal is to compare the fix rates of different
sub groups, this over counting is not a factor.

In Table 3, each row represents a different subgroup, de-
rived by grouping issues by bug rank, by age, and/or by cate-
gory. Specifically, in the category column, we either consider
only Correctness issues (C) or all categories (blank). Simi-
larly the rank column uses the marker “1-4” to indicate that
we are only considering the scariest issues (and blank for all
bug ranks). For this analysis, we treat issues introduced in
the six weeks prior to the fixit (and any issues after the fixit)
as new issues. The choice of six weeks is arbitrary but the
results still hold even if the range is adjusted slightly. The
other columns in Table 3 starting from the leftmost column
are the fix rate, the number of issues in the subgroup that
remain at the end of our study and the number of issues
that have been removed (fixed). The last row represents the
overall fix rate.

The results show that all subgroups have fix rates higher
than the overall fix rate, though only the first four subgroups
have statistically significantly higher values at the p<0.01

level1. This indicates that Correctness issues, the scariest
issues, and/or new issues are more likely to be fixed. The
older Correctness issues do not have a much higher rate,
likely because most issues were in this subgroup.

1To measure statistical significance, we used a chi-square
test comparing the fix rate for each subgroup to the overall
fix rate.

% remain fixed rank new category
65.0 295 548 +
64.5 252 457 + C
59.8 227 338 1-4
58.5 225 317 1-4 C
57.9 90 124 1-4 +
56.7 88 115 1-4 + C
53.0 1435 1617 C
52.7 1870 2084

Table 3: Last Seen Fix Rate for Issue Subgroups

Another way to determine if an issue has been fixed is to
look for fixes in the bug tracking system. We did not observe
any significant trends using this approach, likely because at
the end of our study, many of the issues filed had been as-
signed but not yet fixed. The fix rates for each subgroup
were much lower than the fix rates in Table 3 (ranging from
34% to 39%), reflecting the fact that this approach under-
counts the number of fixed issues.

4.3.2 Fix Rates in Code Repository
Table 4 shows the results from analyzing 118 snapshots

of the Google codebase over a 9 month period. (To protect
Google’s intellectual property, we cannot publish numbers
on the size of the analyzed code base, but we can report
the number of warnings found.) For each bug pattern and
category, we looked at how many issues were remove and
how many persisted. This dataset was rather noisy and
contained inconsistencies, but the size of the dataset off-
sets some of the noise. The snapshots were not all analyzed
with the same version of FindBugs, and the code analyzed
wasn’t completely consistent. We made an effort to build
and analyze the entire Java codebase at Google each day
(initially, we only made snapshots every week). For various
reasons, different projects and components might get ex-
cluded from the build for a particular day. In several cases,
we made changes/improvements to FindBugs to improve the
relevance/accuracy of the warnings (e.g., recognizing that a
particular kind of warning was being reported in automat-
ically generated code and was harmless, and changing the
detection algorithm to not report the warning in that case).

We applied several steps to “clean” the data. We didn’t
consider issues that went away because we stopped seeing
the class that contained the issue. Also, if more than one
third of the reported issues for a bug pattern disappeared
between snapshots (and there were more than 20 such is-
sues), we attribute their disappearance to either a change in
the analysis, or a systematic change to the code, and do not
consider those issues. We also didn’t consider issues that
first appeared in the last 18 snapshots (since there wasn’t
really time to observe whether they would be removed). The
time period did include the Google fixit in May 2009.

Overall 32% of the issues considered were removed. We
don’t know if this is the“natural”average removal rate, since
it is biased by the fact that some detectors report far more is-
sues than other detectors. Thus, we considered any removal
rates above 37% to be higher than expected, and removal
rates lower than 27% to be lower than expected. Based
on those assumptions, we use a chi-square test to decide
whether the removal rate for each bug pattern was signif-
icantly above 37% or below 27%. We use a negative chi
value for those issues with a removal rate below 27%. In



chi % const fix max kind
1887 65 1903 3659 321 Correctness
369 70 243 572 126 RCN REDUNDANT NULLCHECK WOULD HAVE BEEN A NPE
224 88 23 179 25 VA FORMAT STRING EXTRA ARGUMENTS PASSED
187 74 86 245 57 RC REF COMPARISON
128 57 338 450 106 UUF UNUSED FIELD
123 78 38 137 20 EC UNRELATED TYPES
102 93 5 72 19 BC IMPOSSIBLE CAST
102 77 34 117 16 UR UNINIT READ
102 54 365 443 48 NP NULL ON SOME PATH
100 78 30 110 41 UMAC UNCALLABLE METHOD OF ANONYMOUS CLASS
95 76 34 112 10 GC UNRELATED TYPES
87 62 123 206 22 UWF UNWRITTEN FIELD
28 41 2793 1968 485 NOISE NULL DEREFERENCE
0 37 5311 3127 293 NOISE OPERATION
0 36 17715 10225 1192 all noise warnings
0 35 5391 2905 258 NOISE METHOD CALL
0 34 4220 2225 212 NOISE FIELD REFERENCE
0 32 69162 33415 1698 all
0 28 49544 19531 1305 all non-correctness, non-noise warnings

-195 18 3493 767 87 DM NUMBER CTOR
-202 7 904 70 11 UPM UNCALLED PRIVATE METHOD
-209 13 1888 301 74 RCN REDUNDANT NULLCHECK OF NONNULL VALUE

Table 4: Fix rate for bug patterns in Google code base

Table 4, we report the results which had chi value above 70
(or below -70), all of which are significant at the p < 0.05

level, as well as the noise bug patterns and the groups of
issues by category. The other columns in order are the per-
centage of issues that were removed, the number of issues
that remained in the final snapshot, the number of issues
that appeared in some version but not in the final snapshot
(“fixed” issues), the maximum number of issues that disap-
peared between any two successive snapshots, and the name
of the pattern.

Note that we are modeling these issues as independent
variables, but often they are not. In some cases, a particular
mistake (such as left shifting an int value by a constant
amount greater than 31) will manifest itself multiple times
in a class or method, and the issues will either all be fixed
together or not at all. Sometimes, a single change to the code
will resolve a number of warnings that are associated with
the changed code. Furthermore, sometimes there will be a
specific effort to resolve a particular kind of issue. There are
many variations on this problem, and we try to capture some
of this by reporting the maximum number of issues that
disappeared between any two successive snapshots. When
a substantial fraction of the total number of issues in a bug
pattern disappear like this, it is reasonable to believe that
they were removed as part of a single effort or due to a
change in the FindBugs analysis engine. As noted before,
we omit any cases where more than one third of the issues
were removed between one pair of successive iterations.

Some of the removed issues (such as unused or unread
fields), may reflect the refinement of incompletely imple-
mented classes rather than fixing of defects. A number of
the bug patterns with significant removals (impossible casts,
comparison of unrelated types) are serious coding mistakes,
so it is reasonable to postulate that they were removed be-
cause they were causing problems.

The most significant removal rate was for the bug pattern
that occurs when a value is (redundantly) compared to null
even though it has already been dereferenced. By contrast,
a similar bug pattern (comparing a value to null even though

it is known to be non-null due to a previous comparison) is
the most likely to persist in the code. This suggests that this
second bug pattern was not causing many problems and the
redundant comparisons in this case were mostly defensive.

Interestingly, noise null dereference warnings had a re-
moval rate that was significantly higher than the overall re-
moval rate. Noise null dereference warnings are only gen-
erated in cases where the value being dereferenced is not
guaranteed to be nonnull. Perhaps there are some bugs at
these dereference sites, and it may be valuable for developers
to review all recently created locations where a dereferenced
value is not guaranteed to be nonnull.

4.3.3 Comparing Fix Rate to User Reviews
We would like to check if the issues that received many

Must Fix and Should Fix classifications were more likely
to be fixed. One approach is to order the classifications
according to their severity and compare this to the fix rate
of each classification. There is no absolute notion of ordering
the classifications, so we experimented with several, shown
in Table 1.

We observed strong and significant (p<0.01) correlations,
shown in Figure 6, between our various orderings and the
percentage of issues in each classification that were fixed. In
other words, issues with the most severe classifications were
more likely to have been fixed. In this figure, we are us-
ing both approaches described in Section 3.2.2 to determine
which issues have been fixed.

In particular, issues that received I Will Fix classifica-
tions were quickly fixed. Since each issue received multiple
classifications, we use the classification that the plurality of
reviewers gave to each issue (called the consensus classifi-
cation in Section 4.4). The results show that 88% of the
reported issues marked I Will Fix have been fixed. Even
when we consider those issues marked I Will Fix at least
once (i.e. not necessarily the plurality of reviewers) we ob-
serve that over 70% have been fixed.



Figure 6: User Classifications versus Fix Rate

4.4 Other results

4.4.1 Consensus Classifications
One reason to have multiple reviews of a single issue is to

determine if there is a consensus among the different review-
ers about the importance of an issue. The issue of consis-
tency is related to the question of whether an organization
should have multiple reviewers for each issue, or just allow
individuals to make decisions, especially about filtering out
or suppressing issues. In surveys we have conducted, most
respondents have indicated that their organizations do not
have requirements on how many reviewers should look at an
issue before it can be addressed (fixed or suppressed) [1].

Since some classifications are close in meaning, we exper-
iment with grouping the classification in various ways, as
discussed in Section 3.2.3.

Once the reviews are grouped based on their classifica-
tions, we count the number of reviews in each group for
each issue. We used two methods to aggregate these counts
and get a sense of the overall consensus. One is to count the
number of reviews in the largest group for each issue (which
we term the Consensus Group), aggregate this count over all
issues, and divide this final number by the total number of
reviews in the analysis. We call this the Consensus Rate (or
the rate at which reviews end up in the consensus group).
A second method is to compute the consensus rate for each
issue (i.e. reviews in largest group divided by total num-
ber of reviews), and count the number of issues that have
a consensus rate above a desired threshold. In Figure 7 we
show these two measures, using a threshold of 0.8 for the
second measure and using some of the classification schemes
from Table 1. For example, when using the Ord3 scheme
described above, we observe a consensus rate of 0.87 for all
reviews, and 73% of all issues have a consensus rate greater
than 0.8. The consensus rate increases significantly when
we group similar classifications as is done in Ord3 and Ord4.
We use this to infer that users generally agree, but the sub-
jective nature of the review means they do not always give
exactly the same classification.

4.4.2 Review Times
The review time is an important measure when trying to

compute the cost of using static analysis. We computed a
mean review time of 117 seconds which matches our previous
observations. We also grouped the review times by classi-
fications and observed that the Obsolete Code classification
had the lowest review time at 64 seconds. Closer inspection
confirms that some users quickly dispatched issues that oc-
curred in files that were obsolete. Removing these reviews
from consideration does not significantly impact the review
time however.

Figure 7: Consensus Rates for All and Scariest Is-
sues

4.4.3 Reviews from Different User Groups
The fixit dataset includes anonymized information about

which user conducted each review and which users are listed
as owners of different files. Using this information we can
infer which users performed the most reviews (the super
users) and we can track how users reviewed issues in files
that they own.

The top reviewer examined 882 issues, and 18 out of the
282 users reviewed more than a hundred issues. We classified
these users as super users and compared the classifications
they gave with those of other users. Similarly, we compared
the classifications of owners with that of non owners, focus-
ing just on the issues that were reviewed by at least one
owner. We observed the super users were significantly more
likely to give Must Fix classifications and significantly less
likely to say I Will Fix. On the other hand owners were
much more likely to say I Will Fix or Obsolete code than
non-owners, and much less likely to give Must Fix classifica-
tions. This suggests that owners were taking responsibility
for fixing serious issues in their code. It also suggests that
most super users were not owners and vice versa. Only seven
of the super users owned any of the files they reviewed.

5. RELATED WORK
Other researchers have described their efforts to integrate

static analysis into commercial processes, and the feedback
they received from developers. Ours is the first to aggregate
opinions from such a large group of engineers and report on
which problems were actually fixed. Researchers at eBay ex-
perimented with enforcement-based customization policies,
through which bug patterns are filtered and reprioritized,
and developers are required to fix all resulting high prior-
ity warnings [8]. Practitioners from Coverity, a commer-
cial static analysis vendor, observe one outcome of reviews:
sometimes reviewers misunderstand a bug and mislabel it as
a false positive, despite the best attempts of Coverity’s team
to convince them otherwise. This has led them to turn off
some detectors that are easily misunderstood, so that devel-
opers do not develop a negative impression of the tool [4].
We observed this phenomenon, especially with the subtle
bug patterns that engineers tended to undervalue.

Other researchers have analyzed the code history to iden-
tify top bug patterns. Early research at Google tried to
predict which warnings will be fixed based on factors (such
as file size) that are associated with warnings fixed in the
past [13]. The researchers relied on information from bug re-
ports to identify fixed issues, so this limited the size of their
training dataset. Kim and Ernst also reprioritize warnings,
using the removal of warnings as a measure of their impor-
tance, and increasing their confidence by emphasizing warn-
ings removed during bug fix commits [9, 10]. By contrast,



we experiment with using noise detectors to validate that
high removal rates of some bug patterns are not due to code
churn. Our noise detectors were partially inspired by other
papers which try to correlate the density of static analysis
warnings with various measures of software quality [12, 13,
6]. The challenge these researchers face is that the warn-
ing counts are impacted by code churn, and noise detectors
provide a way to detect the proportion of warning removals
that are essentially random.

6. CONCLUSIONS
We successfully completed a large review of FindBugs

warnings in Google’s code base. The primary goal of the
review was to bring problems to the attention of responsible
parties, but we were also able to collect large amounts of
data which we investigated in this paper. We observed that
most reviews recommended fixing the underlying issue, but
few issues caused serious problems in practice. Those issues
that might have been problematic were caught during devel-
opment, testing and deployment. The value of static analy-
sis is that it could have found these problems more cheaply,
and we illustrated this with anecdotal examples from stu-
dent code.

We also observed that the importance placed on warn-
ings by developers matched the bug ranks in FindBugs, but
some bug patterns deviated from this norm. Specifically,
users tended to overvalue some bug patterns that manifest
as exceptions or program crashes, but are rarely feasible in
practice, and undervalue more subtle bugs that are often
harmless, but should be reviewed because they can cause
serious problems that are hard to detect. We also observed
that new, correctness and high priority issues are the ones
most likely to be fixed, matching our expectations coming
into this study. Users were also more likely to fix the issues
that were classified as Must Fix, Should Fix, or I Will Fix.

Overall, the fixit was declared a success, and some man-
agers were impressed by the high percentage of the reviews
that gave a fix recommendation. Ongoing efforts are inte-
grating FindBugs warnings into a code review tool so that is-
sues are addressed earlier in the development process. Some
developers already run the analysis regularly through their
IDEs. We have also started a FindBugs Community Review,
through which developers of various open source projects are
reviewing and fixing warnings in their respective projects,
using the infrastructure developed at Google.

Results from the fixit (including additional data collected
subsequently) are available at:
http://findbugs.sourceforge.net/publications.html.
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