
SuDoku: Tolerating High-Rate of Transient Failures for Enabling Scalable STTRAM

Prashant J. Nair∗

∗Department of Electrical and Computer Engineering
University of British Columbia
prashantnair@ece.ubc.ca

Bahar Asgari† Moinuddin K. Qureshi†

†Department of Electrical and Computer Engineering
Georgia Institute of Technology

{bahar.asgari,moin}@gatech.edu
Abstract—Conventionally, systems have relied on technology

scaling to provide smaller cells, which helps in increasing
the capacity of on-chip and off-chip structures. Unfortunately,
scaling technology to smaller nodes causes increased suscepti-
bility to faults. We study the problem of efficiently tolerating
transient failures using scalable Spin-Transfer Torque RAM
(STTRAM) as an example. At smaller feature sizes, the energy
required to flip a STTRAM cell reduces, which makes these
cells more susceptible to random failures caused by thermal
noise. Such failures can be tolerated by periodic scrubbing
and provisioning each line with Error Correction Code (ECC).
However, to tolerate a desired bit error-rate, the cache needs
ECC-6 (six bit error correction) per line, incurring impractical
storage overheads. Ideally, we want to tolerate these faults
without relying on multi-bit ECC.

We propose SuDoku, a design that provisions each line with
ECC-1 and a strong error detection code, and relies on a
region-based RAID-4 to perform correction of multi-bit errors.
Unfortunately, simply having such a RAID-4 based architecture
is ineffective at tolerating a high-rate of transient faults and
provides an MTTF in the order of only a few seconds. We
describe a novel data resurrection scheme that can repair
multiple faulty lines in a RAID-4 region to increase the MTTF
to several hours. We propose an extension of SuDoku, which
hashes a given line into two regions of RAID-4 to significantly
enhance reliability and increase the MTTF to trillions of
hours. Our evaluations show that SuDoku provides 874x higher
reliability than ECC-6, incurs 30% less storage than ECC-6,
and performs within 0.1% of an ideal fault-free baseline.

Keywords-STTRAM, Reliability, Transient Failure.

I. INTRODUCTION

Technology scaling is a key enabler for high-capacity

memory systems. Technology scaling has aided the advance-

ment of several popular memory technologies such as Static

Random Access Memory (SRAM) and Dynamic Random

Access Memory (DRAM). Unfortunately, while reducing the

sizes of the cells improves memory density, it also makes

them vulnerable to faults. As memory systems scale, they tend

to become susceptible to faults that occur intermittently over

time (transient faults) and reduce their ability to retain data.

For instance, at smaller nodes, SRAM cells cannot retain data

operate at lower voltages and tend to fail randomly. Similarly,

at sub-20 nm nodes, DRAM cells have a lower retention time

and tend to show a high rate of transient faults. Transient

faults tend to be an even bigger concern for incorporating

new memory technologies. To study the impact of transient

faults, this paper uses an emerging technology, Spin-Transfer

Torque Random-Access Memory (STTRAM).

Spin-Transfer Torque Random-Access Memory

(STTRAM) is an emerging technology that can enable large

on-chip caches with 3X-4X as high as SRAM [1], [2].

STTRAM cells store data in the form of the orientation of a

soft ferromagnetic material, which changes the state with

passage of current [3]. The ability of STTRAM to retain

stored data is dictated by a metric called as Thermal Stability
Factor (Δ) [2], [4]. While demonstrations of STTRAM have

shown years of data retention, such designs typically use a

Δ≥ 60 and require larger cell area, higher energy per write,

and longer write latencies [5], [6]. Unfortunately, scaling

STTRAM reduces its Δ and retention time, and causes

transient faults [5], [7], [8].
The Δ of STTRAM cells is also subjected to variations.

Recent studies from the industry depict up to a 10% σ in

Δ due to process variation [1], [5], [8]. For our studies, we

choose an STTRAM device with a mean Δ of 35 with a

normalized standard deviation (σ) of 10% (corresponding to

22nm node [5], we analyze various values of Δ in VII-G).

The mean time to failure (MTTF) for a cell with a Δ of 35

is approximately 18 days, however, after taking the variation

(σ=10%) into account, on average, it takes only one hour for a

cell to fail [9], [10]. We deem that this range of retention time

may still be sufficient for caching applications. Unfortunately,

a large cache contains millions of cells, all of which must

operate reliably to avoid data loss. Therefore, even though

the MTTF is an hour, our analysis shows that in a period

of 20ms, we can expect 2880 bits to experience retention

failures in a 64MB STTRAM cache. This translates to a bit

error rate (BER) of 5.3×10−6 within 20ms.1

Retention failures are a problem in other technologies

as well. For example, DRAM systems rely on periodic

refreshes to maintain data integrity. Prior studies [10], [11]

have advocated a DRAM-style refresh for STTRAM, whereby

each line is periodically read into a buffer and written back.

However, the retention failure occurs quite differently in

STTRAM. While in DRAM, retention failure occurs as a

result of charge leakage, in STTRAM, it occurs because of a

random thermal noise that flips the direction of the magnetic

cell. Therefore, unlike DRAM, in which we can maintain

data integrity by restoring the charge before it leaks below a

certain threshold, we cannot restore the value of a STTRAM

cell by reading and rewriting it. Moreover, the probability

that a bit flips because of thermal noise within a given time

window is independent of the duration since the last access.

Therefore, DRAM-style refresh is ineffective for STTRAM.
In essence, retention failures in STTRAM are akin to tran-

sient failures in charge-based memories caused by external

1We pick a period of 20ms for our analysis to ensure that the LLC can
be scrubbed while incurring an overhead of not more than a few percent [5].
Analysis with other scrub interval is presented in Section VII-E.

388

2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-0057-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN.2019.00048

high energy particles. Prior techniques [12]–[15], which are

highly effective at handling permanent faults also become

inapplicable for such faults as they are transient, and any

cell is liable to incur a bit flip at a certain time interval.

Note: Prior mitigation techniques [12]–[15] that

are highly effective at tolerating permanent faults

become ineffective at tolerating transient faults. These

techniques rely on disabling or sparing the failed bit.

At our error rates, every bit in the cache is expected

to encounter a failure once every few hours.

A practical solution to mitigate retention failures in

STTRAM is employing periodic scrubbing and using per-line

Error Correction Code (ECC) to tolerate all faults within

the scrub interval [5], [6], [10]. We use a 64MB STTRAM

and employ a scrub interval of 20ms for our studies. We

seek a target FIT-Rate (Failure in Time period of 1 billion

hours) of 1 for the STTRAM cache. For tolerating a BER

of 5.3×10−6, each cache line would need to provisioned

with ECC-6 (correcting six errors per line). ECC-6 would

have a storage overhead of 60 bits per 64-byte line (11.7%).

These multi-bit encoders and decoders use complex arithmetic

calculations. As these ECC calculations are non-trivial, multi-

bit ECC encoders and decoders incur latencies of several

tens of cycles. On the contrary, simple ECC-1, can perform

encoding and decoding using a small lookup table and a

single cycle latency. Ideally, we want to tolerate high rate of

retention failures by paying the low cost of ECC-1.

This paper proposes SuDoku,2 a resilient cache architecture

that efficiently handles scalability challenges without incur-

ring overheads of strong ECC. SuDoku uses the insight that

even at a BER of 5.3×10−6, only six bits in every Million

bits will be faulty. Therefore, 99.9999% of cache lines will

either have no faulty bits, or have only one faulty bit. SuDoku

handles the common case by a single bit ECC (ECC-1) with

each line. To handle multi-bit faults, SuDoku appends each

line with cyclic redundancy code (CRC-31) [16], a strong

detection code that detects up to seven faults. SuDoku relies

on a region-based RAID-4 scheme for correcting multi-bit

failures, whereby each group of 512 lines is provisioned

with one dedicated parity line. On detecting an uncorrectable

failure in any line of a group, we use the associated parity

line to reconstruct data. The likelihood of invoking RAID-4-

based correction is small (on average, only four lines in a

64MB cache will have 2+ failures in a 20ms scrub interval).

We refer to this base SuDoku as SuDoku-X (Section III).

Unfortunately, the MTTF of SuDoku-X is only 3.7 seconds

and we need a stronger scheme to supplement SuDoku-X.

2SuDoku is a numerical puzzle, where the data value in a blank cell is
constructed using the available data values in row, column, and smaller
grid. Our design shares a similar spirit in data recovery for faults, hence
the name.

The dominant failure mode of SuDoku-X is due to groups

with two faulty lines, each with exactly two bit-failures.

Traditional RAID-4 would be unable to perform correction if

two units of the region are deemed faulty. However, we use

the insight that 2-bit failures can be corrected with ECC-1,

if the position of one of the faulty bits is known, because

one can fix this bit error by flipping the faulty bit. We call

this scheme to as Sequential Data Resurrection (SDR). To

perform SDR, we first scan the region of RAID-4 (group)

and correct all line with single bit faults. Then, we compute

the parity of the group and compare it against the stored

parity, and identify the bit positions with a mismatch. For the

remaining faulty lines, we sequentially flip each identified

position of faulty-bit and perform ECC-1 based correction.

If after performing the ECC-1 correction, the per-line CRC

indicates no error, then the line is deemed to be successfully

corrected. We refer to this design with SDR as SuDoku-Y
(Section IV). The MTTF of SuDoku-Y is 3.9 hours.

Note: Simply having a RAID-based design, as pro-

posed in recent works [17], [18], in insufficient at

tolerating a high-rate of transient faults. We propose

two novel optimization that significantly improves

(by 15 orders of magnitude) the robustness of RAID-

based design at tolerating a high-rate of transient

faults.

SuDoku-Y fails in two situations: First, when a region

has two lines each with two overlapping faults, so, parity

cannot detect the their positions. Second, when a group has

3+ faulty lines each with 2+ faulty bits, so, SDR cannot

be applied. To overcome this, SuDoku uses the concept of

skewed-hashing and significantly enhances its effectiveness.

Rather than restricting a line to participate in exactly one

parity group, we use two hashes and let each line in the

cache to map to two separate groups. If the faulty lines for a

given region are uncorrectable under the first hash, SuDoku

tries to repair the faulty lines using the group formed using

the second hash. We refer to this design of SuDoku with

skewed hashing as SuDoku-Z (Section V). The MTTF of

SuDoku-Z is 8250 billion hours.

SuDoku-Z is consistently stronger than ECC-6 and tol-

erates a higher variability in Δ. For instance, at σ = 10%,

SuDoku-Z is 874x as reliable as ECC-6 (0.092 FIT). SuDoku

achieves the high reliability without relying on the storage

and latency overheads of ECC-6. SuDoku uses 256KB of

SRAM to store parities for a 64MB cache (0.39% area SRAM

overhead). The latency overheads of error correction with

SuDoku are incurred rarely and do not have any measurable

impact on performance (<0.01%). While SuDoku tolerates

high rates of transient faults, it is also effective for tolerating

permanent faults. We also discuss how SuDoku can be used

to improve the reliability of other technologies (Section VI).

389

II. MOTIVATION

When memory cells are scaled to smaller technology nodes,

they become more susceptible to failures [14], [19]–[22].

Several recent studies have proposed cost-effective solutions

that can tolerate permanent fault rates of as high as 100

parts per million (ppm) in DRAM [14], [15] and 1000

parts per million in SRAM caches [12], [21]–[23] while

avoiding the storage overheads of using strong ECC codes.

Unfortunately, unlike cells with permanent faults which tend

to be deterministic, any cell can become faulty at run-time

due to a transient fault. We study the problem of high-rate of

transient faults using scalable STTRAM as an example. This

section provides a brief background on STTRAM scaling,

traditional techniques for tolerating scaling-related failures,

and shortcomings of these techniques.

A. Overview of STTRAM

STTRAM is a highly dense replacement of SRAM for

large on-chip caches. STTRAM stores data by polarizing

the magnetic tunnel junction (MTJ) within each cell. To this

end, each cell has a free layer and a fixed layer. The fixed

layer is always polarized in a constant direction. By applying

current in different directions, the free layer can be polarized

in the parallel and anti-parallel direction with respect to the

fixed layer. This difference in the orientation of polarization

changes the resistance of the STTRAM cell and determines

the bit stored within each cell.

B. Background on STTRAM Scaling

Once the MTJ layer is polarized, it is susceptible to

temperature variations. Robustness of the MTJ-layer to

temperature variations is indicated by the BER (pcell), which

follows a Poisson distribution, and it depends on the thermal

stability factor (Δ) of the MTJ layer. Equation 1 shows the

impact of Δ on pcell for a given time period (ts), where f0

is the thermal attempt frequency (1GHz) [5]–[7], [24].

pcell(ts) = 1− e−λ ·ts aaa
(

where λ =
f0

eΔ =⇒ 109

eΔ

)
(1)

As cells scale, their Δ must remain unaffected to maintain

a low pcell . However, Δ is proportional to the volume of the

free layer (Vf). Thus, as STTRAM scales, maintaining Vf
becomes more challenging. While reducing the feature size,

if the Vf decreases by 2x, then Δ also reduces by 2x and

increases pcell . Table I shows that as mean Δ reduces from

60 to 35, the BER (over 20ms) increases nearly six orders of

magnitude to 5.3×10−6. Such random thermal failures are

one of the biggest obstacles of scaling STTRAM [19], [20].

Table I
THERMAL STABILITY VS ERROR RATE (20MS PERIOD). DATA

RECOMPUTED FROM FIGURE 13 AND FIGURE 17 IN [5].

Mean Thermal Stability (Δ) 60 35
with σ = 10% (32nm node) (22nm node)

Bit-Error Rate (pcell) 2.7×10−12 5.3×10−6

C. Ineffectiveness of DRAM-Style Refresh

Unfortunately, the failure model of STTRAM due to

thermal noise is quite different from DRAM retention failures.

Retention failure in DRAM cell occurs because of gradual

loss of charge, so rewriting the data replenishes that charge.

However, thermal failures cause STTRAM to lose data

instantly and at unpredictable times. If a cell flips within the

refresh interval, simply reading the same value and rewriting

it to the cell will not tolerate failures in STTRAM. Therefore,

DRAM-style refreshing is ineffective for STTRAM [5], [6].

D. Effective Solution: Scrubbing and ECC

A practical solution to mitigate thermal failures in

STTRAM is to employ periodic scrubbing and use a strong

per-line ECC [5], [6], [10] to tolerate all the bit errors within

a scrub interval. We can draw analogies between transient

faults in DRAM due to lower refresh-rate and transient faults

in STTRAM due to lower scrubbing-rate. This is because,

in both case, a lower rate of refresh or scrubbing causes

retention failures. While DRAM simply requires refreshing

charge in data cells, STTRAM requires reading data and

applying ECC to correct the read data before writing it back.

We use a 64MB STTRAM for our studies and employ a

scrub interval of 20ms. We seek a target FIT rate of atmost

one, translating to at most one uncorrectable errors in one

billion hours of operation.3 To reach the target FIT rate, we

need to equip each line with ECC-6, as shown in Table II.

Unfortunately, provisioning each cache line with ECC-6

incurs significant overheads in terms of latency and storage

(60 bits per line). Ideally, we would like to overcome the

latency, area, and complexity challenges using simple ECC-1

(10 bits per line) in the common case and still be able to

tolerate six or more bits of transient faults.

E. Insight: Optimize for the Common Case

As shown in Table II, the likelihood of multi-bit error

is very uncommon. For example, even if each line was

provisioned with ECC-1, only four lines in a 64MB cache

would experience multi-bit failures within the 20ms scrub

interval. Unfortunately, we do not know which line would

encounter the multi-bit failures. Moreover, the lines with

multi-bit failure will change between scrub intervals. As

we don’t know which lines will encounter failures, the prior

work on tolerating STTRAM failures [5], [6] naively allocated

uniform amount of error correction entries with each line,

thus incurring significant ECC overheads. Our insight for

reducing the overhead of tolerating high error rates is to

give lines enough ECC entries to tolerate the common case

(ECC-1). We equip each line with strong detection code

(CRC-31) to detect multi-bit failures and rely on an alternate

low-cost mechanism to perform multi-bit error correction.

3Typically, a Chipkill protected DRAM memory has a FIT rate slightly
exceeding 1 FIT, so our target FIT ensures that the reliability of the overall
system is not dominated by the cache.

390

Table II
FIT RATE OF 64MB CACHE FOR VARIOUS ECC, BER OF 5.3×10−6 IN SCRUB INTERVAL OF 20MS.

ECC per line ECC-1 ECC-2 ECC-3 ECC-4 ECC-5 ECC-6
Probability of line-failure in 20ms 3.9×10−6 3.8×10−9 2.9×10−12 1.9×10−15 10−18 4.9×10−22

Probability of cache-failure in 20ms 9.8×10−1 4×10−3 3.1×10−6 2×10−9 1.1×10−12 5.1×10−16

Cache FIT-Rate > 1014 7.2×1011 5.5×108 3.5×105 191 0.092

III. SUDOKU-X: BASE DESIGN

We propose SuDoku, a resilient architecture, which

tolerates a high rate of transient faults at low cost. We

explain the basic design, SuDoku-X, before discussing our

enhancements of SuDoku. We use the insight that even at

a BER of 5.3×10−6, only five in every Million bits will

be faulty. Therefore, 99.9999% of cache lines (64Byte size)

will either have zero or one faulty bit. SuDoku handles this

common case by provisioning each line with ECC-1 and

provides an alternate means for multi-bit error correction.

We use a scrub interval of 20ms with a BER of 5.3×10−6

(Δ,σ = 35,10%) within the scrub interval (sensitivity to these

parameters is provided in Section VII).

1

2

Parity Line Table (PLT)

RAID−4 PARITY

ECC−1 CRC

R
A

ID
−

G
ro

up

CACHE (STTRAM)
Figure 1. The Organization of SuDoku-X. Each line uses ECC-1 and
CRC-21. RAID-4 corrects multi-bit errors. The PLT stores the parities.

A. The Organization

Even at a high BER (5.3×10−6), only a few lines would

encounter multi-bit errors. For example, within a 64MB

cache, only four lines are expected to have multi-bit errors.

SuDoku-X provides two levels of protection – one to handle

single-bit error (common case) and another to handle multi-

bit errors (low cost). Figure 1 shows the organization of a

cache with SuDoku-X. Each line is equipped with an ECC-

1 to handle the case of one bit error locally and quickly.

Each line is also provisioned with a strong error detection

code, CRC-31, which detects up to seven errors in a line (all

even number of errors beyond seven bits are detected with

extremely high probability). The CRC-31 requires a storage

overhead of 31 bits per line. When CRC detects a line with

multi-bit error, SuDoku-X uses an alternate mechanism for

correction. To achieve multi-bit error correction at low cost,

we use a scheme based on the concept of RAID-4 [25], [26].

Unlike strong ECC, RAID-4 requires simple encoders

and decoders to correct multi-bit errors. However, RAID-4

corrects only one faulty line within the protected region.

Unfortunately, we expect several lines (four on average) with

multi-bit errors within a scrub interval. If we have a RAID-4

across all the lines, then we will be unable to correct them.

Therefore, we partition the cache into equal-sized regions,

called RAID-Group, each provisioned by a parity line. This

line maintains the parity information for all the lines in the

RAID-Group. For example, in Figure 1 the cache contains

16 lines, which are split into four RAID-Groups of four

lines each. The parity for each Raid-Group is stored in a

separate structure called the Parity Line Table (PLT). We

use a RAID-Group of 512 lines, so the PLT is only 0.2% of

the cache size. As each write to the cache must also update

the PLT, one can provide sufficient bandwidth to the PLT,

either by making it heavily banked or in SRAM or both. A

line with multi-bit error can be repaired using the respective

parity line stored in the PLT for the RAID-Group.

B. Error-Free Operation

This section explains read and write operations for SuDoku-

X in the common case. A read operation fetches the ECC-1

and CRC-31 along with the data line. The cache controller

first verifies if the line is faulty by checking its CRC

syndrome. This can be performed within one cycle. If the

syndrome is “0”, the line is deemed to be non-faulty. Note

that PLT is not accessed for a read operation. For a write

operation, the cache controller must update data in the stored

cache line, as well as the parity information in the PLT.

These updates can be performed as two sequential read-

modify-write operations. STTRAM usually employs a read-

modify-write scheme to reduce the number of bit-flips and

reducing write power and latency [27], [28]. The first read-

modify-write is to the data line in the cache. As part of this

operation, the controller identifies the position of the bits

get modified by the write. The second read-modify-write is

to the respective parity line in the PLT, and flips the bits

corresponding to the locations of the modified data bits.

C. Performing Error Correction

This section examines how SuDoku-X performs correction.

When a line is accessed, the CRC associated with the line

will detect possible errors. The repair depends on whether

the line encountered a single-bit or multi-bit error.

1) Repairing Single-Bit Errors: As the most common

case of errors is a single-bit error, once we find a CRC error,

we first try the ECC-1-based repair for the line. If the ECC-1

performed a correction, we recompute the CRC using the

corrected data value. If the CRC matches with the stored

CRC, we deem the line to be corrected successfully.

391

2) Repairing Multi-Bit Errors: If a line encounters a

multi-bit error, then even after correction using ECC-1,

the CRC will continue to deem the line to be faulty. For

correcting multi-bit errors, SuDoku relies on a RAID-4

scheme, in which each group of 512 lines is provisioned

with a dedicated parity line. For correction, we first read

all the lines in the RAID-group and fix all single-bit errors.

Then, the data for the faulty line is generated by computing

effective parity over the parity line and the lines in the RAID-

Group, except for the line being repaired. The likelihood of

invoking a RAID-4 based correction is small (on average,

only four lines have 2+ errors in a scrub interval).

For instance, Figure 2 shows a cache with 16 lines and

each RAID-Group contains four lines. Lines A-D form a

RAID-Group and the parity line for this group is the top-most

line in the PLT. Line B encounters a six-bit error, which

is detected by the CRC. Even after undergoing an ECC-1-

based correction, the CRC still indicates error. As a result, we

reconstruct the data for B by computing the parity of lines A,

C, D, and the parity line. If a line encounters any single-bit

error, then such an error is corrected before participating in

the RAID based correction. Thus, SuDoku-X can repair the

multi-bit errors in Line B, without requiring any storage or

circuitry for multi-bit ECC.

ECC−1 CRC

CACHE (STTRAM)

PARITY[A−D]

A

B

C

D

X X ??X X

Parity Line Table (PLT)

Figure 2. Correction of multi-bit errors with SuDoku-X. Line B encounters
a multi-bit error, which is detected by CRC. The data for B is repaired by
performing an XOR of the data for lines A,C,D and the respective parity
line from the PLT.

D. Considerations on Size of RAID-Group

We use a default size of 512 lines per RAID-Group. The

size of the RAID-Group determines the storage overhead for

the parity lines, the latency for performing error correction,

and the overall reliability. With a RAID-Group of 512 lines,

the RAID-4 based correction would incur a storage overhead

of 128KB for a cache of 64MB (2K RAID-Groups of 512

lines each). This storage overhead is sufficiently small to

be stored in SRAM. Furthermore, the latency overhead

of repairing using RAID-4 (512 line reads) is incurred

infrequently – on average four lines in a scrub interval of

20ms. This repair latency (of approximately 4μs per repair)

is 16μs per 20ms. Even if we encounter all of the repairs on

demand read, the overall latency impact is less than 0.08%.

E. Organizing Data, CRC, and ECC within a line

To enable high fault detection and correction rates, we

compute the CRC over the data and then compute the ECC

over CRC and data. This enables the ECC to correct single-

bit faults in both the CRC and the data. Furthermore, it also

enables use to detect miscorrections from ECC in lines with

1+ faults. This is because, in such lines, the CRC recomputed

after a miscorrection from ECC will not match.

F. SDC Rate of SuDoku-X

The Silent Data Corruption (SDC) of SuDoku-X is dictated

by the error detection capability CRC-31, which detects up

to seven bit errors [29]. For 8+ bit errors, CRC-31 has a

small misdetection probability of 2−31. Unfortunately, with

SuDoku-X, a line with 7-bit error can get miscorrected an

8-bit error by the ECC-1, and subsequently the CRC-31 can

let this event go undetected. In fact, this is the dominant

source of SDC in SuDoku-X. Table III lists the SDC Rate

for cases when the line has either 7 or 8+ errors. Note that, if

the line has six or fewer errors, SuDoku-X will not result in

SDC, as CRC-31 is guaranteed to detect them. Fortunately,

the total SDC FIT-Rate of SuDoku-X is 8.9×10−9 which

is much lower than our target of 1 FIT. However, there is

an uncorrectable line every 3.71 seconds, which dictates the

overall MTTF of SuDoku-X to be 3.71 seconds.

Table III
SDC RATES OF CACHE WITH SUDOKU-X

Vulnerability 7 Faults/Line 8+ Faults/Line

Event (per Billion Hours) 191 0.09

CRC-31: Misdetection Probability 2−31 2−31

SDC Rate (per Billion Hours) 8.9×10−9 4.2×10−11

IV. SUDOKU-Y: DATA RESURRECTION

The dominant failure mode of SuDoku-X is when two

lines in the same RAID-Group have two errors each. Out of

all failures from SuDoku-X, the case of exactly two faulty

lines (with multi-bit errors) accounts for 99.98% of the cases.

Furthermore, even in the case of multi-bit failures, the case

of two bit failures dominates (99.98%). We use the insight

that ECC-1 corrects two-bit failures (without extra storage),

if we can identify their position and flip the faulty-bits. This

technique is called Sequential Data Resurrection (SDR), and

SuDoku-X equipped with SDR is called as SuDoku-Y.

A. Overview of SDR

In general, if two disks fail, then RAID-4 cannot recover

faulty data. We use the insight that unlike disk failures, our

design is handling bit faults, and faulty lines tend to have an

large number of fault-free bits (for example, in the typical

case of two-bit fault, 510 bits are still fault-free). For a line

with two-bit faults, if we can identify one faulty bit position,

392

Bit−Fault Parity MismatchParity Match

(c) Two Overlapping Faults (0.0004%)

Line 1

Line 2

Parity Line

(a) No Overlapping Fault (99.22%) (b) One Overlapping Fault (0.78%)

Figure 3. Three scenarios for Selective Data Resurrection using SuDoku. In general, ECC-1 cannot repair lines with two errors. However, if we know the
position of one of the errors (from the Parity Line) we can correct the other error using ECC-1 by flipping one of the faulty bit (the CRC of line can
validate if the correction was indeed successful).

then we can perform two-bit error correction by flipping that

faulty bit and using per-line ECC-1 to fix the other fault. This

correction can be checked and validated with the per-line

CRC-31. In case of SuDoku-X, when multiple lines with

multi-bit failures exist, the parity of the RAID-Group is used

to identify the location of faulty bits as they can lead to parity

mismatches (in the common case). We then perform error

correction by flipping each of the bits in the mismatched

positions one by one, applying the per-line ECC-1 to fix

the other faulty bit, and then rechecking with CRC. If the

CRC does not match, we try with the next mismatched bit

position until all the positions are exhausted. Note that if we

correct even N-1 faulty lines out of the N faulty lines of a

RAID-Group using SDR, we correct the final uncorrectable

line using the RAID-4 based correction. We analyze the

effectiveness of SDR for the case of two faulty lines in the

group, with two faults each.

B. Operation of SDR for Two Faulty Lines

If a region has two faulty lines, each with two faulty bits,

only a maximum of four locations will show a mismatch

in the parity line. The parity is computed by correcting all

lines with 1-bit error in the group, and by using the original

(uncorrected data values) for both the faulty lines with two-

bit errors. Figure 3 illustrates a scenario in which two lines

(Line 1 and Line 2) in the same RAID-Group encounter two

faults. For simplicity, lets assume none of the other lines in

the group encounter any faults. We explain the operation of

SDR for three possible scenarios.

Case 1: No overlapping faults (99.22% probability)
Figure 3(a) shows a scenario with no overlapping faults and

the parity line indicates four mismatch locations that can be

faulty in each line. SDR then fetches Line-1 and sequentially

flips only the bits in the mismatched locations in the parity

line and invoke ECC-1. If the flipped bit was indeed faulty,

then ECC-1 corrects the remaining faulty bit and the CRC

will indicate that the cache line is non-faulty. Thereafter,

Line-2 can be corrected by using RAID-4.

Case 2: One overlapping fault (0.78% probability)
Figure 3(b) shows the scenario in which one overlapping fault

occurs and the parity line will have only two mismatches.

SDR fetches Line-1 and sequentially tries to flip only the

bits in the mismatched locations in the parity line and invoke

ECC-1. If the flipped bit was indeed faulty, then ECC-1

can correct the remaining faulty-bit and CRC will indicate

that the cache line is non-faulty. Even if the location of one

faulty-bit was unknown, we could still correct both the faulty

bits. Thereafter, Line-2 can be corrected using RAID-4.

Case 3: Both faults overlap (0.0004% probability)
Figure 3(c) shows the scenario in which both the faults

overlap. Thus, the parity line will not have any mismatches

and SDR cannot be applied. The likelihood that two faulty

bits of one line (512 bits) will overlap exactly with the two

faulty bits of another line is quite low (2
512 · 1

511 = 0.0004%).

The latency of SDR-based correction is only a few cycles

of trial and error on the mismatched positions (4-6), so it

is in the regime of few tens of nanosecond. However, this

latency is incurred once every 3.71 seconds (the MTTF of

SuDoku-X), so the overall latency impact remains negligible.

C. Effectiveness of SDR in Other Cases

SDR is also effective in the case of two faulty lines, each

with two faulty bits, as it can repair them 99.9996% of the

time. While SDR may seem ineffective if one of the lines

have 3 or more faulty bits, it can fix these cases too. This is

because, in the common case when there are two faulty lines

in a group and one line has a 3 bit fault, the other line tends

to have a 2 bit fault, as shown in Figure 4 (if two faulty bits

overlap then SDR cannot repair). If we can repair Line 1

using SDR, then we can repair Line 2 using RAID-4.

Bit−Fault Parity Mismatch

(b) One Overlapping Fault

Line 2

Parity Line

(a) No Overlapping Fault

Line 1

Figure 4. SDR can repair a line with 3-bit fault if it does not have ¿1 bit
of overlap with a line with 2-bit fault.

We have only analyzed cases in which the RAID-Group

has only two faulty lines. But SDR is useful in other cases

too. For example, if there are three faulty lines with two-bit

failures each (the most common case of three lines with

multi-bit failure), we can repair each of the faulty lines using

SDR. Just that in this scenario, we would have six possible

position of mismatch and each line will sequentially undergo

repair through these six possible locations. The effectiveness

of SDR even in this case is 99.9%. We do not perform SDR

if there are more than six mismatches.

393

D. SDC Rate of SuDoku-Y

SuDoku-Y based correction is invoked only when SuDoku-

X encounters several lines with multi-bit failures. Once

invoked, it is extremely unlikely for SuDoku-Y to encounter

SDC, as it would require that the miscorrected lines go

undetected by the CRC-31 and also go undetected in the

Parity Line of the RAID-Group (about 10−28 probability).

The dominant scenario for SuDoku-Y to cause SDC is

identical to that of SuDoku-X (one line in the group has 7+

errors and the CRC-31 is unable to detect). As per Table III,

the total SDC rate of SuDoku-Y is also 8.9×10−9, which is

about eight orders of magnitude lower than our target goal

of one FIT. Thus, SDC rate of SuDoku-Y is not a concern.

E. Limitations of SuDoku-Y: DUE Rate

SuDoku-Y faces Detectable Uncorrectable Error (DUE)

when an SDR fails to correct in two scenarios. First, when

there are multiple faulty lines and at least two of them have

three or more errors. Second, when two faulty bits overlap.

As SuDoku-Y fixes most multi-line failures, it has an MTTF

of 3.49 hours (3387X higher than SuDoku-X) and provides

a DUE FIT of 286 Million. The next section describes a

scheme that reduces the FIT-Rate to 0.0001.

V. SUDOKU-Z: SKEWED-HASH FOR RAID

SuDoku-Y fails when a RAID-Group contains multiple

faulty lines each with 3+ bit error. As these lines have three or

more errors, identifying one faulty bit position will not enable

SDR to repair the line using ECC-1. We use the concepts of

skewed-hashing [30] and multi-hash Bloom Filters [31] to

enhance the effectiveness of SuDoku. Rather than restricting

a line to exactly one RAID-Group, we use two hashes (Hash-

1 and Hash-2) and let each line participate in two different

RAID-Groups. If the faulty lines for a given RAID-Group is

deemed uncorrectable under Hash-1 (i.e. SuDoku-Y fails),

then this design tries to repair each of the uncorrectable lines

using the RAID-Groups formed under Hash-2. This design

of SuDoku with skewed hashing is called SuDoku-Z.4

A. Organization

Figure 5 shows the organization of SuDoku-Z. SuDoku-Z

contains two Parity Line Tables (PLT-Hash1 and PLT-Hash2).

The lines are mapped to the two PLT using two Hashes,

Hash-1 and Hash-2. PLT-Hash1 stores the parity lines of the

RAID-Groups formed under Hash-1 (identical to SuDoku-Y).

Similarly, PLT-Hash2 stores the parity lines of the RAID-

Groups formed under Hash-2 (newly added for SuDoku-Z).

The hashes are selected such that the lines are guaranteed

to be mapped to different RAID-Groups. This avoids the

same set of lines from making a RAID-Group fail under

both Hash-1 and Hash-2. For example, if the size of the

4Although we implement SuDoku-Z with SuDoku-Y, we can implement
SuDoku-Z alone too. Such a design will not be effective because of the
high DUE rate, causing a FIT rate of 4 Million.

RAID-Group is 512 lines, we can form Hash-1 by masking

out the 9 least significant bits (CacheLineAddr[8:0]) of the

cache line address, and Hash-2 by masking out the next nine

least significant bits (CacheLineAddr[17:9]). Each write into

the STTRAM cache must also write to both PLT-1 and PLT-2

to maintain updated parity.

Hash−2

CACHE (STTRAM)

R
A

ID
−

G
ro

up

PLT−Hash1

R
A

ID
−

G
roup

Hash−1

PLT−Hash2

Figure 5. Organization of SuDoku-Z using two Hash functions: Hash-1
and Hash-2. A newly added structure (PLT-Hash2) stores parity lines of
RAID-Groups formed under Hash-2. SuDoku-Z performs correction with
Hash-2 only if correction fails under Hash-1.

Figure 5 shows an example of a cache with 16 lines

implementing SuDoku-Z. The size of the RAID-Group is

four lines. Under Hash-1, the consecutive four lines (same

color) form a RAID-Group, and their parity is stored in PLT-

Hash1. Under Hash-2, every fourth line (same symbol) form

a RAID-Group, and their parity is stored in PLT-Hash2. Note

that if lines shares a RAID-Group under Hash-1, then they

do not share a RAID-Group under Hash-2. This helps with

correction – if faulty lines are unrepairable under Hash-1,

then they are guaranteed to map to different RAID-Groups

under Hash-2, and undergo correction by using SuDoku-Y

on those RAID-Groups. Skewed-hashing is highly effective

because the likelihood of a faulty line mapping into two

different uncorrectable RAID-Groups is extremely small.

B. Repairing Faulty Lines

The correction of SuDoku-Z is invoked only if the SuDoku-

Y-based correction fails using Hash-1. Note that this is a

relatively infrequent event, and occurs once every 3.9 hours

on average. When this occurs, we first identify the set of lines

that are unrepairable under Hash-1. For each such line, we

try to repair using the RAID-Group under Hash-2. For a line

to be deemed uncorrectable under SuDoku-Z, it will have

to be unrepairable under both Hash-1 and Hash-2. In fact,

if there are N unrepairable lines in a Hash-1 RAID-Group,

and we are able to repair N-1 lines under Hash-2, then the

remaining uncorrectable line can be repaired using Hash-1

and the corrected values of the remaining faulty lines. As

the RAID-Group will have only one faulty line, the RAID-4

based correction can correct the line. Thus, for SuDoku-Z

to fail, we must have two lines that are uncorrectable under

both Hash-1 and Hash-2 – an extremely unlikely scenario.

394

CACHE (STTRAM)

PLT−Hash1

PLT−Hash2

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

A,B,C,D

E,F,G,H

I,J,K,L

A,E,I,M

B,F,J,N

C,G,K,O

D,H,L,P

??

??

X X

X

M,N,O,P

X X

X

Hash−2

Hash−1

Figure 6. Correction with SuDoku-Z. Lines B and D have and uncorrectable
error under Hash-1. Under Hash-2, they map to different RAID-Group and
can be corrected.

For example, Figure 6 shows a cache with 16 lines (A-P)

which uses two hash functions, Hash-1 and Hash-2. Two

faulty lines (B and D) with three faulty bits reside in the same

RAID-Group under Hash-1 and correction under Hash-1 fails.

By design, lines B and D map to different RAID-Groups

under Hash-2. Line B can perform correction under the

Hash-2 RAID-Group that is formed with lines B,F,J and N.

If SuDoku-Y can correct this RAID-Group, then line B is

repaired. Similarly, line D can perform correction under the

Hash-2 RAID-Group that is formed with lines D,H,L and

P. If SuDoku-Y can correct this RAID-Group, then line D

is repaired. In fact, even if one of the lines is repaired (say

only Line D is repaired), then we can use the corrected value

of that line to repair the other line (using corrected Line D

under Hash-1 to repair Line B). SuDoku-Z fails only if both

lines are uncorrectable under both Hash-1 and Hash-2.

The analysis can be extended to the cases when there are

more than two uncorrectable lines in a RAID-Group. For

example, consider there are N faulty lines in a RAID-Group

formed under Hash-1. Then, we will try correction for all N

lines under Hash-2. As long as at least (N-1) lines can be

corrected using Hash-2, we will be able to repair all N lines.

C. SDC Rate and Effectiveness of SuDoku-Z

SuDoku-Z is invoked only when SuDoku-Y encounters an

uncorrectable error. The likelihood that this correction will

yield an undetected error is negligibly small (miscorrected

lines go undetected by CRC-31 and Parity Lines match under

both Hash-1 and Hash-2). The dominant cause of SDC for

SuDoku-Z is identical to that of SuDoku-X (one line has 7+

errors and the CRC-31 is unable to detect). From Table III,

the SDC Fit-Rate of SuDoku-Z is also 8.9×10−9, nearly

eight orders of magnitude lower than our target of one FIT.

SuDoku-Z encounters a DUE when the faulty line cannot

be corrected using both Hash-1 and Hash-2. Given the like-

lihood of a group failing is quite small (nearly 6.9×10−10),

the likelihood that a line fails under both Hash-1 and Hash-2

is extremely small, and for the system to fail, we will need

two of such lines. The DUE FIT-Rate of SuDoku-Z is 10−4.

As the SDC FIT-Rate of SuDoku-Z is 11200x lower

than the DUE FIT-Rate, the total FIT-Rate of SuDoku-Z

is determined by its DUE Rate. Thus, the total FIT-Rate

of SuDoku-Z is 0.0001. As shown in Figure 7, the MTTF

of SuDoku-Z is 874x as high as that of ECC-6. Note that

SuDoku-Z provides this level of resilience without requiring

the storage and latency overheads of ECC-6.

Figure 7. Cache failure probability (DUE+SDC) with SuDoku-X, SuDoku-
Y, SuDoku-Z, and ECC-6. SuDoku-Z has 874x lower MTTF than ECC-6.

VI. SUDOKU FOR OTHER TECHNOLOGIES

The goal of our paper was to develop an effective scheme

to tolerate a high rate of transient failures, without incurring

the substantial storage overhead and latency of strong ECC.

While our evaluations were done for STTRAM, there is

nothing in SuDoku that is designed specifically for STTRAM.

SuDoku is a general technique that can tolerate high-rate of

transient faults in any technology.

For instance, it is desirable to operate SRAM arrays at low

voltage to reduce system power. Some SRAM cells do not

operate reliably below a certain operating voltage Vmin and

fail in a persistent manner. Mitigating SRAM failures at low

voltage has been a subject of active research [12], [21], [22].

Unfortunately, prior studies either require strong ECC per line

(ECC-8 for operating below 500mV) or require that explicit

testing is done at runtime or boot-time to identify lines with

multibit failures [32]. Such runtime testing is complex and

increases the downtime of the system. If SuDoku is used, we

can get the cost-effectiveness of ECC-1 per line and avoid

the runtime testing altogether. Table IV shows how SuDoku

(ECC-1 + CRC-31) can enable reliable operation at lower

Vmin compared to uniform ECC-based scheme, and while

avoiding the runtime testing of prior schemes [12], [21], [22].

Table IV
PROBABILITY OF SRAM CACHE FAILURE

ECC Scheme Prob. of Cache Failure (BER = 10−3)
Vmin < 500mV [21]

ECC-7 0.11
ECC-8 0.0066

ECC-9 3.5×10−4

SuDoku 3.8×10−10

In similar spirit, error rates in the ultra-low power memory

SRAM devices (such as near threshold devices) are orders of

magnitude higher compared to standard SRAM [33]. Even

in technologies like DRAM, Variable Retention Time (VRT)

395

Figure 8. The Execution Time of SuDoku-Z normalized to an Idealized cache that does not encounter any error (and hence pays no overhead for error
correction). On average, SuDoku incurs a slowdown of 0.15%.

can cause DRAM cells to cause retention failures in an

unpredictable fashion. DRAM, Flash, and emerging Non-

Volatile Memories are susceptible to disturb errors, as shown

in Table V. SuDoku can tolerate all these faults, regardless

of whether they are permanent or transient in nature.

Table V
EXTENDING SUDOKU TO OTHER TECHNOLOGIES

Concern Technology
Operational Failures SRAM, DRAM [34]
Low-Voltage Failures SRAM [12], [21], [22], [32], [35], DRAM [36]

Retention Failures SRAM [37], DRAM [38]–[40]
Disturb Failures PCM [41], Flash [42]

VII. RESULTS AND ANALYSIS

We describe performance, power, and sensitivity analysis.

A. Methodology

Performance Evaluation: The performance impact of

SuDoku comes from two aspects. First, the increased delay

incurred due to CRC decoding (one cycle). Second, the

latency incurred in performing error correction for multi-

bit errors. As corrections are performed infrequently, the

impact on performance is negligibly small. To assess the

performance impact of SuDoku, we integrate an STTRAM

cache module (a clone of CMP$im [43]) into USIMM [44].

Table VI lists the key parameters for the Baseline System.

Table VI
BASELINE SYSTEM CONFIGURATION

Number of cores (OoO) 8 cores, 3.2GHz/core
Processor ROB size 160

Fetch and retire width 4
STTRAM Last Level Cache 64MB (Shared)

No. of ways and linesize 8-Way, 64B lines
STTRAM Latencies Read: 9ns, Write: 18ns

DDR3 Memory (800Mhz) 2 Channels, 8GB Each

We choose all benchmarks in the SPEC2006 suite [45]

and PARSEC [46] , BioBench (BIO) [47] and commer-

cial (COMM) benchmarks from the MSC suite [48]. For

SPEC2006, we generate a representative slice of one billion

instructions using Pinpoints(i.e., using Pintools [49] and

Simpoints). In the MSC Suite, we directly use the traced

workloads present in the suite. We also form four MIXED

workloads by randomly selecting benchmarks. We perform

timing simulation until all the benchmarks in the workload

finish execution, and measure the average execution time.

Reliability and Energy Evaluations: We use analytical

models to perform reliability evaluations. To this end, we

derive the BER (pcell) from Equation 1. We then derive the

failure probabilities for a cache over a billion hours (FIT-Rate)

by using basic binomial probability distribution. Alternately,

one could also use monte-carlo techniques [50]–[52].

Table VII
CHARACTERISTICS OF STTRAM AND SRAM [53]

Characteristic STTRAM SRAM

Write energy per access (nJ) 0.35 0.11
Read energy per access (nJ) 0.13 0.05
Static power per cell (nW) 0.07 4.02

For our energy evaluations, we use the parameters shown

in Table VII. As per [54], nearly 40 pJ is spent to encode and

decode a line using ECC-6 and we conservatively assume

CRC-31 + ECC-1 will also consume same energy.

B. Analysis of Correction Latency
Lines with 1 error can be corrected with the per-line ECC-

1 at low latency. However, for lines with multi-bit error, a

RAID based correction is invoked. For our fault rate, the

system encounters a line with multi-bit error, on average,

four times every 20ms. Such lines would invoke SuDoku-X

and require reading all the 512 lines in the RAID-Group,

incurring a latency of at-most 16μs (9ns per line). Fortunately,

incurring 16μs overhead for correction once every 20ms

would cause a degradation of less than 0.01%. The correction

latency of SuDoku-Y (20μs) and SuDoku-Z (80μs) is longer,

however, these are incurred every 3.71 seconds and 3.9 hours,

respectively, so the performance impact from such corrections

remains negligible (<0.001%).

C. Impact on Performance
Figure 8 shows the execution time for SuDoku-Z as

compared to an the idealized cache that does not encounter

any error. Since SuDoku-X requires a single cycle to

check the ECC-1 and CRC-31 syndrome for every request,

additional latency overhead is small. The overall performance

impact of this syndrome check latency is negligibly small,

0.1% on an average. Furthermore, as the common-case fault

is a single-bit fault and the high-latency of RAID-based error

correction is incurred infrequently (16μs overhead once every

20ms). Therefore, the overall performance overhead due to

SuDoku tends to be small.

396

D. Impact on Energy and Power

SuDoku-Z consumes additional energy as due to the parity

updates in the PLT on each write to the cache. We compute

the overall system energy and the Energy Delay Product

(EDP) of SuDoku-Z with an idealized baseline that does not

encounter any error. Figure 9 shows the System-EDP for

SuDoku-Z normalized to the idealized baseline without any

error correction. On average, the updates of SuDoku-Z cause

an overall System-EDP to increase by at most 0.4%.

Ideal Baseline (No ECC Overheads)
SuDoku

 0.990

 0.995

 1.000

 1.005

 1.010

 1.015

SPEC PARSEC BIO COMM MIX AMEAN

N
or

m
al

iz
ed

 E
D

P

Figure 9. The Energy Delay Product of a System with SuDoku-Z normalized
to an error-free baseline. SuDoku requires negligible energy to update PLTs.

E. Impact of Scrub Interval

We used a scrub interval of 20ms, which is in line with

the scrub period for a 64MB STTRAM cache to keep the

cache bandwidth overheads to within a few percent [5], [8].

Reducing the scrub interval reduces the BER (almost linearly),

however it increases the time the cache is busy doing scrub

operations. Table VIII shows the impact of varying the scrub

interval from 10ms to 40ms on the FIT-Rate of ECC-5, ECC-

6 and SuDoku-Z. Note that ECC-5 is insufficient at providing

FIT of one even at 10ms scrub interval, whereas SuDoku-Z

can provide one FIT even at 40ms.

Table VIII
FIT-RATE VS. SCRUB INTERVALS (DEFAULT: 20MS)

Scrub BER FIT-Rate FIT-Rate FIT-Rate
Interval per scrub ECC-5 ECC-6 SuDoku-Z

10ms 2.7×10−6 6.74 1.66×10−3 5.49×10−7

20ms 5.3×10−6 215 0.092 1.05×10−4

40ms 1.09×10−5 6870 6.76 0.04

F. Sensitivity to Cache Sizes

We also evaluate the sensitivity of SuDoku for different

cache sizes. Table IX shows the FIT-Rate for SuDoku with a

32MB cache, 64MB cache, and a 128MB cache. As a 32MB

cache has 0.5x the number of lines as a 64MB cache, with

all other factors remaining the same, its FIT-Rate is 0.5x to

that of a 64MB cache. Similarly, the FIT-Rate of a 128MB

cache is 2x to that of a 64MB cache.

Table IX
SENSITIVITY TO CACHE SIZE

Cache Size FIT-Rate

32MB 0.52×10−4

64MB 1.05×10−4

128MB 2.1×10−4

G. Impact of Thermal Stability (Δ)

SuDoku is also robust at lower Δ values. Lowering

Δ increases the BER of STTRAM. Fortunately, SuDoku

consistently offers atleast two-orders of magnitude higher

reliability as compared to ECC-6. Table X highlights the

strength of SuDoku when compared to ECC-6. SuDoku can

be enhanced even further by replacing ECC-1 with ECC-2.

Table X
IMPACT OF Δ: ECC-6 VS SUDOKU

Thermal Stability ECC-6 SuDoku Strength
Δ FIT-Rate FIT-Rate of SuDoku

35 0.092 1.05×10−4 874x
34 4.63 1.15×10−2 402x
33 1240 8 155x

H. Storage Overheads of SuDoku-Z

SuDoku-Z requires 10 bits of ECC-1 and 31 bits of CRC-31

for every 512-bit cachelines. Furthermore, it uses two PLTs,

each 128KB for the 64MB cache. Therefore, the amortized

cost of these two PLTs is 2 bits per cache line. Therefore,

SuDoku requires a total storage overheard of 43 bits per

cache line, which is much less than the 60 bits per line

incurred for ECC-6. Furthermore, the PLT structures are

sufficiently small that they can be kept in a small 256KB

SRAM structure beside the 64MB STTRAM cache.

I. Analyzing Write Traffic To the PLT

The PLT is 512x smaller than the STTRAM cache and

incurs the same write intensity as the STTRAM. Therefore,

to reduce bandwidth overheads to the PLT, Sudoku assumes

a PLT design that uses the same number of banks as the

STTRAM cache. Each bank in the PLT and the STTRAM

uses a dedicated request queue. As the latency of SRAM-

based PLT tends to be much smaller than the STTRAM

cache, the PLT does not cause any bandwidth bottlenecks or

performance overheads.

VIII. RELATED WORK

We discuss some prior work on memory reliability.

A. Parity-Based Schemes for Cache Failures

Correctable Parity Protected Cache CPPC) [17] uses a

parity-based detection of a single-bit error on a per-line (or

per-word basis), and tracks a global parity separately. When

the line parity detects an error, the global parity is used

to restore the data of the faulty line. However, CPPC was

designed for a fairly low BER (a per-cell MTTF of 1 million

hours), whereas we target a much higher BER (a per-cell

MTTF of a few hours). CPPC fails when the line (or word)

encounters multi-bit errors or when there are multiple faulty

lines in the cache. One can also use RAID-6-based correction

to fix two faulty lines in a group by using two additional

parities. The two parities are diagonal parity and row-wise

parity. However, SuDoku-Z is much stronger than RAID-6

as RAID-6 does not employ SDR.

397

Two-Dimensional Error Coding (2DP) [18] is parity-based

scheme that keeps both horizontal and vertical parities to

correct single bit errors. This scheme is low-cost and is highly

effective at low-error rates. However, as the horizontal and

vertical parities are formed using the same set of lines, two

lines with overlapping 2+ bit errors can cause uncorrectable

errors. Even if we use an optimized 2DP which uses a per-

line ECC-1, it still cannot tolerate two lines with 3+ bit

failures in which any bit-failure overlaps. Therefore, for the

error rates we target, 2DP has a low MTTF of a few hours.

To compare CPPC, RAID-6, and 2DP with SuDoku, we

provision these schemes with the same resources as SuDoku.

We also assume each line is provisioned with CRC-31

detection code. Table XI compares the strength of CPPC,

RAID-6, 2DP (512 line group), and SuDoku. SuDoku is at

least 106 times as strong as these schemes.

Table XI
COMPARING CPPC, RAID-6, 2DP WITH SUDOKU

CPPC + RAID-6 + 2DP SuDoku
CRC-31 CRC-31 ECC-1 + CRC-31

FIT-Rate 1.69×1014 571×103 2.8×108 1.05×10−4

Error correction using parity groups is also employed in

LPDC codes. In contrast to block codes like ECC codes that

have error-correcting guarantees (such as six-error correction),

LDPC codes lack any error-correcting guarantees. Contrary

to LPDC codes, SuDoku provides error correction guarantees

in the same spirit as the ECC codes.

B. Mitigating Failures in STTRAM

Prior studies [6] have looked at using multi-bit ECC to

mitigate errors in STTRAM. Smullen et al. [10] proposed a

refresh policy that reads every line of the cache and writes it

back again within the retention time. Unfortunately, for the

error rate we target, having only ECC-1 with each line is

insufficient. Naeimi et al. [5] suggested using 5EC6ED for a

64MB STTRAM-based cache to guarantee a failure rate of

10 FIT for Delta of 32.

A low Δ can also increase the write error rate (WER) [55].

SuDoku does not differentiate between write errors and

retention errors. Therefore, even if WER is nearly the same

as retention BER (using reasonable values of write timings

from [55]), SuDoku will provide similar reliability.

C. Tolerating Runtime Failures

Sazeides et. al. [56] investigated using ECC-1 codes to

store metadata. We can also compress and store ECC in

the space obtained from compression [57]–[59]. Revive [60]

looked at software supported low-cost check-pointing. Prior

work [61] has also investigated fixing cache failures using

strong ECC and storing this ECC in main memory. These

schemes are orthogonal to SuDoku and can be used in

combination to further enhance reliability.

IVEC [62] and Synergy [63] leverages the message

authentication codes (MACs) of secure memories for also

improving reliability. To tolerate faults, they perform a

sequential check of every single bit in the cache line by

flipping it and recomputing the MAC to see if it matches with

the stored MAC. Such naive searching becomes impractical

for tolerating multi-bit failures.

Several studies [64]–[70] have also investigated mecha-

nisms to mitigate large granularity failures in DRAM. How-

ever, these designs are effective for tolerating a small number

of large granularity failures, whereas we are interested in

tolerating a very high rate of bit failures. This has a significant

impact on both the granularity at which we perform RAID as

well as the effectiveness of schemes such as SDR. Therefore,

these solutions are not directly applicable for tolerating high-

rate of transient faults to enable scalable STTRAM.

Another technique, called Hi-ECC tries to provision ECC

at a larger granularity of 1KB, instead of 64B cachelines [71].

This reduces the overheads of ECC-6 to 0.9%. Unfortunately,

Hi-ECC increases the number of bits per line that the ECC

needs to protect by 16x. Due to this, Hi-ECC has a higher

FIT-Rate as compared to SuDoku. Table XII shows the FIT-

Rate of SuDoku as compared to a Hi-ECC scheme that uses

ECC-6 over a 1KB region of data.

Table XII
SUDOKU VS HI-ECC

Scheme FIT-Rate

SuDoku 1.05×10−4

Hi-ECC 1.47

D. Mitigating Permanent Faults

Enabling cache operation at high error rates has been a

very active area of research in the last decade, primarily as

a means of allowing caches to operate at low Vmin [12].

These proposals [12], [21], [22] rely on knowing the location

of fault bits. A priori knowledge of the location of a bit

that will encounter a transient fault is impractical, so such

solutions are not viable. Several proposals [14], [15] have

looked at mitigating a high error rate in DRAM due to scaling

related faults by sparing faulty cells. Again, these solutions

are effective for permanent faults, and are not applicable to

transient errors.

E. Mitigating Retention Failures

Retention failure is a problem in other technologies as

well. For example, RAIDR [38] was proposed to reduce the

retention overheads in DRAM system. It relies on a priori

knowledge of weak cells. Awasthi et al. [72] propose adaptive

scrub mechanisms to reduce the scrub overheads in phase

change memories. Efficient scrub schemes are orthogonal to

our solution. Retention failures can be problem for SRAM too.

However, SRAM cells are order of magnitude less susceptible

to transient faults than STTRAM [73], and therefore a large

number of bits failing within a cache line is not currently a

concern for SRAM.

398

IX. CONCLUSIONS

This paper investigates cost-effective solutions for toler-

ating a high rate of transient failures. As transient failures

occur at run-time, they cannot be identified with design time

testing and cannot be mitigated using sparing mechanisms.

We study the challenge of efficiently tolerating high-rates

of transient faults, using STTRAM as an example. For

STTRAM, transient failures due to random thermal noise is

considered as a critical obstacle to scaling. We investigated a

regime where the error rates of STTRAM were 5.3 ppm over

a scrub period of 20ms. An effective means of tolerating

transient failure is to do periodic scrubbing and employ per-

line ECC. Unfortunately, at our target error rate, we would

need to ECC-6 per line, which incurs significant storage

overheads. Ideally, we would like to tolerate a high rate

of transient failures while avoiding the overheads of strong

error correction. To that end, this paper proposes SuDoku,

a technique that optimizes for the common case of 1 bit

failure and provisions each line with only ECC-1 along with

a strong multi-bit error detection code (CRC-31). SuDoku

provides 874x higher reliability than ECC-6, while incurring

30% lower storage overhead, and providing within 0.1% of

an idealized performance of a fault-free baseline.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd

for their valuable feedback and directions. This work was

supported in part by the Center for Future Architectures

Research (C-FAR), one of the six SRC STARnet Centers,

sponsored by MARCO and DARPA.

REFERENCES
[1] E. Chen et al., “Advances and future prospects of spin-transfer torque

random access memory,” IEEE Transactions on Magnetics, vol. 46,
no. 6, pp. 1873–1878, June 2010.

[2] D. Apalkov et al., “Spin-transfer torque magnetic random access
memory (stt-mram),” J. Emerg. Technol. Comput. Syst., vol. 9, no. 2,
pp. 13:1–13:35, May 2013.

[3] S. A. Wolf et al., “The promise of nanomagnetics and spintronics for
future logic and universal memory,” Proceedings of the IEEE, vol. 98,
no. 12, pp. 2155–2168, Dec 2010.

[4] W. Zhao, Y. Zhang, T. Devolder, J. Klein, D. Ravelosona, C. Chap-
pert, and P. Mazoyer, “Failure and reliability analysis of stt-mram,”
Microelectronics Reliability, vol. 52, no. 9, pp. 1848 – 1852, 2012.

[5] H. Naeimi, C. Augustine, A. Raychowdhury, S. l. Lu, and J. Tschanz,
“Sttram scaling and retention failure,” Intel Technology Journal, vol. 17,
no. 1, 2013.

[6] B. Del Bel et al., “Improving stt-mram density through multibit error
correction,” in Proceedings of the Conference on Design, Automation
& Test in Europe, ser. DATE ’14. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2014, pp. 182:1–182:6.

[7] K. C. Chun et al., “A scaling roadmap and performance evaluation
of in-plane and perpendicular mtj based stt-mrams for high-density
cache memory,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2,
pp. 598–610, Feb 2013.

[8] A. Driskill-Smith et al., “Non-volatile spin-transfer torque ram (stt-
ram): An analysis of chip data, thermal stability and scalability,” in
2010 IEEE International Memory Workshop, May 2010, pp. 1–3.

[9] N. D. Rizzo et al., “Thermally activated magnetization reversal in
submicron magnetic tunnel junctions for magnetoresistive random
access memory,” Applied Physics Letters, vol. 80, 2002.

[10] C. W. Smullen et al., “Relaxing non-volatility for fast and energy-
efficient stt-ram caches,” in 2011 IEEE 17th International Symposium
on High Performance Computer Architecture, Feb 2011, pp. 50–61.

[11] Z. Sun et al., “Multi retention level stt-ram cache designs with a
dynamic refresh scheme,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44, 2011,
pp. 329–338.

[12] C. Wilkerson et al., “Trading off cache capacity for reliability to enable
low voltage operation,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ser. ISCA ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 203–214.

[13] H. Duwe et al., “Rescuing uncorrectable fault patterns in on-chip mem-
ories through error pattern transformation,” in Computer Architecture
(ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on.
IEEE, 2016, pp. 634–644.

[14] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: architectural
framework for assisting dram scaling by tolerating high error rates,” in
Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp.
72–83.

[15] Y. H. Son et al., “Cidra: A cache-inspired dram resilience architecture,”
in High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on, Feb 2015, pp. 502–513.

[16] W. Peterson and D. Brown, “Cyclic codes for error detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[17] M. Manoochehri, M. Annavaram, and M. Dubois, “Cppc: correctable
parity protected cache,” in ACM SIGARCH Computer Architecture
News, vol. 39, no. 3. ACM, 2011, pp. 223–234.

[18] J. Kim et al., “Multi-bit error tolerant caches using two-dimensional
error coding,” in Proceedings of the 40th annual IEEE/ACM inter-
national symposium on microarchitecture. IEEE Computer Society,
2007, pp. 197–209.

[19] R. Dorrance et al., “Scalability and design-space analysis of a 1t-1mtj
memory cell for stt-rams,” IEEE Transactions on Electron Devices,
vol. 59, no. 4, pp. 878–887, April 2012.

[20] K. C. Chun et al., “A scaling roadmap and performance evaluation
of in-plane and perpendicular mtj based stt-mrams for high-density
cache memory,” IEEE Journal of Solid-State Circuits, vol. 48, no. 2,
pp. 598–610, Feb 2013.

[21] M. K. Qureshi and Z. Chishti, “Operating secded-based caches at ultra-
low voltage with flair,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE,
2013, pp. 1–11.

[22] Z. Chishti et al., “Improving cache lifetime reliability at ultra-low
voltages,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2009, pp. 89–99.

[23] A. R. Alameldeen et al., “Energy-efficient cache design using variable-
strength error-correcting codes,” in Computer Architecture (ISCA), 2011
38th Annual International Symposium on. IEEE, 2011, pp. 461–471.

[24] P. Wang et al., “A thermal and process variation aware mtj switching
model and its applications in soft error analysis,” in 2012 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2012, pp. 720–727.

[25] G. A. Gibson, “Redundant disk arrays: Reliable, parallel secondary
storage,” 1992.

[26] A. Thomasian and J. Menon, “Raid5 performance with distributed
sparing,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 8, no. 6, pp. 640–657, 1997.

[27] H. Noguchi et al., “7.2 4mb stt-mram-based cache with memory-access-
aware power optimization and write-verify-write / read-modify-write
scheme,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC), Jan 2016, pp. 132–133.

[28] Y. Kim et al., “Write-optimized reliable design of stt mram,” in
Proceedings of the 2012 ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’12. New York, NY,
USA: ACM, 2012, pp. 3–8.

[29] P. Koopman. Crc polynomial zoo. [Online]. Available: https:
//users.ece.cmu.edu/∼koopman/crc/crc31.html

[30] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed
caches,” in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2014, pp. 331–342.

399

[31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[32] A. R. Alameldeen et al., “Energy-efficient cache design using variable-
strength error-correcting codes,” in 2011 38th Annual International
Symposium on Computer Architecture (ISCA), June 2011, pp. 461–471.

[33] A. Gebregiorgis et al., “A cross-layer analysis of soft error, aging
and process variation in near threshold computing,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016,
pp. 205–210.

[34] C. Slayman, “Soft error trends and mitigation techniques in memory
devices,” in OPS Alacarte, Santa Clara.

[35] M. Qazi, M. Sinangil, and A. Chandrakasan, “Challenges and directions
for low-voltage sram,” IEEE Design Test of Computers, vol. 28, no. 1,
pp. 32–43, Jan 2011.

[36] K. K. Chang et al., “Understanding reduced-voltage operation in
modern dram devices: Experimental characterization, analysis, and
mechanisms,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, pp.
10:1–10:42, Jun. 2017.

[37] R. Fan et al., “The detection and investigation of sram data retention
soft failures by voltage contrast inspection,” in 2015 China Semicon-
ductor Technology International Conference, March 2015, pp. 1–3.

[38] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in Proceedings of the 39th International
Symposium on Computer Architecture, 2012.

[39] M. K. Qureshi et al., “Avatar: A variable-retention-time (vrt) aware
refresh for dram systems,” in Dependable Systems and Networks (DSN),
2015 45th Annual IEEE/IFIP International Conference on, June 2015,
pp. 427–437.

[40] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for
mitigating row hammering in dram memories,” Computer Architecture
Letters, vol. 14, no. 1, pp. 9–12, Jan 2015.

[41] P. J. Nair et al., “Reducing read latency of phase change memory via
early read and turbo read,” in High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, Feb 2015, pp.
309–319.

[42] Y. Cai et al., “Read disturb errors in mlc nand flash memory:
Characterization, mitigation, and recovery,” in Dependable Systems
and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on, June 2015, pp. 438–449.

[43] A. Jaleel et al., “Cmpsim: A pin-based on-the-fly multi-core cache
simulator,” in Fourth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS), co-located with ISCA. 2008.

[44] N. Chatterjee et al., “Usimm: the utah simulated memory module,”
University of Utah, Tech. Rep, 2012.

[45] “Spec cpu2006 benchmark suite,” in Standard Performance Evaluation
Corporation. [Online]. Available: http://www.spec.org/cpu2006/

[46] C. Bienia, “Benchmarking modern multiprocessors,” in Ph.D. Thesis,
Princeton University, 2011.

[47] K. Albayraktaroglu et al., “Biobench: A benchmark suite of bioinfor-
matics applications,” vol. 0, 2005, pp. 2–9.

[48] (2012) Memory scheduling championship (msc). [Online]. Available:
http://www.cs.utah.edu/∼rajeev/jwac12/

[49] C.-K. Luk et al., “Pin: building customized program analysis tools
with dynamic instrumentation,” in Acm sigplan notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[50] D. A. Roberts and P. J. Nair, “Faultsim: A fast, configurable memory-
resilience simulator,” in The Memory Forum: In conjunction with
ISCA-41, Jun 2014.

[51] S. Wang et al., “Memres: A fast memory system reliability simulator,”
in SELSE 2015, 2015.

[52] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Faultsim: A fast,
configurable memory-reliability simulator for conventional and 3d-
stacked systems,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp.
44:1–44:24, Dec. 2015.

[53] J. Zhan, O. Kayıran, G. H. Loh, C. R. Das, and Y. Xie, “Oscar: Orches-
trating stt-ram cache traffic for heterogeneous cpu-gpu architectures.”

[54] C. Chou, P. Nair, and M. K. Qureshi, “Reducing refresh power in mobile
devices with morphable ecc,” in Dependable Systems and Networks
(DSN), 2015 45th Annual IEEE/IFIP International Conference on,
June 2015, pp. 355–366.

[55] S. Wang et al., “Comparative evaluation of spin-transfer-torque and
magnetoelectric random access memory,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 6, no. 2, pp. 134–145,
June 2016.

[56] Y. Sazeides et al., “Implicit-storing and redundant-encoding-of-attribute
information in error-correction-codes,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-46, 2013, pp. 160–171.

[57] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Cop: To compress and
protect main memory,” in 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), June 2015, pp. 682–693.

[58] S. Hong et al., “Attaché: Towards ideal memory compression by
mitigating metadata bandwidth overheads,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2018, pp. 326–338.

[59] V. Young, S. Kariyappa, and M. Qureshi, “Enabling transparent
memory-compression for commodity memory systems,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2019, pp. 570–581.

[60] M. Prvulovic, Z. Zhang, and J. Torrellas, “Revive: Cost-effective
architectural support for rollback recovery in shared-memory multipro-
cessors,” in Proceedings of the 29th Annual International Symposium
on Computer Architecture, ser. ISCA ’02, 2002, pp. 111–122.

[61] D. H. Yoon and M. Erez, “Flexible cache error protection using an
ecc fifo,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Nov 2009, pp. 1–12.

[62] R. Huang and G. E. Suh, “Ivec: Off-chip memory integrity protection
for both security and reliability,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10,
2010, pp. 395–406.

[63] G. Saileshwar et al., “Synergy: Rethinking secure-memory design for
error-correcting memories,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2018, pp.
454–465.

[64] J. Kim, M. Sullivan, and M. Erez, “Bamboo ecc: Strong, safe, and
flexible codes for reliable computer memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 101–112.

[65] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel: Efficiently
protecting stacked memory from large granularity failures,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
Dec 2014, pp. 51–62.

[66] X. Jian, V. Sridharan, and R. Kumar, “Parity helix: Efficient protection
for single-dimensional faults in multi-dimensional memory systems,” in
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 555–567.

[67] D. W. Kim and M. Erez, “Relaxfault memory repair,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), June 2016, pp. 645–657.

[68] J. Kim et al., “All-inclusive ecc: Thorough end-to-end protection
for reliable computer memory,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), June 2016,
pp. 622–633.

[69] S.-L. Gong et al., “Clean-ecc: High reliability ecc for adaptive
granularity memory system,” in Proceedings of the 48th International
Symposium on Microarchitecture, ser. MICRO-48, 2015, pp. 611–622.

[70] P. J. Nair, V. Sridharan, and M. K. Qureshi, “Xed: Exposing on-die error
detection information for strong memory reliability,” in Proceedings
of the 43rd International Symposium on Computer Architecture, ser.
ISCA ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 341–353.

[71] C. Wilkerson et al., “Reducing cache power with low-cost, multi-bit
error-correcting codes,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 3. ACM, 2010, pp. 83–93.

[72] M. Awasthi et al., “Efficient scrub mechanisms for error-prone emerg-
ing memories,” in Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture, ser. HPCA
’12, 2012, pp. 1–12.

[73] P. Dubey et al., “A 500 mv to 1.0 v 128 kb sram in sub 20 nm bulk-
finfet using auto-adjustable write assist,” in 2014 27th International
Conference on VLSI Design and 2014 13th International Conference
on Embedded Systems, Jan 2014, pp. 150–155.

400

