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Accessed dataAll users’ data and features of movies in memory 
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What music to listen What movie to watch What books to read

Where to go What to learn What medicine to take
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} Recommendation systems consist of 
} Embedding tables, accessing to which is sparse!

An embedding vectorEmbedding Tables
v1

v2
v3

v4

v5
v6

v1 to v6 are some embedding vectors we use in our example throughout this presentation. 
We randomly color them in blue and yellow to distinguish them when we apply an operation on them.
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} Recommendation systems consist of 
} Embedding tables, accessing to which is sparse!

A memory unit

v1

v2
v3

v4

v5
v6

Embedding Tables

reduction

query 1 output 
(v1+v2+v5+v6)

query 2 output 
(v1+v3+v4+v5)
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} Recommendation systems consist of 
} Embedding tables, accessing to which is sparse!
} Neural networks

v1

v2
v3

v4

v5
v6

Embedding Tables

reduction

query 1 output 
(v1+v2+v5+v6)

query 2 output 
(v1+v3+v4+v5) A compute unit

Neural networks



Data Movement Is a Big Challenge
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} Embedding vectors need to be constantly transferred from 
memory units to the cores

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output 
(v1+v2+v5+v6)
query 2 output 
(v1+v3+v4+v5)
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Near-Memory Processing (NMP)
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} Prior proposals suggest performing reduction near memory to 
transfer less data from memory units to the cores

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output 
(v1+v2+v5+v6)
query 2 output 
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units CoresNMP



Prior NMP Solutions: TensorDIMM
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} Guarantees data movement reduction
} Example: transfers only two vectors instead of six

} Challenge: Does not fully utilize row buffer locality

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output 
(v1+v2+v5+v6)
query 2 output 
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units CoresNMPMemory units NDP

v1v2v3v4v6v5
reduction

query 1 output 
(v1+v2+v5+v6)query 2 output 
(v1+v3+v4+v5)

reduction

query 1 output 
(v1+v2+v5+v6)query 2 output 
(v1+v3+v4+v5)

reduction

query 1 output 
(v1+v2+v5+v6)query 2 output 
(v1+v3+v4+v5)

reduction

query 1 output 
(v1+v2+v5+v6)query 2 output 
(v1+v3+v4+v5)

Y. Kwon, et al. “Tensordimm: A practical near-memory processing architecture for embeddings and tensor operations in deep learning,” in MICRO, 2019.



Prior NMP Solutions: RecNMP
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} Fully utilizes row buffer locality
} Challenge: Does not guarantee data movement reduction

} Example: still transfers six vectors (v1, v2, v3, v4, v5, v5+v6)

v1

v2
v3

v4

v5
v6

Memory units CoresConnections

reduction

query 1 output 
(v1+v2+v5+v6)
query 2 output 
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units CoresNMP

reduction

query 1 output 
(v1+v2+v5+v6)

v5+v6

L.Ke, et al. “Recnmp: Accelerating personalized recommendation with near-memory processing,” ISCA, 2020. 
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We cannot process embedding vectors where they reside
} Because they are not co-located in memory!
We do not want to process embedding vectors in the processing cores
} Because it causes huge amount of data movement

We process embedding vectors while we gather them from 
random locations of memory



Outline

HPCA'21 

16

GTCAD Lab

} Sparsity in recommendation system
} Prior near-memory processing approaches and their challenges
} Fafnir: our proposed efficient near-memory intelligent reduction tree 

} Main contributions
} Architecture and implementation

} Experimental setup 
} Performance evaluation

} Latency
} End-to-end inference speedup
} Scalability
} Power consumption

} Conclusions



Fafnir – Main Contributions

HPCA'21 

17

GTCAD Lab

} Guarantees to reduce embedding vectors before sending them to cores
} Sooner (in the leaves) or later (in the root), the corresponding embedding vectors 

meet within the tree and get reduced

v1

v2
v3

v4

v5
v6

Memory units Cores

reduction

query 1 output 
(v1+v2+v5+v6)
query 2 output 
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units Cores

PE

PE

v1+v2

reduction

query 1 output 
(v1+v2+v5+v6)v5+v6

PE
reduction

query 1 output 
(v1+v2+v5+v6)

v1+v3

reduction

query 1 output 
(v1+v2+v5+v6)v4+v5

reduction

query 1 output 
(v1+v2+v5+v6)

query 2 output 
(v1+v3+v4+v5)

reduce

reduce

reduce

forward

forward

reduce

reduction

query 1 output 
(v1+v2+v5+v6)v1+v6

Fafnir



Fafnir – Main Contributions
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} Does not require a caching mechanism
} Reads all the unique vectors in a batch of query and use them within the tree as many times as required
} Takes advantage of embedding vector locality across multiple queries and that locality is exploited in the 

PE buffers through streaming operations 

v1

v2
v3

v4

v5
v6

Memory units Cores

reduction

query 1 output 
(v1+v2+v5+v6)
query 2 output 
(v1+v3+v4+v5)

v1

v2
v3

v4

v5
v6

Memory units Cores

PE

PE

PE

Fafnir

v1 and v5 are used in 
creating both vectors

q1: v1,v2,v5,v6
q2: v1,v3,v4,v5 

v1: q1,q2
v2: q1
v3: q2
v4: q2
v5: q1, q2
v6: q1

v1+v2

v1+v3

reduction

query 1 output 
(v1+v2+v5+v6)

reduction

query 1 output 
(v1+v2+v5+v6)

v5+v6

reduction

query 1 output 
(v1+v2+v5+v6)

v5+v4

query 2 output 
(v1+v3+v4+v5)

reduction

query 1 output 
(v1+v2+v5+v6)
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} Runs sparse matrix-vector multiplication (SpMV) as well 
} If all PEs always perform reduction and leaf PEs first apply multiplication

PE

PE

PE

FafnirSparse Matrix 

reduce

reduce

reduce



Fafnir – Architecture 
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} Based on their inputs, PEs decide whether to reduce or forward

v1

v2
v3

v4

v5
v6

Memory units Cores

PE

PE

Fafnir

PE

input A input B

n m

Compute 
Unit

A
B

B[0]
A[0]

Compute 
Unit

A
B

B[1]
A[1]

Compute 
Unit

A
B

B[m-1]
A[n-1]

Merge

FIFO
buffer A

FIFO
buffer B

Compare

A[i].indices

for i=0 to n
    for j=0 to q

B[x].queries[j]

Reduce

A[i] B[x]

Forward

B[x]

out

value indices  q queries
…

B[0]
B[1]
B[2]

header

B[m-1]



} We connect 32 ranks with 31 PEs and implement them at 7nm ASAP as
} Four DIMM/rank chips: 0.282 𝑚𝑚!, 23.82 𝑚𝑊
} One channel chip: 0.121 𝑚𝑚!, 16.37 𝑚𝑊

Fafnir – Implementation 
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We implement Fafnir on XCVU9P Xilinx FPGA and ASIC design at 7nm ASAP
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We implement Fafnir on XCVU9P Xilinx FPGA and ASIC design at 7nm ASAP
We evaluate Fafnir for

} Recommendation systems
} Models: DLRM and DCN
} Data sets: Criteo Ad Kaggle and Terabyte

} SpMV on matrices from SuiteSparse data set
We compare with 

} TensorDIMM (MICRO’19) and RecNMP(ISCA’20) for recommendation systems
} Two-Step (MICRO’19) approach for SpMV
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Evaluation – Latency

HPCA'21 

26

GTCAD Lab

Time to respond to a single query including random accesses to 16 512-byte 
vectors distributed over 32 ranks.

} Computation of Fafnir is 2.5x faster than prior work
} Memory access of Fafnir is 4.45x faster than TensorDIMM
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Evaluation – End-to-End Inference Speedup
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} The impact of accelerating the embedding lookup on the overall inference time 

Based on DLRM on Kaggle
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Prior work: L.Ke, et al. “Recnmp: Accelerating personalized recommendation with near-memory processing,” ISCA, 2020. 



Evaluation – Scalability
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} The impact of concurrent batch processing on scalability 
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Evaluation –Power Consumption
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} For a four-channel memory system
} ASIC implementation: 111.64mW
} FPGA implementation: 1.1W
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} Fafnir…
} Does not rely on spatial locality

} Minimizes data movement from memory to cores

} Fully utilizes row buffer locality

} Requires fewer connections

} Does not require costly caching mechanisms

} Is application to other application domains (e.g., SpMV)
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Statistics of Workloads for Recommendation Systems
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} The size of embedding vectors:
} 64 x 8 bytes = 512 bytes

} The number of summations:
} 64 summations to reduce two vectors

} An approximate compute intensity:
} 0.15 Flops/byte

} The size of data sets:
} Kaggle and Terabyte include 26 tables that we mapped to different ranks utilizing 208 GB 
} DCN includes 400GB data, we report results based on 256GB of it that fits in our 32 ranks 

} Memory size (our configuration):
} 4 x 16-GB DDR4 DIMM = 64 GB per a DIMM/Rank Node
} 4 x 64 GB = 256 GB total for the 32-rank system

} The number of queries in a batch:
} 16 queries per batch, each containing maximum 16 indices

Back



Sparse Matrices from SuiteSparse
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} How sparse are the matrices we used for SpMV?

Back



Mapping Embedding Tables to Memory Addresses
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CH.R.
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(a) 

DIMM/Rank Node
Channel Node

Layout of a DIMM/Rank NodeLayout of a PE

The mapping of embedding 
tables to memory addresses. 

The architecture of Fafnir 
tree, consisting of DIMM/rank 

and channel nodes and ASIC 
designs at 7 nm for a PE and a 

DIMM/rank node. 
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} The size of PE
} The size of input buffers and the number of compute units is defined by the batch size 
} The number of outputs of each PE is limited by the batch size
} The maximum number of outputs for a PE is min(nm, n+m, B) – n,m: input sizes, B: batch size
} Each entry of input buffer contains 512B value + 10B header 

¨ 10B header: 16 queries x 5-bit indices for identifying 32 tables = 16x5/8 = 10B

} Each PE (at any level of tree) includes 16 compute units 
} Buffer sizes that are sum of all buffers (B: batch size)

Node
PE buffer (KB) Node buffer (KB)

B=8 B=16 B=32 B=8 B=16 B=32

DIMM/Rank
4.6 9.3 18.5

32.4 64.8 129.5

Channel 13.9 27.8 55.5

Back



PE Latency
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Cycles @200MHz for the components of the compute units of Fafnir based on FPGA 
implementation:

Compare

Parallel paths (reduce or forward)

Reduce (generating 
the value)

Reduce (generating the 
header)

Forward
Indices 

generation
Queries 

generation

Per item (iteration) 12 3 4 3 16

Batch size = 8/16/32 N/A 32/64/128 29/53/101 N/A

Back



FPGA Resource Utilization
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} The number of units and the utilization for batch size of 16:

Node
DIMM/Rank Node Channel Node

Units Utilization (%) Units Utilization (%)

LUT 11800 1 7214 0.61

LUTRAM 192 0.03 96 0.02

FF 4646 0.2 3295 0.14

BRAM 68 3.15 26 1.2

Back



Locality in Embedding Accesses
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0|1 2|3 4|5 6|7

0|1
2|3

4|5
6|7

root

L0

L1

L2

(a)

50 11 32 83 94 26 77

query a
query b
query c
query d

a 11, 32, 83, 77 
b 50, 83, 94 
c 50, 11, 94, 26
d 32, 83, 26

ID Indices 50 83, 94 | 11, 94, 26
11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26
83 11, 32, 77 | 50, 94 | 32, 26

Inx. Queries

94 50, 83 | 50, 11, 26
26 50, 11, 94 | 32, 83
77 11, 32, 83 (b)

Queries:

Headers:

PE Indices Queries

0|1

2|3

4|5

6|7

50 83, 94 | 11, 94, 26

11 32, 83, 77 | 50, 94, 26

32 11, 83, 77 | 83, 26

83 11, 32, 77 | 50, 94 | 32, 26

94 50, 83 | 50, 11, 26

26 50, 11, 94 | 32, 83

77 11, 32, 83 

Actions
forward | reduce

forward | reduce

reduce  | reduce

reduce  | forward | reduce

forward  | forward 

forward  | forward 

forward   

Indices Query
50 83, 94 

11 32, 83, 77 

50,11 94, 26 

50,11 94, 26 

Indices Query

32, 83 11, 77 32, 83 26

32, 83 11, 77 83 50, 94 32, 83 26

94 50, 83 94 50, 11, 26

26 50, 11, 94 26 32, 83

77 11, 32, 83

Indices Query

0|1
2|3

PE Indices Queries

4|5
6|7

50 83, 94 

11 32, 83, 77 

50,11 94, 26 

32, 83 11, 77 | 26
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77 11, 32, 83

Actions
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reduce
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reduce
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forward | reduce

reduce  | forward
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Indices Query

50, 83 94 

11, 32, 83 77
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94, 26 50, 11 26 32, 83

77 11, 32, 83
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Indices Queries Actions Indices

32, 83 26
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94, 26 50, 11
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77 11, 32, 83

reduce

reduce

reduce
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reduce
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reduce
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input B

input A
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input B
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input B

2
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26 50, 11, 94 | 32, 83
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50,11 94, 26 

32, 83 11, 77 | 26
83 50, 94

94 50, 83 | 50, 11, 26
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(a) A batch of four queries that access random embedding vectors from eight embedding tables and a three-level 
Fafnir tree (b) Extracting the unique indices of four queries and creating the headers of requests to be forwarded to 
Fafnir. The steps of processing the four queries through the PEs at three levels of tree: (c) L0, (d) L1, and (e) L2. 
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} Compression of embedding vectors
} Particular embedding vector’s dimension can scale with its query frequency1

} Compression of embedding tables 
} Hashing techniques or complementary partitions are used to reduce embedding table size

} Distribution of random accesses 
} In the 4-channel system, the probability of having a query with indices on the same channel: ~25%

} Level of sparsity in the accesses to embedding tables

DLRM
number of 
embedding 

tables
embedding size min number 

of indices

max 
number of 

indices
batch size Density of 

accesses (max)
Density of 

accesses (min) Sparsity (min) Sparsity (max)

RM1-small 8 1000000 20 80 256 0.256% 0.064% 99.744% 99.936%
RM1-large 12 1000000 20 80 256 0.171% 0.043% 99.829% 99.957%
RM2-small 24 1000000 20 80 256 0.085% 0.021% 99.915% 99.979%
RM2-large 64 1000000 20 80 256 0.032% 0.008% 99.968% 99.992%

Back

1 A.A. Ginart, et al. “Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems,” arXiv:1909.11810v3
2 H.M. Shi, et al. “Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems,” arXiv:1909.02107v2



SpMV vs. Embedding Lookup

HPCA'21 

43

GTCAD Lab

For SpMV, we do not know where the non-zero values of the sparse matrix are located: 
} the indices of the elements to be reduced are unknown -- indices themselves are 

read from memory.
} we stream both data and indices through the tree. 

Back

SpMV Embedding lookup

Indices Unknown Known

The type of memory accesses Stream data and indices Stream data only

The function of Leaf PEs Multiplication with the vector operand Skip multiplications
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No vectorization (compute 
units are underutilized):

With vectorization:

Sparse matrix

PE

PE

PE

Element-wise 
operation

…

Sparse matrix

PE PE

PE

Element-wise 
operation

vectorize

…
vector same size as
embedding vector
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n Vector size: 1024 Vector size: 2048

The number of required iterations and rounds per iterations for two vector sizes when the number of columns 
increases up to 20 million: 

…

Iteration 0

…

Matrix 
(Sorted 
Indices):
Multiply to 
Vector:

…

0

Reduce:
Only 
Reduce:

……
Matrix
(Unsorted
Indices):

Iteration 1

…

Iteration m (last)

…

Final 
Result

Round: Round:

…
Matrix
(Unsorted
Indices):

Only 
Reduce:

r/nrr � 1

n n n

0 1

We use list-of-list (LIL) compression format. If only n columns of the matrix fit in the Fafnir, we need to perform SpMV
in rounds and iterations:
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} Fafnir performs the first step more quickly.
} Unlike the Two-Step algorithm, Fafnir does not rely on decompression mechanisms and is able to apply 

SpMV on data as it is streamed from memory. 
} Instead of a chain of adders connected to multipliers, Fafnir uses the tree for the reduction. 

} The Two-Step algorithm performs the merge steps more quickly. 
} For smaller matrices, Fafnir performs more quickly than larger ones. 
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Two-Step: F. Sadi, et al. “Efficient spmv operation for large and highly sparse matrices using scalable multi-way merge parallelization,” in MICRO, 2019.


