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ABSTRACT
With fully autonomous flight capabilities coupled with user-specific
applications, drones, in particular quadcopter drones, are becoming
prevalent solutions in myriad commercial and research contexts.
However, autonomous drones must operate within constraints
and design considerations that are quite different from any other
compute-based agent. At any given time, a drone must arbitrate
among its limited compute, energy, and electromechanical resources.
Despite huge technological advances in this area, each of these prob-
lems has been approached in isolation and drone systems design-
space tradeoffs are largely unknown. To address this knowledge
gap, we formalize the fundamental drone subsystems and find how
computations impact this design space. We present a design-space
exploration of autonomous drone systems and quantify how we
can provide productive solutions. As an example, we study widely
used simultaneous localization and mapping (SLAM) on various
platforms and demonstrate that optimizing SLAM on FPGA is more
fruitful for the drones. Finally, to address the lack of publicly avail-
able experimental drones, we release our open-source drone that is
customizable across the hardware-software stack.
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1 INTRODUCTION & MOTIVATION
Over the last decade, significant progress has been made in the
development of autonomous systems. The numerous advances in
drones popularized by quadcopters [1] is partly due to the countless
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applications addressed by these systems, such as aerial mapping [2,
3], exploration [4, 5], military [6], natural disaster recovery [7],
search and rescue [8], ecology [9, 10], and entertainment [11–14].
The quadcopter design possesses many advantages over other aerial
vehicle designs in terms of simplicity and efficiency [15–17]. Thus,
quadcopters are becoming prevalent and many control, planning,
and perception methods have been assimilated for them [15, 18–28].

Nevertheless, drones must operate under conditions that are
quite different than any other compute-based agent. First, weight
and power are restrictive parameters in drones. Second, drones
must arbitrate between their limited compute, energy, and elec-
tromechanical resources not only based on the current tasks and
local conditions (e.g., wind, air temperature), but also according to
the flight plan. Despite huge technological advances in drones, these
problems have been approached in isolation, and the end-to-end
design-space tradeoffs are largely unknown.

As a result of such isolated problem solving, architecting end-to-
end drone systems and their computation landscape still remains
an open question. For example (Figure 1), if we are making a special
chip for drones, is it useful to improve processor performance and,
if yes, is it because of energy savings or better control? How useful
is improving processor power efficiency given that the majority
of power consumption is coming from resources other than com-
puting power? Should we focus on optimizing the flight-related
tasks, or should we focus on secondary tasks such as recognition
and autonomy? These questions pertain to creating cost-effective
solutions with low system integration cost, reasonable development
time, and effectiveness on drone metrics. Prior studies [29, 30] have
proposed a closed-loop simulator and benchmark suite, which does
not completely answer the above questions because it is focused
on high-speed drones (more in §6).

Making Special 
Chips for Drones?

50mW

5W

make an ultra low-power chip?
focus on only one task?

Should we

Or should we

accelerate flight-related or 
   secondary tasks?

trade power for generality?
focus on several tasks?
even accelerate tasks similar 
   to other areas?

Understanding 
design-space
tradeoffs are 

critical to solve
correct set of

problems

?

Figure 1: Impactful contributions in drones are only realized
by quantifying the design-space tradeoffs.

To answer such questions and solve worthy research problems, we
need to understand fundamental drone subsystems, classify drone
computations and their requirements, extract design-space tradeoffs,
and have access to a reproducible experimental platform.

This is the first paper to formalize and quantify the design-space
tradeoffs of autonomous drone systems. To do so, first, we address
the lack of a publicly available and reproducible experimental drone
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Figure 2: Sections overview.

framework that is customizable across its hardware-software stack
by releasing our open-source drone. Then, by exploiting this new
experience, we study the computational profile and landscape of
such systems, in which we must understand three major drone
metrics: flight time, control response time, and autonomous features.
Despite the extensive knowledge in our community, we discover
several missing pieces of the puzzle, described in the following.

(1) Flight time: Flight time is determined by the power con-
sumption of the drone during flight and the battery capacity. But,
the power consumption is dependent on several factors: drone
weight, motor types, flying activity, and several other factors. The
battery capacity also directly affects weight; a larger battery is
heavier, but has a higher capacity. (2) Control response time:
The control response time of a drone is determined by its con-
trol system. However, we do not know if additional computation
power would enhance this system. (3) Autonomous Features:
With several exciting new applications in drones, it is important
to understand how they interact with the main control system,
what their computation profile is, and know how to quantify any
opportunity for optimization.

To answer the aforementioned questions for flight time, after
introducing fundamental propulsion and power systems (§2.1.1,
§2.1.2), we extract crucial metrics from over 300 commercial compo-
nents and 150 manufacturers (§3.1) to find the major relationships
in determining the weight and power consumption of drones (§3.2).
Using the empirical measurements and physics, our method directly
translates compute power efficiency to flight time by untangling the
multifaceted relationships in drones. For instance, we quantify the
percentage of computation power from total power widely ranges
from 2–30%, enabling gaining of up to +5 minutes flight time.

In §2.1.3, we analyze the control system of drones, namely, inner-
loop and outer-loop controls. For instance, we discover that the
critical inner-loop controls in drones have an update frequency of
50–500Hz, which is not limited by computation power, but by the
physical response of the drone. Finally, in §2.2, we shed light on
the wide variety of autonomy in drones, current customized com-
pute boards for drones, and discover that these systems are highly
dependent on a core family of algorithms, namely, simultaneous lo-
calization and mapping (SLAM). Then, in Figure 2 in §3, we present
several important tradeoffs in drones, including the computation
power footprint. Next, in §4, we develop our open-source platform.
Finally, in §5, we showcase optimizations for SLAM on various
platforms. For instance, we show that moving from GPU/CPU to
FPGA provides 20x power savings, enabling 15–20% (+2–3 minutes)
of additional flight time in small drones.
This is the first paper to contribute the following:

• Formalizes the fundamental drone subsystems and quantifies
the design-space tradeoffs for the computational profile of drones
to discover how computation power consumption affects drone
flight time, accomplished by incorporating physics and empiri-
cal measurements from 300 commercial components and 150
manufacturers.

• Clearly separates the required computing for inner-loop con-
trols (real-time requirements) vs. outer-loop controls (autonomous
features) in drones and outlines the required computation amount
and benefits gained.

• Showcases the optimization landscape of the widely used SLAM
algorithm in autonomous drones and the effects on flight time
by using the presented data.

• Develops an open-source and reproducible platform with a
customizable hardware-software stack to address the lack of
publicly available drone platforms.

2 AUTONOMOUS DRONES
Autonomous drone subsystems determine several crucial properties
of a drone, and the associated design choices have a pivotal im-
pact on the effectiveness of the end-to-end system. However, each
subsystem has been studied in isolation. This section first briefly
introduces these subsystems, and then extracts necessary details
pertaining to computations.

2.1 Fundamental Subsystems
Figure 3 overviews the main subsystems for a quadcopter drone. We
divide the fundamental subsystems as follows: propulsion system,
which generates necessary force for movement and lift; power
delivery system, which delivers the power to electromechanical
components; and control, compute, and acquisition system, which
controls and stabilizes the drone with the help of sensors.

2.1.1 Propulsion System: Quadcopter drones utilize four identical
motor-rotors, two pairs of which spin in opposite directions, for the
generation of thrust (i.e., uplifting force). For maneuvers, drones
must precisely change the rotation speed of each rotor, which along
with their small size, necessitates electrical propulsion with batter-
ies. Thus, only direct current (DC) motors, specifically brushless
DC (BLDC) motors, are used. BLDC motors achieve higher rotation
speeds with improved control, while providing precise feedback
for measuring rotation speed. Nevertheless, BLDC motors require
complex and expensive electronic speed controllers (ESCs) (§2.1.2).

The physics behind the essential movements of quadcopters is
relatively simple, shown in Figure 4. By ignoring several complexi-
ties, covered in §2.1.3, all movements stem from the precise control
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Figure 3: General overview of an autonomous drone.
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Figure 4: Essential drone movements. Colored rectangles
near each rotor show how rotation speed changes, with red
representing decrease and green representing increase.

over each rotor’s thrust while accounting for several environmental
factors such as wind and air density. Drones use the same uplift
thrust for horizontal movements by tilting. The maximum horizon-
tal speed depends on the maximum stable angle of attack (i.e., tilt
angle), which depends on the thrust-to-weight ratio (§2.3).

2.1.2 Power Delivery System: Lithium polymer (LiPo) batteries
(lithium-ion polymer), which have the highest energy density (Wh/Kg)
and discharge rate (measures how fast the battery can be safely
discharged) in rechargeable lithium-ion technology, are the main
source of power in drones. Since BLDCmotors require high current,
the high current flow of LiPo batteries is a critical factor. However,
the downfall is that LiPo batteries are relatively fragile; only 85%
(LiPoDrainLimit) of their capacity should be used during a flight. LiPo
batteries have various configurations that are multiples of cells with
a nominal voltage of 3.7V/cell, studied in §3.1.

Each BLDC motor requires three-phase currents, which are gen-
erated by a separate ESC using DC current. The complexity of the
ESC circuits is evident, as they need a switching frequency of 60–
600KHz while delivering hundreds of Watts. ESCs also provide
necessary electronics to implement feedback to achieve precise
control of the rotation speed of their own microcontroller. ESC pro-
tocols usually go beyond PWM (pulse-width modulation) signals
for modern-day drones due to high precision in control (e.g., the
DShot1200 protocol has a communication frequency of 74.6 KHz).
The above criteria make ESCs one of the heavier components (§3.1).

2.1.3 Control, Compute, and Acquisition System.
A. Inner vs.Outer Loops:The recent advancements in autonomous
drone systems have mainly been accomplished with the devel-
opments of high-level algorithms in state estimation, trajectory
tracking, localization, and deep learning [18, 20, 21, 24–26, 28].
Nonetheless, such high-level algorithms (i.e., outer-loop compu-
tations) rely on and are directly impacted by the inner-loop con-
trol [15, 17, 22, 23] (Figure 6). High-level algorithms only provide
state targets, grouped into position, velocity, and attitude1, to the
inner-loop control. The inner loop reaches those target set points
over time by direct manipulation of the drone actuators while also
maintaining a stable flight. Furthermore, remote controller (RC)
commands and safety override commands pass through the inner-
loop to minimize response latency. Table 1 summarizes a handful
of dynamic effects, such as stabilization, that are compensated by
the inner-loop control for a stable flight, emphasizing inner-loop
control relative importance to the high-level algorithms.

B. Hardware-Software Stack: Figure 5 shows the hardware-
software stack abstraction of a drone. The flight controller boards
with additional on-board sensors directly manipulate ESCs and
sensors. Flight controllers have the following main components

1Defined as orientation of a solid body around three Cartesian axes.

Table 1: Unpredictable effects compensated by the inner-
loop control vs. decisions made by the outer-loop control.
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(Table 4 provides some examples): (i) a microcontroller (MCU) usu-
ally STM32F 32-bit Arm Cortex-M series; (ii) one or two 6-axis
inertial measurement units (IMUs); (iii) a barometer, for altitude
measurements; (iv) and possibly several chips for sensors, video feed
codec, and communication. If necessary, external sensors with their
dedicated full-stack supporting system are added. The operating
system (OS) is dominated by Linux, except for racing applications.
The hardware abstraction layer (HAL) provides necessary APIs.
The shared libraries layer provides common sensor fusion algo-
rithms (e.g., Extended Kalman Filter). The control layer is described
in the next paragraph. The final application-specific flight code
layer largely depends on the application. Finally, the communica-
tion layer delivers stats to the ground station and, if necessary, a
MAVLink [31] protocol offloads computations to another node.

C. Inner-LoopControl: In the inner loop, the control layer uses
the on-board sensors to stabilize the drone and reach to target set
points dedicated by the outer loop. This layer extensively uses high-
performance hierarchical proportional-integral-derivative (PID)
controllers, whose filter response and quality of the estimated state
variables defines the drone behavior. The feedback loop is shown
in Figure 6 and is completed by sensor measurements. The control
is performed hierarchically2 by dividing the control problem into
three levels depending on their response time, shown in Table 2b,
known as time scale separation. The three levels are as follows:
High-level position or trajectory, mid-level attitude, and low-level
thrust controller [15, 16, 23, 32]. Based on Table 2, no higher update
and response frequency than 1 KHz is necessary, both for reading the
sensors and updating the controllers.
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Figure 5: Hardware-software stack abstraction of a drone.

2Hierarchical controllers are a family of non-linear controllers that yield stability
and enhanced robustness, especially in the case of highly nonlinear dynamics (e.g.,
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Figure 6: Inner- and outer-loop controls in drones. The
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Table 2: (a) Common data frequencies of on-board sensors.
(b) Update frequency and response time of each controller.

1KHz 
200Hz 
40Hz 

Thrust
Attitude
Position

50ms
100ms
1s

Update Frequency Response TimeControllerSensor Data Frequency

(b) Controllers Update Frequency

Accelometer
Gyroscope
Magnetometer

Barometer
GPS

100–200Hz
100–200Hz
10Hz
10—20Hz
1—40Hz

(a) Sensors Data Frequency

Inner-Loop 50—500Hz N/A

D. Inner-Loop Control Computations: We summarized the
inner-loop control computation as two groups: (i) filter compu-
tations such as EKF for data fusion and updating PIDs, and (ii)
algebraic functions for state estimation such as air drag and tra-
jectory. The filter computations consist of keeping a history and
accumulated versions of previously observed measurements, their
derivative, and their integral. The state estimation includes 3x3
matrix operations based on the measurable state of the drone that
includes 𝑥 =

( ®𝜁 , ¤®𝜁 , ®Ω, 𝑅), in which ®𝜁 ∈ IR3 is the position (using data
from the IMU, GPS, and barometer), ¤®𝜁 is the velocity (using IMU),
®Ω ∈ IR3 is the angular velocity (using IMU), and 𝑅 ∈ 𝑆𝑂 (3) is the
attitude (using IMU) of the drone [17, 32]. All control computations
are effectively performed by a STM32F 32-bit Arm Cortex-M, a
single-core processor with a frequency on the order of 100MHz,
in even high-speed racing drones. Although some research pro-
posals suggest replacing control-theory-based with learning-based
algorithms that require higher computation capabilities [27], the
consensus is that unless a new electromechanical part introduces
a drastically new response time, higher computation capabilities
are not required. For instance, the inner-loop update frequency in
high-end commercial products [33, 34] ranges from 50Hz to 500Hz.
Even for highly specialized sensor-based control techniques with
incremental nonlinear dynamic inversion (INDI) that can stabilize
a drone under powerful wind gusts [22], the update frequency is
still 500Hz. Thus, the update frequency of the inner-loop control is
50–500 Hz, which is limited by the physical response time and inertia
of the control and electromechanical components in drones and is not
limited by the computation power.

2.2 Autonomy in Drones
Autonomy in drones is realized by intelligently providing target
states (i.e., position, velocity, and sometimes attitude) with the
computation that occurs in the outer-loop control, as explained
air drag). There are other linear and non-linear controllers for drones [16], but they
follow a similar trend in their update frequency.

in §2.1.3. Although autonomy is a defined term in self-driving
vehicles, meaning to safely navigating from point A to B [35], such
a definition is not set in drones. For instance, mapping drones are
autonomous in the sense that they fly within a predefined airspace
while covering the entire area for mapping [3, 5, 10, 36]. Or, active-
filming drones use vision cameras and recognition technologies to
follow a predefined target and optimize the filming angles while
avoiding obstacles [1, 11, 33]. As a result, autonomy in drones is
still an active area of research and commercial products.

The outer-loop computations always occur in isolation, and the
hardware dedicated for such computations varies from quad-core
and Intel i7 CPUs in research-oriented studies [5, 21] to custom-
built computers based on NVidia Jetson TX2 [33, 37] or custom
Intel boards (e.g., Intel Aero compute board [38]) in commercial
products. From a computation perspective, to ensure that the inner-
loop control is in real time, the computations for autonomous tasks
in the outer-loop are not co-located on the same computation core or
even the same unit as for the inner-loop control.

We find a wide variety of high-level algorithms in autonomous
drones are dependent on a core family of algorithms, namely, si-
multaneous localization and mapping (SLAM) and visual odometry
(VO) [39–43]. These algorithms are the fundamental building blocks
for many autonomous technologies [19, 40, 44] and are used in vari-
ous tasks such as navigation, obstacle avoidance, and path planning.
Designing drone systems that provide accurate localization in real-
time on platforms with limited computational and energy resources
is an active area of research [18, 19, 24]. Therefore, to date, various
implementations of SLAM with the focus on algorithmic-level opti-
mizations [39, 41–43, 45] or hardware acceleration [44, 46–51] have
been proposed. We explore such hardware optimizations in §5.

2.3 Drone Design Metrics
Table 3 presents the the definition of metrics used in drones. Most
of the metrics are not standalone and are dependent on each other
based on the design choices covered in §3.

3 QUANTIFYING DESIGN-SPACE TRADEOFFS
To understand the computational profile in autonomous drones,
we must quantify the design-space tradeoffs that define several
important features such as flight time. This section quantifies each
tradeoff correlation with weight, which defines the order of power
consumption in a drone. Then, we derive how the computation
affects this design space.

3.1 Important Tradoffs
Battery Stored Energy & Weight: Drones predominantly use LiPo
batteries (§2.1.2), which constitutes a large fraction of a drone’s
weight. Although a higher capacity battery has more charge, the
additional weight may result in a shorter flight time (not to mention
the additional weight of sensors and computation units). Hence,
it is crucial to understand the relationship between the capacity
(mAh) and the weight of the batteries. Although the range of energy
densities of LiPo batteries are known, these values are insufficient
for accurate estimations for two reasons. First, we are interested in
the end product, which also includes casings, wires, and protection
circuits. Second, as the manufacturing process is not ideal with
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Table 3: Definition of important metrics.
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The maximum total thrust produced by the motors (g) divided
by the drone’s weight (g). Common ratios are from 2:1 to 7:1.
A higher ratio enables drone to perform elaborate aerobatics.
Higher ratios mean heavier motors, larger batteries, and ESCs
with a higher consumption. To find the highest possible contri-
bution boundary of computation power consumption, we use a
TWR of 2:1.
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ameter and pitch, supply voltage, 𝐾𝑣 rating, and motor design.
𝐾𝑣 rating is used to calculate the rotation speed (RPM), 𝜔 , of
the motor per supply voltage, 𝜔 = 𝐾𝑣 ×𝑉 . So, for a fixed volt-
age, a lower 𝐾𝑣 rating produces more torque and turns larger
propellers. A propeller with a larger diameter and pitch moves
a larger volume of air per rotor revolution and provides larger
thrust. The maximum propeller size is determined by the frame
size, or wheelbase.
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The battery discharge rate or C rating is a measurement of the
maximum continuous current a battery can safely supply. The
maximum continuous current from C rating is calculated as
Capacity(Ah) ×𝐶 = I.

B
at
te
ry

(x
Sy

P)

ALiPo battery has a nominal voltage of 3.7V/cell. To supplymore
voltage, cells are packed together in series. The convention is to
write the configuration as xPyS, which means x pack of y cells in
series. To provide a high thrust-to-weight ratio, we need motors
with a lower 𝐾𝑣 rating for higher torque, which means a higher
voltage is required to achieve good RPMs for lifting.
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the drone is flying. The maximum continuous current value
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The frame size or wheelbase is the distance between two diago-
nal arms of a quadcopter. The wheelbase defines the maximum
propeller diameter a drone can use. Indoor drones have a wheel-
base under 100mm, while outdoor drones have wheelbases up to
1000mm.

various discharge rates, estimation based on energy density is not
precise. To address this knowledge gap, we study 250 commercial
batteries. By grouping the batteries based on their configuration in
number of cells (see §2.3), we derived a linear relationship between
the capacity and the weight of the batteries, shown in Figure 7.
Generally, for batteries with higher voltages (for motors with higher
torque), we observe a higher overhead. However, these batteries are
necessary to lift the drone. The figure also includes discharge rates,
which result in heavier batteries, but the resulting weight does
not deviate from the extracted formulas per battery configuration.
Using the figure and extracted relationships, we can sweep stored
energy and the weight of the battery, necessary for deriving the
computational profile.

ESCs Current &Weight: ESCs provide high continuous current with
a high switching frequency (i.e., 6 × RPMrotor), both of which are
determined by the motor and TWR ratio. ESCs have large MOS-
FETs with high source-to-drain voltage and very high continuous
current. Therefore, the weight of ESCs are highly correlated with
the maximum continuous current they can handle. We extract this
correlation by studying 40 commercial ESCs, shown in Figure 8a.
We divide the ESCs into two groups: Short-flight (under 5 minutes)
ESCs, targeting racing drones; and long-flight ESCs, targeting all
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Figure 7: LiPo battery capacity and weight per configuration
(§2.3), extracted from 250 commercial batteries.

other use cases. In racing, ESCs are designed with lighter MOSFETs
and capacitors that overheat in longer flights.

Frames: A larger drone frame size leads to more choices in the
components, ability to house new sensors, and larger propellers.
However, evenwith carbon and glass fiber technology, the weight of
a frame is not negligible. Thus, we study 25 commercially available
frames in Figure 8b and extract the correlation between their weight
and wheelbase.

Propulsion System: The motors and propellers of drones have a
wide variety of configurations; thus, the tradeoffs of the propulsion
system are multifaceted and complex. The main deciding factor in
the process is the target TWR. Since we are interested in under-
standing the computational profile in the most efficient designs, we
set the target TWR to 2, the minimum required value for flying.
Thus, the derived values specify the highest percentage of possible
contribution of computation power. Figure 9 shows an extrapolated
relationship between the max current draw of the appropriate mo-
tors and the corresponding drone’s basic weight (i.e., not including
battery, ESCs, and motor weight) grouped by the supply voltage
(i.e., the cells of the LiPo battery). For each frame, we first set the
maximum propeller diameter in inches dictated by the wheelbase
(written in the legend). Then, we extract the thrust and 𝐾𝑣 rating
of the motors from data released by 150 manufacturers. Then, by
varying the weight and supply voltage, we calculate the minimum
required max current draw per motor. (Note that although the
choice of the motor influences some parameters of the controller,
the control frequency discussed in §2.1.3 would not exceed the
presented values.)
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Figure 9: Relationship between themaxper-motor current drawand the basicweight, grouped by supply voltage andwheelbase
sizes from 50mm–800mm. TWR is 2 and data is extracted from 150 manufacturers.

Table 4: Specifications of common flight controllers, com-
pute boards, and external sensors for drones.

Name Weight (g) Power

Flight Controllers & Computation

B
as
ic

iFlight SucceX-E F4 [57] 7.6 <100mA@5V
DJI NAZA-M Lite [58] 66.3 300mA@5V
DJI NAZA-M V2 [59] 82 300mA@5V
Pixhawk 4 [60] 15.8 400mA@5V
MateksysF405 [61] 17 200mA@5V

Im
pr

ov
ed Intel Aero [38] 30 2A@5V

Navio2 [62] 23 150mA@5V
Raspberry Pi 4 [63] 50 1A@5V
Nvidia Jetson TX2 [64] 85 2A@5V
DJI Manifold [37] 200 20W

External Sensors

FP
V Eachine Bat 19S 800TVL 8 50mA@5V

RunCam Night Eagle 2 [65] 14.5 200mA@5V

Li
D
A
R HoverMap [66] 1800 50W, Self-Powered

YellowScan Surveyor [67] 1600 15W, Self-Powered
Ultra Puck [68] 925 10W, Self-Powered

In Figure 9, we see that heavier drones have motors with higher
𝐾𝑣 ratings for higher rotation speeds. Moreover, in larger wheel-
bases, larger propellers are needed to lift the drones. This is be-
cause it is physically impossible to use smaller propellers with high
RPMs. These large propellers require higher torque from the motors.
Thus, these motors have a lower 𝐾𝑣 rating (compare 𝐾𝑣 ratings in
Figure 9a vs. b). However, because of their larger size (to create
the necessary torque, the motors have a greater number of poles
and larger diameters), these motors are much heavier (e.g., from
5 g/motor in 100mm drones to 100 g/motor in 1000mm drones).

Flight Controllers, On-Board Computation, & Sensors. Table 4 lists
common open-source and commercial flight controllers, additional
computation boards, and external sensors. All of the flight con-
trollers have an integrated STM32F Arm Cortex-M processor se-
ries as the main inner-loop controller (§2.1.3). We divide the flight
controllers into two groups: basic, which provides only necessary
inner-loop functions with limited outer-loop capabilities; and im-
proved, which provides customizable inner-loop functions and a
few outer-loop functions. In commercial markets [33, 37, 38], the
Nvidia Jetson TX2 embedded board is considered a high-end solu-
tion with a price of $300. The power consumption of these compute
boards ranges from 0.5–20W. Therefore, in the following section,

we assumed two levels of power consumption: a 3W and a 20W
chip, representing basic and advanced flight controllers, respec-
tively. For external sensors, we list the first-person view (FPV)
cameras with a maximum of 1W consumption. High-definition
(HD) cameras are self-powered with weights around 100 g. Specific
LiDAR solutions optimized for drone technologies are also listed in
the table for completeness. All options are stand-alone and weigh
around 1 kg. To make integration easier, state-of-the-art LiDAR
solutions have their own battery and compute boards. We study
how the addition of these sensors due to their weight, reduces the
contribution boundary of main computation power in large drones.

3.2 Computation Footprint
Procedure: To understand the computational profile, we derived
the total power consumption of a wide range of drones from small
indoor drones (100mm wheelbase) to large military and filming
drones (800mm wheelbase). We use §3.1 extracted data while ac-
counting for the additional weight and power consumption of each
module. In detail, per each frame (Figure 8b), we choose the pro-
peller with the maximum size, find the required RPM for the motors,
and choose the best matching motor depending on the number of
cells in the LiPo battery, while sweeping the range in the capacity
of the batteries from 1000mAh to 8000mAh (Figure 7, Equation 4).
Then, from the maximummotor current draw (Figure 9, Equation 2),
we choose ESCs (Figure 8a). In this step, if the additional weights
necessitate a new motor, we redo the previous steps (Equation 1).
By assuming a low-load hovering condition (FlyingLoad, 20–30% of
the maximum current draw) with 85% LiPo battery capacity limit
(LiPoDrainLimit), we calculated the power consumption (Equation 7),
shown in Figures 10a,b, and c for 100, 450, and 800mm wheelbases.

WeightTotal = F(4𝑊Motor,𝑊ESC,𝑊Battery,𝑊Frame,

𝑊Propellers,𝑊Compute,𝑊Sensors,𝑊Wires) (1)
MotorCurrent = G(WeightTotal, TWR) (2)

PowerAvg = H(MotorCurrent .BattV,%FlyingLoad,
PowerCompute, PowerSensors) (3)

BattCapacity = M(LiPoCapacity,%PowerEff,%LiPoDrainLimit) (4)

FlightTime = N(BattCapacity, PowerAvg) (5)
%PowerComputation = X(PowerAvg, PowerCompute) (6)

+FlightTimeCompute = Z(%PowerComputation, FlightTime) (7)
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Figure 10: Top Row (a,b,c): The total power consumption of drones with various wheelbases extracted by relationships in
Equation 3.2 and verified with data from commercial drones shown as additional data points [33, 52–56]. Bottom Row (d,e,f):
The computation footprint considering 3W and 20W chips shown with 3/20W computation @ hovering/maneuvering lines.

Validation:We validate our data by adding commercial drone data
using the released flight times and battery configurations [33, 52–
56], shown as additional diamond-shaped data points in Figure 10.
No data skewing or pre-selection is used for extracting tradeoffs.
We also verify the average power consumption by calculating the
total flight time to match with current state-of-the-art commercial
drones, resulting in 23, 19, and 21 minutes for 100, 450, and 800mm
wheelbases, respectively.
Interpretation: Figures 10d,e, and f illustrate the percentage of
computation power from the total power of a drone in two groups
with hovering and maneuvering (20–30% and 60–70% of the maxi-
mum current draw, respectively). The first group with a 3W com-
pute power represents a commercial ultra-low-power flight con-
troller. The second group with a 20W compute power represents
a GPU-CPU system with much higher capabilities. First, we see
that the 3W chips have less than 5% contribution in total power
consumption. Second, even for the 20W system, when the drone
moves, the contribution drops to an average of 10%. Moreover, we
see jumps that occur because heavier drones need batteries with
more cells to provide higher voltage for higher KV motors. How-
ever, initially, those batteries are less efficient than the batteries
used for lighter drones. Also note that these drones have a target
TWR of two; hence, the contribution shown is at its highest. To
quantify, we can convert this power savings to extra gained flight
time (see Equation 7. In large- to medium-sized drones, the average
computation power is 10% of the total power and the maximum gain
of computation power savings is with +2 minutes in total flight time
and possibly less considering maneuvering and higher TWR values.
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Figure 11: Commercial small-sized drones’ heavy computa-
tion power contribution and their flight time.

For small-sized drones, the tradeoff between the computation
and flight power is more critical. In addition to Figures 10a and d, we
also study the power consumption of nano and micro commercial
drones’ power consumption, outlined in Figure 11 [33, 52, 54, 56, 69,
70]. For these drones, when hovering, the power consumption is
from 2–7%. Nevertheless, when hovering with heavy computations
(e.g., face recognition, HD video recording), the contribution of
computations in total power consumption reaches 10–20% (shown
with a yellow line in Figure 11). Thus, in small drones, by optimizing
heavy computations such as SLAM and deep learning workloads, we
can potentially increase the flight time by up to 20%, or around +5
minutes in total flight time.
How to Use This Data: Figure 12 illustrates the procedure for
how to obtain the total and compute power consumption of a drone
depending on its size and battery capacity. Thus, we can understand
how power savings or special chips affects the flight times and
weights for all drones. We showcase SLAM in §5 as an example.
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       its frame weight (Fig9)
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Figure 12: Procedure of quantifying total/compute power
consumption in drones.

4 OUR OPEN-SOURCE DRONE

Figure 13: Our Drone.

To address the lack of pub-
licly available end-to-end ex-
perimental and reproducible
frameworks for drones, we de-
velop and fly test a fully open-
source experimental drone that
is fully customizable across its
hardware-software stack. We
integrate several widely-used hardware/software components. This
platform reduces the barriers to entry to drone research3, shown in
Figure 13, and has a total cost of $500 with the ability to carry 200g
additional payloads. The components, as far as they are compatible
(e.g., voltage, connections), can be easily switched/added to the
drone. The current available alternatives do not provide full access
to the hardware-software stack and have no extra-weight capacity.

Hardware-Software Ecosystem: With the backing of the Navio2 [62]
for crucial flight inner-loop control, our drone uses a Raspberry
Pi[63] (RPi) with a maximum power of 5W. We integrate high-
level autonomous flying firmware [71] to run advanced waypoint
navigation algorithms and autonomously execute certain actions
based on the results of the SLAM algorithm [72]. The following
sections overview the four layers of the drone’s ecosystem.
(1) High-Level Functions: The high-level functions layer consists
of high-level and low-level APIs which are used to write custom
code and firmware. The custom firmware is converted to a Linux
service and run on the Pi in the background. We also utilized the
DroneKit [73] C++ and Python APIs, which were modified to al-
low the drone to be reconfigured mid-flight. DroneKit allows us
to connect to the drone, issue flight commands, and monitor the
drone. Apart from being open-source, DroneKit is easily extensible
and provides the flexibility to be used on on-board computers as
well as ground-station applications by abstracting away physical
MAVLink [31] protocols.

3The ACM artifact link on the first page or doi.org/10.5281/zenodo.4546174 for
the most recent version. This open-source repository includes guide to build the drone,
data sources of §3, and software stack of the drone.

(2) Autopilot: ArduCopter[71] is an open-source autopilot code-base
for drones with great versatility. ArduCopter, written in C++, allows
for manual flying/autonomous control. Our modified Linux kernel
allows ArduCopter to utilize loop-back ports to listen to commands
being issued by external applications executing on other computers
(e.g., RPi). The ArduCopter binary, once compiled with WAF [74],
runs several Linux daemons[75] with distributed roles.
(3) Modified Linux Kernel: The Linux kernel is modified to support
the Preempt_RT patch, which enables the Linux operating system
to become suitable for drones. Using this, we can completely shut
down an instance of a drone mission and spool up a new mission
while the drone is in mid-flight, safely and securely using WAF [74].
The Linux kernel is also modified to support continuous loop-back
and server instances so the drone can be controlled using multiple
devices such as through 915Mhz telemetry or a laptop through
Secure Shell (SSH).
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Figure 14: Our droneweight
breakdown.

(4) Flight Controller: We use
the Navio2 controller with a
Cortex-M3 co-processor, GPS,
and 2x IMUs. Navio2 has
generic GPIO pins for any
compute board and provides
connection to our RPi. During
flight, the RPi sends signals to
the board that are decoded by
the controller.
(5) Hardware Control Surfaces:
The controllable hardware
consists of sensors, four mo-
tors, and ESCs. The weight
breakdown of our drone is
shown in Figure 14, which
shows similar trends as shown
in §3.1. The frame, battery, motors, and ESCs are the major compo-
nents contributing to the weight.

A New Platform Different From Current Platforms: Several popular
commercial drones such as the CrazyFlie [76] or the PlutoX [77]
have drastic tradeoffs between performance and flight time while
limiting user access to flight code or being unable to carry addi-
tional payloads. Moreover, they can be configured only for limited
purposes. With our drone, our goal is to minimize that tradeoff
and give users the power to import both high- and low-level (i.e.,
inner- and outer-loop) functions. Our drone can be configured for
a variety of research purposes because the hardware stack is con-
figurable. Moreover, we use Linux with the RT-Preempt patch to
allow for a wide range of applications while enabling the control of
the drone and parameters in real time. We choose the Navio2 flight
controller because it is easily configurable for different applications
and grants complete access to all control systems.

5 SHOWCASING OPTIMIZATIONS
This section exhibits the impacts of design optimizations on per-
formance and power consumption and concludes with the impact
of optimization on flight time. To study this, we explore offloading
ORB SLAM onto various hardware platforms.

https://doi.org/10.5281/zenodo.4546174
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Experimental Setup & Platforms: Our baseline platform to execute
autopilot and SLAM (ORB SLAM [72]) is a RPi4 [63]. We measure
the power consumption of the RPi using a USB digital multimeter
that records measurements once every half second (± 10mW). The
power consumption of the entire drone is measured with a digital
oscilloscope by measuring both current and voltage every 20ms
(± 0.5mW) of the battery while controlling the drone. To measure
performance at the instruction level, we used Linux perf and carried
out analysis while the entire software-hardware stack is in loop.
Our hardware platforms for implementing SLAM include a separate
RPi4 [63], Nvidia Jetson TX2 [64, 72, 78], and a ZYNQ XC7Z020
FPGA on a PYNQ-Z1 embedded board. All the SLAM experiments
run with the relevant EuRoCmicro aerial vehicle dataset [79], while
confirming SLAM key metrics.

For FPGA implementation, we use Xilinx Vivado HLS and de-
scribe our tailored microarchitecture in C++ by using relevant #pra-
grma. We use the post-implementation resource utilization, power
consumption, and latency reported by Vivado. Inputs and outputs
of the accelerator are transferred through the AXI stream interface.
The clock frequency is set to 100MHz. Similarly, we use the Eu-
RoC dataset. For ASIC comparisons, we use the 20mm2 Suleiman
et al. implementation on ASIC, in 65nm CMOS [19]. Navion is a
visual-inertial odometry (VIO) accelerator that does not include
the full-loop feedback of SLAM; nevertheless, it offers the order of
power consumption in ASIC implementations. Navion processes
the EuRoC dataset in real-time at 20 frames per second (FPS) while
consuming a maximum of 24mW.

5.1 Running Autopilot and SLAM on RPi
Performance: When running SLAM along with the autopilot on
an RPi, SLAM in not only not fast enough, but also it negatively
impacts the performance of the autopilot. For instance, the pres-
ence of SLAM causes 4.5× as many TLB misses as the autopilot
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Figure 15: Performancemetrics
for SLAM and autopilot on RPi.

alone causes. Similarly,
we observed that the LLC
and branch-predictionmiss
rates of the autopilot
with SLAMare also higher
than those when running
the autopilot solely, as
the primary axis in Fig-
ure 15 shows. Addition-
ally, as the secondary
axis in Figure 15 shows,
the IPC of the autopi-
lot decreases by 1.7×.
These observations indi-
cate that by running a
few additional workloads, specifically heavy ones, the real-time re-
sponse of the autopilot will lag and we will miss several outer-loop
deadlines. Although the outer-loop control is not directly related
to the control system, improving the performance of processors is
necessary to handle heavy computations by new workloads.

Power Consumption: Figure 16a shows the power consumption
graph of the RPi during flight. We measure the power consumption
of the RPi while it is executing the autopilot software, SLAM, and
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Figure 16: Power consumption graph of (a) RPi executing
SLAM and autopilot code and (b) entire drone during flight.

flight script (i.e., pre-set commands for autopilot). The average
power consumption of the RPi when executing the autopilot is
3.39W, which increases to 4.05W when we start SLAM, but the
drone is not flying yet (SLAM is idle). Finally, when the drone
flies and SLAM actively processes input data, up to 5W of power
is consumed and the average power consumption of RPi reaches
4.56W – we use these numbers to estimate heavy computation
power consumption in Figure 11. Thus, by offloading SLAM onto a
low-power platform such as ASIC/FPGA, we can potentially save
up to 2W, which would have a high impact for small drones (e.g.,
Parrot Mambo [69]). Figure 16b depicts the power consumption
graph of the entire drone, with an average of 130W. In Figure 10, this
130W is only with 30% of the flying load. The power consumption
goes as high as 250W in higher loads (58% flying load) with simple
movements. In maneuvering (Figure 10d–f), the contribution of
computation power consumption reduces significantly.

5.2 Offloading SLAM to Hardware Accelerators
Besides preventing lags in the responses of the autopilot, offloading
SLAM to a hardware accelerator (i) improves the performance of
SLAM and (ii) helps extend the flight time by consuming less power.
This section explores these two aspects by implementing SLAM on
our three hardware platforms.

SLAM performance: Figure 17 shows the time to process each Eu-
RoC dataset while executing ORB SLAM on a RPi4 (with no other
application), TX2, and FPGA. Our FPGA implementation exten-
sively accelerates the local and global bundle adjustments of ORB
SLAM (≈90% of execution time on RPi) by using simple modules
of dense fixed-size matrix algebra in a pipeline. For further accel-
eration, we also integrate eSLAM design [51], which accelerates
feature extraction. Running SLAM on a separate RPi improves its
performance by 2.3× (IPC from Figure 15). As Figure 17 illustrates,
the TX2 and FPGA implementations are 2.16× and 30.7× faster than
the implementation of SLAM on the RPi. As a result, all these im-
plementations, including the slowest, meet the rate of sensors (e.g.,
cameras and LiDARs), even those with more than 100 FPS. Although
all design choices satisfy the real-time requirement, they provide a



ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

0
5

10
15
20
25
30
35
40

TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Feature Extraction/Matching Local Bundle Adjustement (BA)
Global Bundle Adjustement (BA)

Sp
ee
du

p
(o

ve
r R

Pi
)

TX
2

FP
GA

GMean

2.
16

30
.7
0

GMEAN

Figure 17: ORB SLAM speedup over RPi for TX2 and FPGA
by category: feature extraction and bundle adjustments.

400x landscape in power consumption. Therefore, the question is,
how should we navigate 400x landscape in power consumption?

Flight time: Offloading SLAM (or any other heavy compute) to a
hardware accelerator reduces power consumption, but adds weight
to the system. This section explores the combined effect on flight
time. The power consumption of our FPGA implantation is 417mW,
compared to ASIC with 24mW [19]; RPi with 5W; and TX2 with
10W. Since, on average, our drone consumes 130W, saving 10W
by moving from TX2 to FPGA gives us +1 minute of flight time
(≈ 10/140 × 15min). For small drones moving from CPU/GPU to
FPGA with 20x in power savings, there is a reduction on the power
consumption of approximately 15-20%, enabling an additional +2–3
minutes of flight time (≈ 10/50× 15min). But, the lengthy process of
special ASIC chip fabrication to gain an additional 20x power sav-
ings (saving 400mW) earns us only a few seconds. Table 5 combines
the results for the cost of various platforms for executing SLAM
on drones by assuming RPi as the baseline. Since TX2 consumes
more power and is heavier, the gain in flight time is negative. Both
FPGA and ASIC have almost identical impacts on flight time for
large drones and small drones (only 20 seconds in additional flight
time for ASIC in small drones). However, ASIC integration and
fabrication costs are extremely high, which renders FPGA as the
best platform even though it consumes more power.

6 RELATEDWORK
Prior studies [29, 30] have proposed a closed-loop simulator and
benchmark suite for autonomous tasks in drones, mainly focus-
ing on outer-loop tasks, which is not the main focus of this paper.
The discussions only pertain to high-speed drones. In contrast to
the assumptions made, we argue that, first, the mission planning
computation does not increase hovering time since mission plan-
ning has relaxed deadlines [80]. Even in high-speed, indoor, and
cluttered environments, new algorithms have been proposed to

Table 5: Comparing costs of various platforms for SLAM.

Platform RPi TX2 FPGA ASIC

SLAM Speedup 1x 2.16x 30.70x 23.53x

Power Overhead (W) 2 10 0.417 0.024

Weight Overhead (g) ≈50 ≈85 ≈75 ≈20
Integration Cost Low Low Medium High

Fabrication Cost Low Low Medium High

Gained Flight
Time (min) †

Small Drones 0 ≈-4 ≈2–3 ≈2.2–3.2
Large Drones 0 ≈-1.5 ≈1 ≈1

† Baseline flight time is 15 minutes.

enable fast planning [21, 28]. Second, collision detection does not
necessarily require heavy computations (e.g., using laser-range, in-
frared, or RGBD sensors, or even microcontroller) [81–84]. Third,
localization is a highly active research area and does not necessar-
ily limit current drone speeds (e.g., real-time odometry and NASA
JPL’s autonomous racing) [14, 24, 85]. Finally, described conclusions
in [29, 30] are based on maximum drone acceleration, the value of
which is not readily known from the specifications. Authors have
early versions of this work published [86, 87].

7 CONCLUSIONS
This is the first paper that (i) formalized fundamental drone subsys-
tems and quantified how computation power consumption varies
in drones and affects the design-space parameters such as flight
time; (ii) studied required computing for inner-loop control; and
(iii) proposed an open-source drone framework and explored the
acceleration landscape of SLAM, while motivating further research
within the community. We found that although the outer-loop con-
trol is not directly related to real-time control systems due to the
nature of heavy computation, it has to consider deadlines; and
thus improving the performance of processors is important. For
the inner-loop which controls real-time hardware, the amount of
computation is relatively low, so low-end embedded computing
platforms are satisfactory. However, due to the critical nature of
the inner-loop control, all drones have dedicated processors for
it. We found that for small drones, improving power efficiency
is translated into an increase in flight time, but for heavy drones
(>≈2 kg), the improvement in power efficiency does not have an
effect. Therefore, FPGA implementations provide the most cost-
effective solution for small and large drones.

It is worth mentioning that the studied tradeoffs are different for
nano and pico droneswith a total power consumption of 100mW[19,
88–91]. We did not focus on such drones because these drones are
extremely customized (from physics to material sciences), so it was
not possible to study them within the same framework. Further-
more, we used the minimum TWR of 2. A detailed evaluation for
other TWR values can be done in a similar way, released in our
repository, which results in a lower contribution of computation
power consumption.

A ARTIFACT APPENDIX
A.1 Abstract
This artifact describes our open-source experimental drone frame-
work that is customizable across its hardware-software stack. The
main portion of the artifact focuses on building the drone, which
compliments the beginning sections of the paper. The build guide
consists of two parts: hardware and software. The hardware guide
presents a list of required hardware components (accessible to any-
one) following by a step-by-step assembly guide. The software
component provides the firmware of the drone and enables users
to execute any software that is supported on Linux. We provide
the necessary packages and configuration of the software setup.
Finally, as an example, we provide simple scripts for perf metrics
measurements while describing energy consumptionmeasurements
(requires an oscilloscope with high-frequency data logging and 30A
current probes).
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Note: For some artifacts, we provide two links: (1) The original link of
the software by the provider; and (2) our copied version path in the
open-source repository at the time of preparing this artifact. Please
make sure your PDF reader renders hyperlinks.
Note: You can use doi.org/10.5281/zenodo.4546174 to access the most
recent version, if any, after publish date.

A.2 Artifact Check-List
• Algorithm: Drone Firmware
• Program: Scripts in python and C++.
• Compilation: Python ≥ 2.7 and GCC version 6.3.0.
• Transformations:
• Binary: Will be compiled on the target platform.
• Run-time environment:
• Hardware: Raspberry Pi Model 3B+, Emlid Navio2
• Execution: command line, bash shell
• Metrics: Energy and available perf metrics
• Output: User measures energy consumption, perf produces
performance selected performancemetric on target platform.

• Experiments: Drone energy consumption and autopilot and
SLAM perf metrics.

• How much disk space required (approximately)?: 16GB SD
card

• Howmuch time is needed to prepareworkflow (approximately)?:
Around three hours for building the drone.

• Howmuch time is needed to complete experiments (approx-
imately)?: Less than an hour.

• Publicly available?: The guide is publicly available with CC
BY 4.0 license.

A.3 Description
A.3.1 How to Access: Hardware. Hardware components can be ac-
quired from any store. The complete list is provided in the hardware
dependencies section.

A.3.2 How to Access: Software. The Emlid operating system (OS)
image can be accessed here or /EmlidOS. For DroneKit, we recom-
mend installing Python pip utility and then obtaining DroneKit
from here or /DroneKit. MissionPlanner is available for Windows
and can be accessed using this link or /MissionPlanner.

A.3.3 Hardware Dependencies. The following hardware is required
to build the drone and run the experiments/code:

• Raspberry Pi Model 3B+
• Emlid Navio2 Kit
• 4 x 30 Amps ESC
• 4 x MT2213-935KV motors
• RC Controller with receiver
• 4-axis 450mm Drone Frame
• 4 x 1045 Drone Propellers
• 3000mAh 3S LiPo battery
• 915MHz telemetry kit
• PPM encoder
• GPS receiver mount
• 16 GB MicroSD Card
• USB Power Analyzer
• High frequency data analyzing oscilloscope with 30A capable probes

A.3.4 Software Dependencies. The drone OS and software pack-
ages are defined below.

• Emlid OS

• Python DroneKit (C++ version of DroneKit can also be utilized)
• MissionPlanner
• Microsoft Windows (Dependency for MissionPlanner; if needed)

A.4 Installation
A.4.1 Drone Assembly. The first steps are to assemble the drone.
An overview of the instructions are given below. For a more detailed
build guide with pictures please see /BuildGuide.

• First assemble the PI + NAVIO. Plug in the HAT into the GPIO pins
on the RPI.

• Solder the bullet connectors onto the motor connections.
• Solder the battery connector onto the Power Distribution Board
(PDB).

• Screw in the legs of the frame.
• Screw in the top plate to the frame.
• Attach motors to the frame according to the rotational direction
listed in the motor manual.

• Use double sided tape and attach Raspberry pi + NAVIO to drone
top plate.

• Use double sided tape and attach the PPM encoder to the frame.
• Connect the battery connectors to the PPM encoder.
• Stick the RC receiver onto the frame.
• Connect receiver to the NAVIO.
• Connect PPM outputs to NAVIO.
• Use zip ties and attach ESCs to the bottom of the legs.
• Assemble the GPS mount and zip tie it into the back-right leg (Note
: GPS unit must point North-South).

• Attach GPS on mount and connect GPS to NAVIO.
• Connect ESCs to motors and ESCs pwm to PPM encoder.
• Connect battery to battery connector.
• Finally connect TELEMmodule to HAT and stick module onto frame.

A.4.2 Drone Software Configuration. After building the drone, the
following software steps are needed to download and configure the
autopilot:

• Download the Emlid OS from here or /EmlidOS.
• Flash the downloaded .iso file to the MicroSD card (You can use
Etcher as a tool) and insert it into the Pi.

• Follow the first time setup community guide of Arducopter here or
/ArducopterWiki under “First Time Setup.”

• Next, it is critical to configure and calibrate the sensors and IMU.
Please follow guide, or /ArducopterWiki under “Mandatory Hard-
ware Configuration.”

• Expand the filesystem $sudo raspi-config –expand-rootfs.
• Install DroneKit $pip install dronekit.
• Configure autopilot to load on boot : $sudo emlidtool –on_boot=True.
• Review DroneKit docs or /DroneKitDocs to see how to use API.
• To spool up Arducopter, run $sudo systemctl daemon-reload
and then run $sudo systemctl restart arducopter.

• Note: RCIO Worker is a background helper service for Arducopter
and automatically starts when Arducopter is started.

A.4.3 Setting up and Configuring SLAM.

• Begin by installing Docker $curl -sSL https://get.docker.com
| sh.

• Add the correct permissions $sudo usermod -aG docker pi.
• Install Docker Compose $sudo pip3 -v install docker-compose.
• Clone our Github repository or /ParallelML-Drone, and change
directory to slam $cd drone/slam

• Download a sample image data set (here) or /EuroC-MH01Easy.
• Extract the data set in the slam directory.
• Run the command $docker-compose up -d.

https://doi.org/10.5281/zenodo.4546174
https://docs.emlid.com/navio2/common/ardupilot/configuring-raspberry-pi/
https://doi.org/10.5281/zenodo.4546174
https://pypi.org/project/dronekit/
https://doi.org/10.5281/zenodo.4546174
https://ardupilot.org/planner/docs/mission-planner-installation.html
https://doi.org/10.5281/zenodo.4546174
https://doi.org/10.5281/zenodo.4546174
https://docs.emlid.com/navio2/common/ardupilot/configuring-raspberry-pi/
https://doi.org/10.5281/zenodo.4546174
https://www.balena.io/etcher/
https://ardupilot.org/copter/docs/initial-setup.html
https://doi.org/10.5281/zenodo.4546174
https://ardupilot.org/copter/docs/configuring-hardware.html
https://doi.org/10.5281/zenodo.4546174
https://dronekit-python.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.4546174
https://github.com/parallel-ml/drone
https://doi.org/10.5281/zenodo.4546174
http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/machine_hall/MH_01_easy/MH_01_easy.zip
https://doi.org/10.5281/zenodo.4546174
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• SLAM is now running in the background.
• To stop SLAM run $docker-compose down.

A.5 Experiment Workflow
With a fully working drone, this section describes and provides
simple scripts for measuring performancemetrics (any performance
metric that is available to perf tool).

This repository or /ParallelML-Drone contain all the required
files (and a full backup of our SD card). Specifically, shell scripts
perf_ardu_slam.sh and perf_ardupilot_loop.sh execute sim-
ple experiments for Ardupilot and SLAM, respectively. Directory
boot_pi_backup/ contains a backup of our SD card. To use this
version, copy the files to SD card and rename it to boot.

A.6 Evaluation and Expected Results
Performance Metric Measurements: Execute above scripts by
passing the PIDs of ArduCoptert, RCIO_Worker, and SLAM (in this
order). Then, the scripts print several metrics for branches, cache
operations, and virtual memory management. The exact flags de-
pend on the particular architecture and we have fine-tuned them
for Raspberry Pi 3B+.
Energy Measurements: To perform energy measurements an os-
cilloscope with high-frequency data logging and 30A current probes
is required. The current probes are used to measure the current
on the input power wires from the LiPo battery. To measure en-
ergy (or energy/second), another probe measures the voltage of
the battery. By setting the oscilloscope function to multiply these
measurements, we can log energy per second of the entire drone.
To distinguish between Raspberry Pi, additionally, an in-loop USB
powermeter tomeasure Raspberry Pi power consumption is needed.
Non-flight measurements can be done while the drone is not active.
For flight-related measurements, flip the propellers so the drone
pushes to the ground (while consuming a similar amount of energy).
Paper Graphs: You can find the raw data from which the graphs
are constructed at /Drone-CSVs.

A.7 Experiment Customization
Users are free to change any part of firmware or write their own
application for the drone. Additionally, users may add any new
sensors or hardware components that is compatible with Raspberry
Pi or its GPIO protocols (e.g., I2C).

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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