
Quantifying the Design-Space Tradeoffs in Autonomous Drones
Ramyad Hadidi, Bahar Asgari, Sam Jijina, Adriana Amyette, Nima Shoghi, Hyesoon Kim

Georgia Institute of Technology
Atlanta, Georgia, USA

{rhadidi,bahar.asgari,sam.jijina,aamyette3,nimash,hyesoon}@gatech.edu

ABSTRACT
With fully autonomous flight capabilities coupled with user-specific
applications, drones, in particular quadcopter drones, are becoming
prevalent solutions in myriad commercial and research contexts.
However, autonomous drones must operate within constraints
and design considerations that are quite different from any other
compute-based agent. At any given time, a drone must arbitrate
among its limited compute, energy, and electromechanical resources.
Despite huge technological advances in this area, each of these prob-
lems has been approached in isolation and drone systems design-
space tradeoffs are largely unknown. To address this knowledge
gap, we formalize the fundamental drone subsystems and find how
computations impact this design space. We present a design-space
exploration of autonomous drone systems and quantify how we
can provide productive solutions. As an example, we study widely
used simultaneous localization and mapping (SLAM) on various
platforms and demonstrate that optimizing SLAM on FPGA is more
fruitful for the drones. Finally, to address the lack of publicly avail-
able experimental drones, we release our open-source drone that is
customizable across the hardware-software stack.

CCS CONCEPTS
•Hardware→ Analysis and design of emerging devices and
systems; •Computer systems organization→Embedded and
cyber-physical systems; Architectures.

KEYWORDS
autonomous drones, design-space analysis, open-source platform
ACM Reference Format:
Ramyad Hadidi, Bahar Asgari, Sam Jijina, Adriana Amyette, Nima Shoghi,
Hyesoon Kim. 2021. Quantifying the Design-Space Tradeoffs in Autonomous
Drones. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
’21), April 19–23, 2021, Detroit, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3445814.3446721

1 INTRODUCTION & MOTIVATION
Over the last decade, significant progress has been made in the
development of autonomous systems. The numerous advances in
drones popularized by quadcopters [1] is partly due to the countless

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446721

applications addressed by these systems, such as aerial mapping [2,
3], exploration [4, 5], military [6], natural disaster recovery [7],
search and rescue [8], ecology [9, 10], and entertainment [11–14].
The quadcopter design possesses many advantages over other aerial
vehicle designs in terms of simplicity and efficiency [15–17]. Thus,
quadcopters are becoming prevalent and many control, planning,
and perception methods have been assimilated for them [15, 18–28].

Nevertheless, drones must operate under conditions that are
quite different than any other compute-based agent. First, weight
and power are restrictive parameters in drones. Second, drones
must arbitrate between their limited compute, energy, and elec-
tromechanical resources not only based on the current tasks and
local conditions (e.g., wind, air temperature), but also according to
the flight plan. Despite huge technological advances in drones, these
problems have been approached in isolation, and the end-to-end
design-space tradeoffs are largely unknown.

As a result of such isolated problem solving, architecting end-to-
end drone systems and their computation landscape still remains
an open question. For example (Figure 1), if we are making a special
chip for drones, is it useful to improve processor performance and,
if yes, is it because of energy savings or better control? How useful
is improving processor power efficiency given that the majority
of power consumption is coming from resources other than com-
puting power? Should we focus on optimizing the flight-related
tasks, or should we focus on secondary tasks such as recognition
and autonomy? These questions pertain to creating cost-effective
solutions with low system integration cost, reasonable development
time, and effectiveness on drone metrics. Prior studies [29, 30] have
proposed a closed-loop simulator and benchmark suite, which does
not completely answer the above questions because it is focused
on high-speed drones (more in §6).

Making Special
Chips for Drones?

50mW

5W

make an ultra low-power chip?
focus on only one task?

Should we

Or should we

accelerate flight-related or
 secondary tasks?

trade power for generality?
focus on several tasks?
even accelerate tasks similar
 to other areas?

Understanding
design-space
tradeoffs are

critical to solve
correct set of

problems

?

Figure 1: Impactful contributions in drones are only realized
by quantifying the design-space tradeoffs.

To answer such questions and solve worthy research problems, we
need to understand fundamental drone subsystems, classify drone
computations and their requirements, extract design-space tradeoffs,
and have access to a reproducible experimental platform.

This is the first paper to formalize and quantify the design-space
tradeoffs of autonomous drone systems. To do so, first, we address
the lack of a publicly available and reproducible experimental drone

https://doi.org/10.1145/3445814.3446721
https://doi.org/10.1145/3445814.3446721
Ramyad
Author’s Copy

ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

Propulsion
Power

Control, Compute,
and Acquision

Understanding
Drone Subsystems

Section 2

Physical and Control
Systems Response

Quantifying
Tradeoffs

Stored Energy
Weight

Motor Thrust
Computation
Flight Time

Section 3

Computation Power
Footprint

Showcasing
Optimization

Optimizing SLAM
on Various
Platforms

Section 5

Impact of
Compute

Optimizations
On Flight Time

Building
Open-Source

Drone

Released Build
Guide & SW Stack

Section 4

Fully Customizable
Drone Across
HW-SW Stack

Figure 2: Sections overview.

framework that is customizable across its hardware-software stack
by releasing our open-source drone. Then, by exploiting this new
experience, we study the computational profile and landscape of
such systems, in which we must understand three major drone
metrics: flight time, control response time, and autonomous features.
Despite the extensive knowledge in our community, we discover
several missing pieces of the puzzle, described in the following.

(1) Flight time: Flight time is determined by the power con-
sumption of the drone during flight and the battery capacity. But,
the power consumption is dependent on several factors: drone
weight, motor types, flying activity, and several other factors. The
battery capacity also directly affects weight; a larger battery is
heavier, but has a higher capacity. (2) Control response time:
The control response time of a drone is determined by its con-
trol system. However, we do not know if additional computation
power would enhance this system. (3) Autonomous Features:
With several exciting new applications in drones, it is important
to understand how they interact with the main control system,
what their computation profile is, and know how to quantify any
opportunity for optimization.

To answer the aforementioned questions for flight time, after
introducing fundamental propulsion and power systems (§2.1.1,
§2.1.2), we extract crucial metrics from over 300 commercial compo-
nents and 150 manufacturers (§3.1) to find the major relationships
in determining the weight and power consumption of drones (§3.2).
Using the empirical measurements and physics, our method directly
translates compute power efficiency to flight time by untangling the
multifaceted relationships in drones. For instance, we quantify the
percentage of computation power from total power widely ranges
from 2–30%, enabling gaining of up to +5 minutes flight time.

In §2.1.3, we analyze the control system of drones, namely, inner-
loop and outer-loop controls. For instance, we discover that the
critical inner-loop controls in drones have an update frequency of
50–500Hz, which is not limited by computation power, but by the
physical response of the drone. Finally, in §2.2, we shed light on
the wide variety of autonomy in drones, current customized com-
pute boards for drones, and discover that these systems are highly
dependent on a core family of algorithms, namely, simultaneous lo-
calization and mapping (SLAM). Then, in Figure 2 in §3, we present
several important tradeoffs in drones, including the computation
power footprint. Next, in §4, we develop our open-source platform.
Finally, in §5, we showcase optimizations for SLAM on various
platforms. For instance, we show that moving from GPU/CPU to
FPGA provides 20x power savings, enabling 15–20% (+2–3 minutes)
of additional flight time in small drones.
This is the first paper to contribute the following:

• Formalizes the fundamental drone subsystems and quantifies
the design-space tradeoffs for the computational profile of drones
to discover how computation power consumption affects drone
flight time, accomplished by incorporating physics and empiri-
cal measurements from 300 commercial components and 150
manufacturers.

• Clearly separates the required computing for inner-loop con-
trols (real-time requirements) vs. outer-loop controls (autonomous
features) in drones and outlines the required computation amount
and benefits gained.

• Showcases the optimization landscape of the widely used SLAM
algorithm in autonomous drones and the effects on flight time
by using the presented data.

• Develops an open-source and reproducible platform with a
customizable hardware-software stack to address the lack of
publicly available drone platforms.

2 AUTONOMOUS DRONES
Autonomous drone subsystems determine several crucial properties
of a drone, and the associated design choices have a pivotal im-
pact on the effectiveness of the end-to-end system. However, each
subsystem has been studied in isolation. This section first briefly
introduces these subsystems, and then extracts necessary details
pertaining to computations.

2.1 Fundamental Subsystems
Figure 3 overviews the main subsystems for a quadcopter drone. We
divide the fundamental subsystems as follows: propulsion system,
which generates necessary force for movement and lift; power
delivery system, which delivers the power to electromechanical
components; and control, compute, and acquisition system, which
controls and stabilizes the drone with the help of sensors.

2.1.1 Propulsion System: Quadcopter drones utilize four identical
motor-rotors, two pairs of which spin in opposite directions, for the
generation of thrust (i.e., uplifting force). For maneuvers, drones
must precisely change the rotation speed of each rotor, which along
with their small size, necessitates electrical propulsion with batter-
ies. Thus, only direct current (DC) motors, specifically brushless
DC (BLDC) motors, are used. BLDC motors achieve higher rotation
speeds with improved control, while providing precise feedback
for measuring rotation speed. Nevertheless, BLDC motors require
complex and expensive electronic speed controllers (ESCs) (§2.1.2).

The physics behind the essential movements of quadcopters is
relatively simple, shown in Figure 4. By ignoring several complexi-
ties, covered in §2.1.3, all movements stem from the precise control

ESC

Flight Control Board
+ Processing Unit

TransmitterGround StationTelemetry

On-Board
Sensors:
IMU

Barometer

LiPo
Battery

Control & Monitoring

GPS

Additional
Sensors LiDAR

I2C
PWM

MAVLink
PPM/PCM/DSM

FramePropulsion

Figure 3: General overview of an autonomous drone.

Quantifying the Design-Space Tradeoffs in Autonomous Drones ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA

(a) Hover (b) Climb (c) Turn (Yaw)

1 2

3 4

(d) Move (Roll) (e) Move (Pitch)

Figure 4: Essential drone movements. Colored rectangles
near each rotor show how rotation speed changes, with red
representing decrease and green representing increase.

over each rotor’s thrust while accounting for several environmental
factors such as wind and air density. Drones use the same uplift
thrust for horizontal movements by tilting. The maximum horizon-
tal speed depends on the maximum stable angle of attack (i.e., tilt
angle), which depends on the thrust-to-weight ratio (§2.3).

2.1.2 Power Delivery System: Lithium polymer (LiPo) batteries
(lithium-ion polymer), which have the highest energy density (Wh/Kg)
and discharge rate (measures how fast the battery can be safely
discharged) in rechargeable lithium-ion technology, are the main
source of power in drones. Since BLDCmotors require high current,
the high current flow of LiPo batteries is a critical factor. However,
the downfall is that LiPo batteries are relatively fragile; only 85%
(LiPoDrainLimit) of their capacity should be used during a flight. LiPo
batteries have various configurations that are multiples of cells with
a nominal voltage of 3.7V/cell, studied in §3.1.

Each BLDC motor requires three-phase currents, which are gen-
erated by a separate ESC using DC current. The complexity of the
ESC circuits is evident, as they need a switching frequency of 60–
600KHz while delivering hundreds of Watts. ESCs also provide
necessary electronics to implement feedback to achieve precise
control of the rotation speed of their own microcontroller. ESC pro-
tocols usually go beyond PWM (pulse-width modulation) signals
for modern-day drones due to high precision in control (e.g., the
DShot1200 protocol has a communication frequency of 74.6 KHz).
The above criteria make ESCs one of the heavier components (§3.1).

2.1.3 Control, Compute, and Acquisition System.
A. Inner vs.Outer Loops:The recent advancements in autonomous
drone systems have mainly been accomplished with the devel-
opments of high-level algorithms in state estimation, trajectory
tracking, localization, and deep learning [18, 20, 21, 24–26, 28].
Nonetheless, such high-level algorithms (i.e., outer-loop compu-
tations) rely on and are directly impacted by the inner-loop con-
trol [15, 17, 22, 23] (Figure 6). High-level algorithms only provide
state targets, grouped into position, velocity, and attitude1, to the
inner-loop control. The inner loop reaches those target set points
over time by direct manipulation of the drone actuators while also
maintaining a stable flight. Furthermore, remote controller (RC)
commands and safety override commands pass through the inner-
loop to minimize response latency. Table 1 summarizes a handful
of dynamic effects, such as stabilization, that are compensated by
the inner-loop control for a stable flight, emphasizing inner-loop
control relative importance to the high-level algorithms.

B. Hardware-Software Stack: Figure 5 shows the hardware-
software stack abstraction of a drone. The flight controller boards
with additional on-board sensors directly manipulate ESCs and
sensors. Flight controllers have the following main components

1Defined as orientation of a solid body around three Cartesian axes.

Table 1: Unpredictable effects compensated by the inner-
loop control vs. decisions made by the outer-loop control.

Inner-Loop Control Outer-Loop Control

St
ab

iliz
at

io
n Wind gusts

Local disturbance
Atmospheric turbulences
In-door & close-to-object
Propeller flapping

Translational lift/thrust
Absolute speed
Weight imbalance
Motor imperfection
Angle of attack
Flight time
ESCs management

C
on

tro
l

Se
t T

ar
ge

t Position target
Attitude target
Velocity target
Navigation & trajectory
Obstacle Detection*
Planning

Ap
pl

ic
at

io
ns SLAM*

LiDAR Mapping
Sonar Mapping
…

* Some implementations are
 across inner and outer loops

(Table 4 provides some examples): (i) a microcontroller (MCU) usu-
ally STM32F 32-bit Arm Cortex-M series; (ii) one or two 6-axis
inertial measurement units (IMUs); (iii) a barometer, for altitude
measurements; (iv) and possibly several chips for sensors, video feed
codec, and communication. If necessary, external sensors with their
dedicated full-stack supporting system are added. The operating
system (OS) is dominated by Linux, except for racing applications.
The hardware abstraction layer (HAL) provides necessary APIs.
The shared libraries layer provides common sensor fusion algo-
rithms (e.g., Extended Kalman Filter). The control layer is described
in the next paragraph. The final application-specific flight code
layer largely depends on the application. Finally, the communica-
tion layer delivers stats to the ground station and, if necessary, a
MAVLink [31] protocol offloads computations to another node.

C. Inner-LoopControl: In the inner loop, the control layer uses
the on-board sensors to stabilize the drone and reach to target set
points dedicated by the outer loop. This layer extensively uses high-
performance hierarchical proportional-integral-derivative (PID)
controllers, whose filter response and quality of the estimated state
variables defines the drone behavior. The feedback loop is shown
in Figure 6 and is completed by sensor measurements. The control
is performed hierarchically2 by dividing the control problem into
three levels depending on their response time, shown in Table 2b,
known as time scale separation. The three levels are as follows:
High-level position or trajectory, mid-level attitude, and low-level
thrust controller [15, 16, 23, 32]. Based on Table 2, no higher update
and response frequency than 1 KHz is necessary, both for reading the
sensors and updating the controllers.

Hardware

Navio2

Pixhawk

Mateksys
F405

Fl
ig

ht
 C

on
tr

ol
le

r B
oa

rd
s

Ex
te

rn
al

Se

ns
or

s LiDAR

RGB-D Camera

OS Flight Code

Ha
rd

w
ar

e
Ab

st
ra

ct
io

n
La

ye
r (

HA
L)

Sh
ar

ed
 L

ib
ra

rie
s

(E
KF

, S
en

so
rs

)

Ap
pl

ic
at

io
n

Sp
ec

ifi
c

Fl
ig

ht
 C

od
e

(M
ap

pi
ng

, N
av

ig
at

io
n)

Co
nt

ro
l a

nd
 D

at
a

Ac
qu

isi
tio

n
Co

de

O
n-

Bo
ar

d
Se

ns
or

s IMU

GPS Linux

ROS

Chibi OS

BusyBox

FlytBase

M
ag

ne
to

m
et

er
Ba

ro
m

et
er

Communication

MAVLink

UI /
API

Ground
Station

API:
DroneKit

Off-Board
Compute Node

Figure 5: Hardware-software stack abstraction of a drone.

2Hierarchical controllers are a family of non-linear controllers that yield stability
and enhanced robustness, especially in the case of highly nonlinear dynamics (e.g.,

ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

Drone

Thrust
Contoller

Attitude
ControllerTrajectory

Controller

Velocity
Controller

Low-LevelMid-Level

High-Level
In

ne
r L

oo
p

O
ut

er
 L

oo
p

Position,
Velocity,
Attitude*
Targets

State
Report

*If the application requires attitude control by the outer-loop; otherwise, the control happens entirely
in the inner-loop. ** This feedback loop is usually implemented through attitude control because of
its slow response time

**

Figure 6: Inner- and outer-loop controls in drones. The
inner-loop controlmanipulates the drone actuators to reach
the target set points dictated by the outer-loop control.

Table 2: (a) Common data frequencies of on-board sensors.
(b) Update frequency and response time of each controller.

1KHz
200Hz
40Hz

Thrust
Attitude
Position

50ms
100ms
1s

Update Frequency Response TimeControllerSensor Data Frequency

(b) Controllers Update Frequency

Accelometer
Gyroscope
Magnetometer

Barometer
GPS

100–200Hz
100–200Hz
10Hz
10—20Hz
1—40Hz

(a) Sensors Data Frequency

Inner-Loop 50—500Hz N/A

D. Inner-Loop Control Computations: We summarized the
inner-loop control computation as two groups: (i) filter compu-
tations such as EKF for data fusion and updating PIDs, and (ii)
algebraic functions for state estimation such as air drag and tra-
jectory. The filter computations consist of keeping a history and
accumulated versions of previously observed measurements, their
derivative, and their integral. The state estimation includes 3x3
matrix operations based on the measurable state of the drone that
includes 𝑥 =

(®𝜁 , ¤®𝜁 , ®Ω, 𝑅), in which ®𝜁 ∈ IR3 is the position (using data
from the IMU, GPS, and barometer), ¤®𝜁 is the velocity (using IMU),
®Ω ∈ IR3 is the angular velocity (using IMU), and 𝑅 ∈ 𝑆𝑂 (3) is the
attitude (using IMU) of the drone [17, 32]. All control computations
are effectively performed by a STM32F 32-bit Arm Cortex-M, a
single-core processor with a frequency on the order of 100MHz,
in even high-speed racing drones. Although some research pro-
posals suggest replacing control-theory-based with learning-based
algorithms that require higher computation capabilities [27], the
consensus is that unless a new electromechanical part introduces
a drastically new response time, higher computation capabilities
are not required. For instance, the inner-loop update frequency in
high-end commercial products [33, 34] ranges from 50Hz to 500Hz.
Even for highly specialized sensor-based control techniques with
incremental nonlinear dynamic inversion (INDI) that can stabilize
a drone under powerful wind gusts [22], the update frequency is
still 500Hz. Thus, the update frequency of the inner-loop control is
50–500 Hz, which is limited by the physical response time and inertia
of the control and electromechanical components in drones and is not
limited by the computation power.

2.2 Autonomy in Drones
Autonomy in drones is realized by intelligently providing target
states (i.e., position, velocity, and sometimes attitude) with the
computation that occurs in the outer-loop control, as explained
air drag). There are other linear and non-linear controllers for drones [16], but they
follow a similar trend in their update frequency.

in §2.1.3. Although autonomy is a defined term in self-driving
vehicles, meaning to safely navigating from point A to B [35], such
a definition is not set in drones. For instance, mapping drones are
autonomous in the sense that they fly within a predefined airspace
while covering the entire area for mapping [3, 5, 10, 36]. Or, active-
filming drones use vision cameras and recognition technologies to
follow a predefined target and optimize the filming angles while
avoiding obstacles [1, 11, 33]. As a result, autonomy in drones is
still an active area of research and commercial products.

The outer-loop computations always occur in isolation, and the
hardware dedicated for such computations varies from quad-core
and Intel i7 CPUs in research-oriented studies [5, 21] to custom-
built computers based on NVidia Jetson TX2 [33, 37] or custom
Intel boards (e.g., Intel Aero compute board [38]) in commercial
products. From a computation perspective, to ensure that the inner-
loop control is in real time, the computations for autonomous tasks
in the outer-loop are not co-located on the same computation core or
even the same unit as for the inner-loop control.

We find a wide variety of high-level algorithms in autonomous
drones are dependent on a core family of algorithms, namely, si-
multaneous localization and mapping (SLAM) and visual odometry
(VO) [39–43]. These algorithms are the fundamental building blocks
for many autonomous technologies [19, 40, 44] and are used in vari-
ous tasks such as navigation, obstacle avoidance, and path planning.
Designing drone systems that provide accurate localization in real-
time on platforms with limited computational and energy resources
is an active area of research [18, 19, 24]. Therefore, to date, various
implementations of SLAM with the focus on algorithmic-level opti-
mizations [39, 41–43, 45] or hardware acceleration [44, 46–51] have
been proposed. We explore such hardware optimizations in §5.

2.3 Drone Design Metrics
Table 3 presents the the definition of metrics used in drones. Most
of the metrics are not standalone and are dependent on each other
based on the design choices covered in §3.

3 QUANTIFYING DESIGN-SPACE TRADEOFFS
To understand the computational profile in autonomous drones,
we must quantify the design-space tradeoffs that define several
important features such as flight time. This section quantifies each
tradeoff correlation with weight, which defines the order of power
consumption in a drone. Then, we derive how the computation
affects this design space.

3.1 Important Tradoffs
Battery Stored Energy & Weight: Drones predominantly use LiPo
batteries (§2.1.2), which constitutes a large fraction of a drone’s
weight. Although a higher capacity battery has more charge, the
additional weight may result in a shorter flight time (not to mention
the additional weight of sensors and computation units). Hence,
it is crucial to understand the relationship between the capacity
(mAh) and the weight of the batteries. Although the range of energy
densities of LiPo batteries are known, these values are insufficient
for accurate estimations for two reasons. First, we are interested in
the end product, which also includes casings, wires, and protection
circuits. Second, as the manufacturing process is not ideal with

Quantifying the Design-Space Tradeoffs in Autonomous Drones ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA

Table 3: Definition of important metrics.

Metric Definition

T
hr

us
t-
to
-

W
ei
gh

tR
at
io

(T
W

R
)

The maximum total thrust produced by the motors (g) divided
by the drone’s weight (g). Common ratios are from 2:1 to 7:1.
A higher ratio enables drone to perform elaborate aerobatics.
Higher ratios mean heavier motors, larger batteries, and ESCs
with a higher consumption. To find the highest possible contri-
bution boundary of computation power consumption, we use a
TWR of 2:1.

T
hr

us
tP

er
M
ot
or

Thrust that is produced by a motor depends on the propeller di-
ameter and pitch, supply voltage, 𝐾𝑣 rating, and motor design.
𝐾𝑣 rating is used to calculate the rotation speed (RPM), 𝜔 , of
the motor per supply voltage, 𝜔 = 𝐾𝑣 ×𝑉 . So, for a fixed volt-
age, a lower 𝐾𝑣 rating produces more torque and turns larger
propellers. A propeller with a larger diameter and pitch moves
a larger volume of air per rotor revolution and provides larger
thrust. The maximum propeller size is determined by the frame
size, or wheelbase.

D
is
ch

ar
ge

R
at
e

The battery discharge rate or C rating is a measurement of the
maximum continuous current a battery can safely supply. The
maximum continuous current from C rating is calculated as
Capacity(Ah) ×𝐶 = I.

B
at
te
ry

(x
Sy

P)

ALiPo battery has a nominal voltage of 3.7V/cell. To supplymore
voltage, cells are packed together in series. The convention is to
write the configuration as xPyS, which means x pack of y cells in
series. To provide a high thrust-to-weight ratio, we need motors
with a lower 𝐾𝑣 rating for higher torque, which means a higher
voltage is required to achieve good RPMs for lifting.

ES
C

M
ax

.
C
ur

re
nt

ESCsmust be able to supply constant current to themotors while
the drone is flying. The maximum continuous current value
shows how much current an ESC can handle, which directly de-
pends on the type of motor and propeller.

Fr
am

e
W

he
el
ba

se

The frame size or wheelbase is the distance between two diago-
nal arms of a quadcopter. The wheelbase defines the maximum
propeller diameter a drone can use. Indoor drones have a wheel-
base under 100mm, while outdoor drones have wheelbases up to
1000mm.

various discharge rates, estimation based on energy density is not
precise. To address this knowledge gap, we study 250 commercial
batteries. By grouping the batteries based on their configuration in
number of cells (see §2.3), we derived a linear relationship between
the capacity and the weight of the batteries, shown in Figure 7.
Generally, for batteries with higher voltages (for motors with higher
torque), we observe a higher overhead. However, these batteries are
necessary to lift the drone. The figure also includes discharge rates,
which result in heavier batteries, but the resulting weight does
not deviate from the extracted formulas per battery configuration.
Using the figure and extracted relationships, we can sweep stored
energy and the weight of the battery, necessary for deriving the
computational profile.

ESCs Current &Weight: ESCs provide high continuous current with
a high switching frequency (i.e., 6 × RPMrotor), both of which are
determined by the motor and TWR ratio. ESCs have large MOS-
FETs with high source-to-drain voltage and very high continuous
current. Therefore, the weight of ESCs are highly correlated with
the maximum continuous current they can handle. We extract this
correlation by studying 40 commercial ESCs, shown in Figure 8a.
We divide the ESCs into two groups: Short-flight (under 5 minutes)
ESCs, targeting racing drones; and long-flight ESCs, targeting all

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
Capacity (mAh)

0

500

1000

1500

W
ei

gh
t (

g)

6S1P (22.2v)
5S1P (18.5v)
4S1P (14.8v)
3S1P (11.1v)
2S1P (7.4v)
1S1P (3.7v)
y = 0.116x + 159.117
y = 0.118x + 45.478
y = 0.077x + 81.265
y = 0.074x + 16.935
y = 0.050x + 12.316
y = 0.019x + 4.856

20

40

60

80

100

120

Discharge
Rate

Figure 7: LiPo battery capacity and weight per configuration
(§2.3), extracted from 250 commercial batteries.

other use cases. In racing, ESCs are designed with lighter MOSFETs
and capacitors that overheat in longer flights.

Frames: A larger drone frame size leads to more choices in the
components, ability to house new sensors, and larger propellers.
However, evenwith carbon and glass fiber technology, the weight of
a frame is not negligible. Thus, we study 25 commercially available
frames in Figure 8b and extract the correlation between their weight
and wheelbase.

Propulsion System: The motors and propellers of drones have a
wide variety of configurations; thus, the tradeoffs of the propulsion
system are multifaceted and complex. The main deciding factor in
the process is the target TWR. Since we are interested in under-
standing the computational profile in the most efficient designs, we
set the target TWR to 2, the minimum required value for flying.
Thus, the derived values specify the highest percentage of possible
contribution of computation power. Figure 9 shows an extrapolated
relationship between the max current draw of the appropriate mo-
tors and the corresponding drone’s basic weight (i.e., not including
battery, ESCs, and motor weight) grouped by the supply voltage
(i.e., the cells of the LiPo battery). For each frame, we first set the
maximum propeller diameter in inches dictated by the wheelbase
(written in the legend). Then, we extract the thrust and 𝐾𝑣 rating
of the motors from data released by 150 manufacturers. Then, by
varying the weight and supply voltage, we calculate the minimum
required max current draw per motor. (Note that although the
choice of the motor influences some parameters of the controller,
the control frequency discussed in §2.1.3 would not exceed the
presented values.)

Our Drone:
Crazepony F450

220 Martian II

iFlight
BumbleBee

Readytosky
S500

Tarot T960

y = 1.2767x - 167.6| x>200

0
200
400
600
800

1000
1200
1400
1600

0 200 400 600 800 1000 1200

W
ei

gh
t (

g)

Wheelbase (mm)

Frames

50<y<200 x<200
y = 4.9678x - 15.757
y = 1.2269x + 11.816

0
50

100
150
200
250
300
350
400
450

10 20 30 40 50 60 70 80 90

W
ei

gh
t (

g)
 –

4x
 E

SC
s

Max Continuous Current (A) – Per ESC

/ Long / Short Flight

(a) (b)

Figure 8: (a) The maximum continuous current per ESC and
the total weight of ESCs, extracted from 40 ESCs. (b) Frame
wheelbase and its weight, extracted from 25 frames.

ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

420Kv

760Kv

940Kv

1030Kv

0

5

10

15

20

25

30

35

40

45

50

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

27
00

M
ot

or
 C

ur
re

nt
 D

ra
w

 (A
)

Basic Weight (g)

1S-800mm-20"
2S-800mm-20"
3S-800mm-20"
4S-800mm-20"
5S-800mm-20"
6S-800mm-20"

51000Kv

25000Kv

16000Kv

11300Kv

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

M
ot

or
 C

ur
re

nt
 D

ra
w

 (A
)

Basic Weight (g)

1S-50mm-1" 2S-50mm-1"
3S-50mm-1" 4S-50mm-1"
5S-50mm-1" 6S-50mm-1"
1S-100mm-2" 2S-100mm-2"
3S-100mm-2" 4S-100mm-2"
5S-100mm-2" 6S-100mm-2"

3500Kv

7750Kv

0

10

20

30

40

50

60

70

80

90

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

M
ot

or
 C

ur
re

nt
 D

ra
w

 (A
)

Basic Weight (g)

1S-200mm-5"
2S-200mm-5"
3S-200mm-5"
4S-200mm-5"
5S-200mm-5"
6S-200mm-5"

1720Kv

2440Kv

29880Kv

3270Kv

0

10

20

30

40

50

60

70

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

M
ot

or
 C

ur
re

nt
 D

ra
w

 (A
)

Basic Weight (g)

1S-450mm-10"
2S-450mm-10"
3S-450mm-10"
4S-450mm-10"
5S-450mm-10"
6S-450mm-10"

(a) 50mm & 100mm (b) 200mm (c) 450mm (d) 800mm

Min. Possible
Weight Line Min. Possible

Weight Line

Min. Possible
Weight Line

Min. Possible
Weight Line

TWR=2TWR=2 TWR=2 TWR=2

Figure 9: Relationship between themaxper-motor current drawand the basicweight, grouped by supply voltage andwheelbase
sizes from 50mm–800mm. TWR is 2 and data is extracted from 150 manufacturers.

Table 4: Specifications of common flight controllers, com-
pute boards, and external sensors for drones.

Name Weight (g) Power

Flight Controllers & Computation

B
as
ic

iFlight SucceX-E F4 [57] 7.6 <100mA@5V
DJI NAZA-M Lite [58] 66.3 300mA@5V
DJI NAZA-M V2 [59] 82 300mA@5V
Pixhawk 4 [60] 15.8 400mA@5V
MateksysF405 [61] 17 200mA@5V

Im
pr

ov
ed Intel Aero [38] 30 2A@5V

Navio2 [62] 23 150mA@5V
Raspberry Pi 4 [63] 50 1A@5V
Nvidia Jetson TX2 [64] 85 2A@5V
DJI Manifold [37] 200 20W

External Sensors

FP
V Eachine Bat 19S 800TVL 8 50mA@5V

RunCam Night Eagle 2 [65] 14.5 200mA@5V

Li
D
A
R HoverMap [66] 1800 50W, Self-Powered

YellowScan Surveyor [67] 1600 15W, Self-Powered
Ultra Puck [68] 925 10W, Self-Powered

In Figure 9, we see that heavier drones have motors with higher
𝐾𝑣 ratings for higher rotation speeds. Moreover, in larger wheel-
bases, larger propellers are needed to lift the drones. This is be-
cause it is physically impossible to use smaller propellers with high
RPMs. These large propellers require higher torque from the motors.
Thus, these motors have a lower 𝐾𝑣 rating (compare 𝐾𝑣 ratings in
Figure 9a vs. b). However, because of their larger size (to create
the necessary torque, the motors have a greater number of poles
and larger diameters), these motors are much heavier (e.g., from
5 g/motor in 100mm drones to 100 g/motor in 1000mm drones).

Flight Controllers, On-Board Computation, & Sensors. Table 4 lists
common open-source and commercial flight controllers, additional
computation boards, and external sensors. All of the flight con-
trollers have an integrated STM32F Arm Cortex-M processor se-
ries as the main inner-loop controller (§2.1.3). We divide the flight
controllers into two groups: basic, which provides only necessary
inner-loop functions with limited outer-loop capabilities; and im-
proved, which provides customizable inner-loop functions and a
few outer-loop functions. In commercial markets [33, 37, 38], the
Nvidia Jetson TX2 embedded board is considered a high-end solu-
tion with a price of $300. The power consumption of these compute
boards ranges from 0.5–20W. Therefore, in the following section,

we assumed two levels of power consumption: a 3W and a 20W
chip, representing basic and advanced flight controllers, respec-
tively. For external sensors, we list the first-person view (FPV)
cameras with a maximum of 1W consumption. High-definition
(HD) cameras are self-powered with weights around 100 g. Specific
LiDAR solutions optimized for drone technologies are also listed in
the table for completeness. All options are stand-alone and weigh
around 1 kg. To make integration easier, state-of-the-art LiDAR
solutions have their own battery and compute boards. We study
how the addition of these sensors due to their weight, reduces the
contribution boundary of main computation power in large drones.

3.2 Computation Footprint
Procedure: To understand the computational profile, we derived
the total power consumption of a wide range of drones from small
indoor drones (100mm wheelbase) to large military and filming
drones (800mm wheelbase). We use §3.1 extracted data while ac-
counting for the additional weight and power consumption of each
module. In detail, per each frame (Figure 8b), we choose the pro-
peller with the maximum size, find the required RPM for the motors,
and choose the best matching motor depending on the number of
cells in the LiPo battery, while sweeping the range in the capacity
of the batteries from 1000mAh to 8000mAh (Figure 7, Equation 4).
Then, from the maximummotor current draw (Figure 9, Equation 2),
we choose ESCs (Figure 8a). In this step, if the additional weights
necessitate a new motor, we redo the previous steps (Equation 1).
By assuming a low-load hovering condition (FlyingLoad, 20–30% of
the maximum current draw) with 85% LiPo battery capacity limit
(LiPoDrainLimit), we calculated the power consumption (Equation 7),
shown in Figures 10a,b, and c for 100, 450, and 800mm wheelbases.

WeightTotal = F(4𝑊Motor,𝑊ESC,𝑊Battery,𝑊Frame,

𝑊Propellers,𝑊Compute,𝑊Sensors,𝑊Wires) (1)
MotorCurrent = G(WeightTotal, TWR) (2)

PowerAvg = H(MotorCurrent .BattV,%FlyingLoad,
PowerCompute, PowerSensors) (3)

BattCapacity = M(LiPoCapacity,%PowerEff,%LiPoDrainLimit) (4)

FlightTime = N(BattCapacity, PowerAvg) (5)
%PowerComputation = X(PowerAvg, PowerCompute) (6)

+FlightTimeCompute = Z(%PowerComputation, FlightTime) (7)

Quantifying the Design-Space Tradeoffs in Autonomous Drones ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA

Best Configuration with
19 Minutes Flight Time

0

100

200

300

400

500

600

700

800

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Drone Weight (g)

1S Batteries
3S Batteries
6S Batteries
Our Drone
DJI Phantom 4

Best Configuration with
23 Minutes Flight Time

0

100

200

300

400

500

600
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Drone Weight (g)

1S Batteries
3S Batteries
6S Batteries
DJI MAVIC
DJI SPARK
SKYDIO2
Parrot Bebop 2
Parrot Anafi

(a) 100mm (b) 450mm (c) 800mm

Best Configuration with
22 Minutes Flight Time

0

50

100

150

200

250

300

350

400

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Drone Weight (g)

1S Batteries
3S Batteries
6S Batteries
DJI MATRICE

Short Flight Time (<5min)
Short Flight Time (<5min)

0

5

10

15

20

25

30

35

40

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

%
 C

om
pu

ta
ito

n
Po

w
er

Fr
om

 T
ot

al
 P

ow
er

Drone Weight (g)

20W Computation @ Hovering
20W Computation @ Maneuvering
3W Computation @ Hovering
3W Computation @ Maneuvering

0

5

10

15

20

25

30

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

%
 C

om
pu

ta
ito

n
Po

w
er

Fr
om

 T
ot

al
 P

ow
er

Drone Weight (g)

20W Computation @ Hovering
20W Computation @ Maneuvering
3W Computation @ Hovering
3W Computation @ Maneuvering

0

5

10

15

20

25

30

35

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

%
 C

om
pu

ta
ito

n
Po

w
er

Fr
om

 T
ot

al
 P

ow
er

Drone Weight (g)

20W Computation @ Hovering
20W Computation @ Maneuvering
3W Computation @ Hovering
3W Computation @ Maneuvering

(d) 100mm (e) 450mm (f) 800mm

Extremely High Kv
Motor requirements

Extremely High Kv
Motor requirements

Short Flight Time
(<5min)

Scaled

Short Flight Time
(<5min)

Short Flight Time
(<5min)

Figure 10: Top Row (a,b,c): The total power consumption of drones with various wheelbases extracted by relationships in
Equation 3.2 and verified with data from commercial drones shown as additional data points [33, 52–56]. Bottom Row (d,e,f):
The computation footprint considering 3W and 20W chips shown with 3/20W computation @ hovering/maneuvering lines.

Validation:We validate our data by adding commercial drone data
using the released flight times and battery configurations [33, 52–
56], shown as additional diamond-shaped data points in Figure 10.
No data skewing or pre-selection is used for extracting tradeoffs.
We also verify the average power consumption by calculating the
total flight time to match with current state-of-the-art commercial
drones, resulting in 23, 19, and 21 minutes for 100, 450, and 800mm
wheelbases, respectively.
Interpretation: Figures 10d,e, and f illustrate the percentage of
computation power from the total power of a drone in two groups
with hovering and maneuvering (20–30% and 60–70% of the maxi-
mum current draw, respectively). The first group with a 3W com-
pute power represents a commercial ultra-low-power flight con-
troller. The second group with a 20W compute power represents
a GPU-CPU system with much higher capabilities. First, we see
that the 3W chips have less than 5% contribution in total power
consumption. Second, even for the 20W system, when the drone
moves, the contribution drops to an average of 10%. Moreover, we
see jumps that occur because heavier drones need batteries with
more cells to provide higher voltage for higher KV motors. How-
ever, initially, those batteries are less efficient than the batteries
used for lighter drones. Also note that these drones have a target
TWR of two; hence, the contribution shown is at its highest. To
quantify, we can convert this power savings to extra gained flight
time (see Equation 7. In large- to medium-sized drones, the average
computation power is 10% of the total power and the maximum gain
of computation power savings is with +2 minutes in total flight time
and possibly less considering maneuvering and higher TWR values.

0
5
10
15
20
25
30
35
40

0
50

100
150
200
250
300

Parrot
Mambo

Parrot
Anafi

DJI
SPARK

DJI MAVI
Air

Parrot
Bebop 2

SKYDIO
2

He
av

y
Co

m
pu

ta
tio

n
Po

w
er

Co

nt
rib

ut
io

n
in

 H
ov

er
in

g
(%

)

Po
w

er
 (W

)

Hovering Flight Power Maneuvering Flight Power
Heavy Computation Power (%) Flight Time

Fl
ig

ht
 T

im
e

(m
in

)

0
5
10
15
20
25
30
35
40

0
50

100
150
200
250
300

Parrot
Mambo

Parrot
Anafi

DJI
SPARK

DJI MAVI
Air

Parrot
Bebop 2

SKYDIO
2

He
av

y
Co

m
pu

ta
tio

n
Po

w
er

Co

nt
rib

ut
io

n
in

 H
ov

er
in

g
(%

)

Po
w

er
 (W

)

Hovering Flight Power Maneuvering Flight Power

Heavy Computation Power (%) Flight Time

Fl
ig

ht
 T

im
e

(m
in

)

Figure 11: Commercial small-sized drones’ heavy computa-
tion power contribution and their flight time.

For small-sized drones, the tradeoff between the computation
and flight power is more critical. In addition to Figures 10a and d, we
also study the power consumption of nano and micro commercial
drones’ power consumption, outlined in Figure 11 [33, 52, 54, 56, 69,
70]. For these drones, when hovering, the power consumption is
from 2–7%. Nevertheless, when hovering with heavy computations
(e.g., face recognition, HD video recording), the contribution of
computations in total power consumption reaches 10–20% (shown
with a yellow line in Figure 11). Thus, in small drones, by optimizing
heavy computations such as SLAM and deep learning workloads, we
can potentially increase the flight time by up to 20%, or around +5
minutes in total flight time.
How to Use This Data: Figure 12 illustrates the procedure for
how to obtain the total and compute power consumption of a drone
depending on its size and battery capacity. Thus, we can understand
how power savings or special chips affects the flight times and
weights for all drones. We showcase SLAM in §5 as an example.

ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

Calculate Flight Time
Battery Capacity (Fig7)
Total Power (Fig10,11)

Compare with Commercial Drones (Fig10,11)

Targeting Drone Applications
How to Accurately Quantify the Benefits?

Does drone need:
Extra sensors? (Table4)
Extra compute? (Table4)
Extra Payload?

If yes: add weight
larger frame

Start with a small frame
 Drone weight is ~4x of
 its frame weight (Fig9)

Estimate Weight

Total Weight

Battery Weight &
 Capacity (Fig7)

Motor Draw (Fig8)

Estimate Lift Power
(TWR=2)

Select a Battery

Add ESC Weight
based on Motor (Fig9)
Add Motor Weight

(100g—300gr)

Battery Capacity

Inner-loop? / Outer-loop?
(Table1)

Select Application(s)
for Optimization

(Section 5, SLAM example)

Inner Loop: Optimization
 Targets (Table2)
Outer Loop: Check [29,30]

Architecture & System
Magic

Compute Power
Consumption

% Compute Power
from Total Power

Total Gained Flight Time

Figure 12: Procedure of quantifying total/compute power
consumption in drones.

4 OUR OPEN-SOURCE DRONE

Figure 13: Our Drone.

To address the lack of pub-
licly available end-to-end ex-
perimental and reproducible
frameworks for drones, we de-
velop and fly test a fully open-
source experimental drone that
is fully customizable across its
hardware-software stack. We
integrate several widely-used hardware/software components. This
platform reduces the barriers to entry to drone research3, shown in
Figure 13, and has a total cost of $500 with the ability to carry 200g
additional payloads. The components, as far as they are compatible
(e.g., voltage, connections), can be easily switched/added to the
drone. The current available alternatives do not provide full access
to the hardware-software stack and have no extra-weight capacity.

Hardware-Software Ecosystem: With the backing of the Navio2 [62]
for crucial flight inner-loop control, our drone uses a Raspberry
Pi[63] (RPi) with a maximum power of 5W. We integrate high-
level autonomous flying firmware [71] to run advanced waypoint
navigation algorithms and autonomously execute certain actions
based on the results of the SLAM algorithm [72]. The following
sections overview the four layers of the drone’s ecosystem.
(1) High-Level Functions: The high-level functions layer consists
of high-level and low-level APIs which are used to write custom
code and firmware. The custom firmware is converted to a Linux
service and run on the Pi in the background. We also utilized the
DroneKit [73] C++ and Python APIs, which were modified to al-
low the drone to be reconfigured mid-flight. DroneKit allows us
to connect to the drone, issue flight commands, and monitor the
drone. Apart from being open-source, DroneKit is easily extensible
and provides the flexibility to be used on on-board computers as
well as ground-station applications by abstracting away physical
MAVLink [31] protocols.

3The ACM artifact link on the first page or doi.org/10.5281/zenodo.4546174 for
the most recent version. This open-source repository includes guide to build the drone,
data sources of §3, and software stack of the drone.

(2) Autopilot: ArduCopter[71] is an open-source autopilot code-base
for drones with great versatility. ArduCopter, written in C++, allows
for manual flying/autonomous control. Our modified Linux kernel
allows ArduCopter to utilize loop-back ports to listen to commands
being issued by external applications executing on other computers
(e.g., RPi). The ArduCopter binary, once compiled with WAF [74],
runs several Linux daemons[75] with distributed roles.
(3) Modified Linux Kernel: The Linux kernel is modified to support
the Preempt_RT patch, which enables the Linux operating system
to become suitable for drones. Using this, we can completely shut
down an instance of a drone mission and spool up a new mission
while the drone is in mid-flight, safely and securely using WAF [74].
The Linux kernel is also modified to support continuous loop-back
and server instances so the drone can be controlled using multiple
devices such as through 915Mhz telemetry or a laptop through
Secure Shell (SSH).

25%

23%
21%

10%

5%

4% 3%
2%

2% 2% 1% 1% 1%

25%

23%
21%

10%

5%
4% 3%

2%
2% 2% 1% 1% 1% Frame

Battery
Motors
ESC
Rpi
Propellers
GPS
Navio2
Misc
RC Receiver
Telemetry
Power Module
PPM Encoder

272 g
248 g
220 g
112 g

50 g
40 g
30 g
23 g
20 g
17 g
15 g
15 g

9 g

25%

23%
21%

10%

5%
4% 3%

2%
2% 2% 1% 1% 1% Frame

Battery
Motors
ESC
Rpi
Propellers
GPS
Navio2
Misc
RC Receiver
Telemetry
Power Module
PPM Encoder

272 g
248 g
220 g
112 g

50 g
40 g
30 g
23 g
20 g
17 g
15 g
15 g

9 g

Figure 14: Our droneweight
breakdown.

(4) Flight Controller: We use
the Navio2 controller with a
Cortex-M3 co-processor, GPS,
and 2x IMUs. Navio2 has
generic GPIO pins for any
compute board and provides
connection to our RPi. During
flight, the RPi sends signals to
the board that are decoded by
the controller.
(5) Hardware Control Surfaces:
The controllable hardware
consists of sensors, four mo-
tors, and ESCs. The weight
breakdown of our drone is
shown in Figure 14, which
shows similar trends as shown
in §3.1. The frame, battery, motors, and ESCs are the major compo-
nents contributing to the weight.

A New Platform Different From Current Platforms: Several popular
commercial drones such as the CrazyFlie [76] or the PlutoX [77]
have drastic tradeoffs between performance and flight time while
limiting user access to flight code or being unable to carry addi-
tional payloads. Moreover, they can be configured only for limited
purposes. With our drone, our goal is to minimize that tradeoff
and give users the power to import both high- and low-level (i.e.,
inner- and outer-loop) functions. Our drone can be configured for
a variety of research purposes because the hardware stack is con-
figurable. Moreover, we use Linux with the RT-Preempt patch to
allow for a wide range of applications while enabling the control of
the drone and parameters in real time. We choose the Navio2 flight
controller because it is easily configurable for different applications
and grants complete access to all control systems.

5 SHOWCASING OPTIMIZATIONS
This section exhibits the impacts of design optimizations on per-
formance and power consumption and concludes with the impact
of optimization on flight time. To study this, we explore offloading
ORB SLAM onto various hardware platforms.

https://doi.org/10.5281/zenodo.4546174

Quantifying the Design-Space Tradeoffs in Autonomous Drones ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA

Experimental Setup & Platforms: Our baseline platform to execute
autopilot and SLAM (ORB SLAM [72]) is a RPi4 [63]. We measure
the power consumption of the RPi using a USB digital multimeter
that records measurements once every half second (± 10mW). The
power consumption of the entire drone is measured with a digital
oscilloscope by measuring both current and voltage every 20ms
(± 0.5mW) of the battery while controlling the drone. To measure
performance at the instruction level, we used Linux perf and carried
out analysis while the entire software-hardware stack is in loop.
Our hardware platforms for implementing SLAM include a separate
RPi4 [63], Nvidia Jetson TX2 [64, 72, 78], and a ZYNQ XC7Z020
FPGA on a PYNQ-Z1 embedded board. All the SLAM experiments
run with the relevant EuRoCmicro aerial vehicle dataset [79], while
confirming SLAM key metrics.

For FPGA implementation, we use Xilinx Vivado HLS and de-
scribe our tailored microarchitecture in C++ by using relevant #pra-
grma. We use the post-implementation resource utilization, power
consumption, and latency reported by Vivado. Inputs and outputs
of the accelerator are transferred through the AXI stream interface.
The clock frequency is set to 100MHz. Similarly, we use the Eu-
RoC dataset. For ASIC comparisons, we use the 20mm2 Suleiman
et al. implementation on ASIC, in 65nm CMOS [19]. Navion is a
visual-inertial odometry (VIO) accelerator that does not include
the full-loop feedback of SLAM; nevertheless, it offers the order of
power consumption in ASIC implementations. Navion processes
the EuRoC dataset in real-time at 20 frames per second (FPS) while
consuming a maximum of 24mW.

5.1 Running Autopilot and SLAM on RPi
Performance: When running SLAM along with the autopilot on
an RPi, SLAM in not only not fast enough, but also it negatively
impacts the performance of the autopilot. For instance, the pres-
ence of SLAM causes 4.5× as many TLB misses as the autopilot

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
2
4
6
8
10
12
14
16

Autopilot
SLAM

Autopilot w/ SLAM

LLC Miss Rate
Branch Miss Rate
IPC

% IP
C

Figure 15: Performancemetrics
for SLAM and autopilot on RPi.

alone causes. Similarly,
we observed that the LLC
and branch-predictionmiss
rates of the autopilot
with SLAMare also higher
than those when running
the autopilot solely, as
the primary axis in Fig-
ure 15 shows. Addition-
ally, as the secondary
axis in Figure 15 shows,
the IPC of the autopi-
lot decreases by 1.7×.
These observations indi-
cate that by running a
few additional workloads, specifically heavy ones, the real-time re-
sponse of the autopilot will lag and we will miss several outer-loop
deadlines. Although the outer-loop control is not directly related
to the control system, improving the performance of processors is
necessary to handle heavy computations by new workloads.

Power Consumption: Figure 16a shows the power consumption
graph of the RPi during flight. We measure the power consumption
of the RPi while it is executing the autopilot software, SLAM, and

0
50
100
150
200
250
300

0 10000 20000 30000 40000 50000

Disconnected power Pi is on; Autopilot is running
Autopilot + SLAM (idle) Autopilot + SLAM (flying)
Pi is shutdown; still supplying power to Navio2 & Components

Po
w

er
 (W

)

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800

Po
w

er
 (W

)

Time (s)

Disconnected power Pi is on; Autopilot is running
Autopilot + SLAM Autopilot + SLAM + Flight Script
Pi is shutdown; still supplying power to Navio2 & Components

(a) RPi Power

(b) Entire Drone Power

Ta
ke

 o
ff Landed

Maneuver

0

2

4

6

0 100 200 300 400 500 600 700 800

Po
w

er
 (W

)

Time (s)

Figure 16: Power consumption graph of (a) RPi executing
SLAM and autopilot code and (b) entire drone during flight.

flight script (i.e., pre-set commands for autopilot). The average
power consumption of the RPi when executing the autopilot is
3.39W, which increases to 4.05W when we start SLAM, but the
drone is not flying yet (SLAM is idle). Finally, when the drone
flies and SLAM actively processes input data, up to 5W of power
is consumed and the average power consumption of RPi reaches
4.56W – we use these numbers to estimate heavy computation
power consumption in Figure 11. Thus, by offloading SLAM onto a
low-power platform such as ASIC/FPGA, we can potentially save
up to 2W, which would have a high impact for small drones (e.g.,
Parrot Mambo [69]). Figure 16b depicts the power consumption
graph of the entire drone, with an average of 130W. In Figure 10, this
130W is only with 30% of the flying load. The power consumption
goes as high as 250W in higher loads (58% flying load) with simple
movements. In maneuvering (Figure 10d–f), the contribution of
computation power consumption reduces significantly.

5.2 Offloading SLAM to Hardware Accelerators
Besides preventing lags in the responses of the autopilot, offloading
SLAM to a hardware accelerator (i) improves the performance of
SLAM and (ii) helps extend the flight time by consuming less power.
This section explores these two aspects by implementing SLAM on
our three hardware platforms.

SLAM performance: Figure 17 shows the time to process each Eu-
RoC dataset while executing ORB SLAM on a RPi4 (with no other
application), TX2, and FPGA. Our FPGA implementation exten-
sively accelerates the local and global bundle adjustments of ORB
SLAM (≈90% of execution time on RPi) by using simple modules
of dense fixed-size matrix algebra in a pipeline. For further accel-
eration, we also integrate eSLAM design [51], which accelerates
feature extraction. Running SLAM on a separate RPi improves its
performance by 2.3× (IPC from Figure 15). As Figure 17 illustrates,
the TX2 and FPGA implementations are 2.16× and 30.7× faster than
the implementation of SLAM on the RPi. As a result, all these im-
plementations, including the slowest, meet the rate of sensors (e.g.,
cameras and LiDARs), even those with more than 100 FPS. Although
all design choices satisfy the real-time requirement, they provide a

ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

0
5

10
15
20
25
30
35
40

TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA TX

2
FP

GA TX
2

FP
GA

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Feature Extraction/Matching Local Bundle Adjustement (BA)
Global Bundle Adjustement (BA)

Sp
ee
du

p
(o

ve
r R

Pi
)

TX
2

FP
GA

GMean

2.
16

30
.7
0

GMEAN

Figure 17: ORB SLAM speedup over RPi for TX2 and FPGA
by category: feature extraction and bundle adjustments.

400x landscape in power consumption. Therefore, the question is,
how should we navigate 400x landscape in power consumption?

Flight time: Offloading SLAM (or any other heavy compute) to a
hardware accelerator reduces power consumption, but adds weight
to the system. This section explores the combined effect on flight
time. The power consumption of our FPGA implantation is 417mW,
compared to ASIC with 24mW [19]; RPi with 5W; and TX2 with
10W. Since, on average, our drone consumes 130W, saving 10W
by moving from TX2 to FPGA gives us +1 minute of flight time
(≈ 10/140 × 15min). For small drones moving from CPU/GPU to
FPGA with 20x in power savings, there is a reduction on the power
consumption of approximately 15-20%, enabling an additional +2–3
minutes of flight time (≈ 10/50× 15min). But, the lengthy process of
special ASIC chip fabrication to gain an additional 20x power sav-
ings (saving 400mW) earns us only a few seconds. Table 5 combines
the results for the cost of various platforms for executing SLAM
on drones by assuming RPi as the baseline. Since TX2 consumes
more power and is heavier, the gain in flight time is negative. Both
FPGA and ASIC have almost identical impacts on flight time for
large drones and small drones (only 20 seconds in additional flight
time for ASIC in small drones). However, ASIC integration and
fabrication costs are extremely high, which renders FPGA as the
best platform even though it consumes more power.

6 RELATEDWORK
Prior studies [29, 30] have proposed a closed-loop simulator and
benchmark suite for autonomous tasks in drones, mainly focus-
ing on outer-loop tasks, which is not the main focus of this paper.
The discussions only pertain to high-speed drones. In contrast to
the assumptions made, we argue that, first, the mission planning
computation does not increase hovering time since mission plan-
ning has relaxed deadlines [80]. Even in high-speed, indoor, and
cluttered environments, new algorithms have been proposed to

Table 5: Comparing costs of various platforms for SLAM.

Platform RPi TX2 FPGA ASIC

SLAM Speedup 1x 2.16x 30.70x 23.53x

Power Overhead (W) 2 10 0.417 0.024

Weight Overhead (g) ≈50 ≈85 ≈75 ≈20
Integration Cost Low Low Medium High

Fabrication Cost Low Low Medium High

Gained Flight
Time (min) †

Small Drones 0 ≈-4 ≈2–3 ≈2.2–3.2
Large Drones 0 ≈-1.5 ≈1 ≈1

† Baseline flight time is 15 minutes.

enable fast planning [21, 28]. Second, collision detection does not
necessarily require heavy computations (e.g., using laser-range, in-
frared, or RGBD sensors, or even microcontroller) [81–84]. Third,
localization is a highly active research area and does not necessar-
ily limit current drone speeds (e.g., real-time odometry and NASA
JPL’s autonomous racing) [14, 24, 85]. Finally, described conclusions
in [29, 30] are based on maximum drone acceleration, the value of
which is not readily known from the specifications. Authors have
early versions of this work published [86, 87].

7 CONCLUSIONS
This is the first paper that (i) formalized fundamental drone subsys-
tems and quantified how computation power consumption varies
in drones and affects the design-space parameters such as flight
time; (ii) studied required computing for inner-loop control; and
(iii) proposed an open-source drone framework and explored the
acceleration landscape of SLAM, while motivating further research
within the community. We found that although the outer-loop con-
trol is not directly related to real-time control systems due to the
nature of heavy computation, it has to consider deadlines; and
thus improving the performance of processors is important. For
the inner-loop which controls real-time hardware, the amount of
computation is relatively low, so low-end embedded computing
platforms are satisfactory. However, due to the critical nature of
the inner-loop control, all drones have dedicated processors for
it. We found that for small drones, improving power efficiency
is translated into an increase in flight time, but for heavy drones
(>≈2 kg), the improvement in power efficiency does not have an
effect. Therefore, FPGA implementations provide the most cost-
effective solution for small and large drones.

It is worth mentioning that the studied tradeoffs are different for
nano and pico droneswith a total power consumption of 100mW[19,
88–91]. We did not focus on such drones because these drones are
extremely customized (from physics to material sciences), so it was
not possible to study them within the same framework. Further-
more, we used the minimum TWR of 2. A detailed evaluation for
other TWR values can be done in a similar way, released in our
repository, which results in a lower contribution of computation
power consumption.

A ARTIFACT APPENDIX
A.1 Abstract
This artifact describes our open-source experimental drone frame-
work that is customizable across its hardware-software stack. The
main portion of the artifact focuses on building the drone, which
compliments the beginning sections of the paper. The build guide
consists of two parts: hardware and software. The hardware guide
presents a list of required hardware components (accessible to any-
one) following by a step-by-step assembly guide. The software
component provides the firmware of the drone and enables users
to execute any software that is supported on Linux. We provide
the necessary packages and configuration of the software setup.
Finally, as an example, we provide simple scripts for perf metrics
measurements while describing energy consumptionmeasurements
(requires an oscilloscope with high-frequency data logging and 30A
current probes).

Quantifying the Design-Space Tradeoffs in Autonomous Drones ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA

Note: For some artifacts, we provide two links: (1) The original link of
the software by the provider; and (2) our copied version path in the
open-source repository at the time of preparing this artifact. Please
make sure your PDF reader renders hyperlinks.
Note: You can use doi.org/10.5281/zenodo.4546174 to access the most
recent version, if any, after publish date.

A.2 Artifact Check-List
• Algorithm: Drone Firmware
• Program: Scripts in python and C++.
• Compilation: Python ≥ 2.7 and GCC version 6.3.0.
• Transformations:
• Binary: Will be compiled on the target platform.
• Run-time environment:
• Hardware: Raspberry Pi Model 3B+, Emlid Navio2
• Execution: command line, bash shell
• Metrics: Energy and available perf metrics
• Output: User measures energy consumption, perf produces
performance selected performancemetric on target platform.

• Experiments: Drone energy consumption and autopilot and
SLAM perf metrics.

• How much disk space required (approximately)?: 16GB SD
card

• Howmuch time is needed to prepareworkflow (approximately)?:
Around three hours for building the drone.

• Howmuch time is needed to complete experiments (approx-
imately)?: Less than an hour.

• Publicly available?: The guide is publicly available with CC
BY 4.0 license.

A.3 Description
A.3.1 How to Access: Hardware. Hardware components can be ac-
quired from any store. The complete list is provided in the hardware
dependencies section.

A.3.2 How to Access: Software. The Emlid operating system (OS)
image can be accessed here or /EmlidOS. For DroneKit, we recom-
mend installing Python pip utility and then obtaining DroneKit
from here or /DroneKit. MissionPlanner is available for Windows
and can be accessed using this link or /MissionPlanner.

A.3.3 Hardware Dependencies. The following hardware is required
to build the drone and run the experiments/code:

• Raspberry Pi Model 3B+
• Emlid Navio2 Kit
• 4 x 30 Amps ESC
• 4 x MT2213-935KV motors
• RC Controller with receiver
• 4-axis 450mm Drone Frame
• 4 x 1045 Drone Propellers
• 3000mAh 3S LiPo battery
• 915MHz telemetry kit
• PPM encoder
• GPS receiver mount
• 16 GB MicroSD Card
• USB Power Analyzer
• High frequency data analyzing oscilloscope with 30A capable probes

A.3.4 Software Dependencies. The drone OS and software pack-
ages are defined below.

• Emlid OS

• Python DroneKit (C++ version of DroneKit can also be utilized)
• MissionPlanner
• Microsoft Windows (Dependency for MissionPlanner; if needed)

A.4 Installation
A.4.1 Drone Assembly. The first steps are to assemble the drone.
An overview of the instructions are given below. For a more detailed
build guide with pictures please see /BuildGuide.

• First assemble the PI + NAVIO. Plug in the HAT into the GPIO pins
on the RPI.

• Solder the bullet connectors onto the motor connections.
• Solder the battery connector onto the Power Distribution Board
(PDB).

• Screw in the legs of the frame.
• Screw in the top plate to the frame.
• Attach motors to the frame according to the rotational direction
listed in the motor manual.

• Use double sided tape and attach Raspberry pi + NAVIO to drone
top plate.

• Use double sided tape and attach the PPM encoder to the frame.
• Connect the battery connectors to the PPM encoder.
• Stick the RC receiver onto the frame.
• Connect receiver to the NAVIO.
• Connect PPM outputs to NAVIO.
• Use zip ties and attach ESCs to the bottom of the legs.
• Assemble the GPS mount and zip tie it into the back-right leg (Note
: GPS unit must point North-South).

• Attach GPS on mount and connect GPS to NAVIO.
• Connect ESCs to motors and ESCs pwm to PPM encoder.
• Connect battery to battery connector.
• Finally connect TELEMmodule to HAT and stick module onto frame.

A.4.2 Drone Software Configuration. After building the drone, the
following software steps are needed to download and configure the
autopilot:

• Download the Emlid OS from here or /EmlidOS.
• Flash the downloaded .iso file to the MicroSD card (You can use
Etcher as a tool) and insert it into the Pi.

• Follow the first time setup community guide of Arducopter here or
/ArducopterWiki under “First Time Setup.”

• Next, it is critical to configure and calibrate the sensors and IMU.
Please follow guide, or /ArducopterWiki under “Mandatory Hard-
ware Configuration.”

• Expand the filesystem $sudo raspi-config –expand-rootfs.
• Install DroneKit $pip install dronekit.
• Configure autopilot to load on boot : $sudo emlidtool –on_boot=True.
• Review DroneKit docs or /DroneKitDocs to see how to use API.
• To spool up Arducopter, run $sudo systemctl daemon-reload
and then run $sudo systemctl restart arducopter.

• Note: RCIO Worker is a background helper service for Arducopter
and automatically starts when Arducopter is started.

A.4.3 Setting up and Configuring SLAM.

• Begin by installing Docker $curl -sSL https://get.docker.com
| sh.

• Add the correct permissions $sudo usermod -aG docker pi.
• Install Docker Compose $sudo pip3 -v install docker-compose.
• Clone our Github repository or /ParallelML-Drone, and change
directory to slam $cd drone/slam

• Download a sample image data set (here) or /EuroC-MH01Easy.
• Extract the data set in the slam directory.
• Run the command $docker-compose up -d.

https://doi.org/10.5281/zenodo.4546174
https://docs.emlid.com/navio2/common/ardupilot/configuring-raspberry-pi/
https://doi.org/10.5281/zenodo.4546174
https://pypi.org/project/dronekit/
https://doi.org/10.5281/zenodo.4546174
https://ardupilot.org/planner/docs/mission-planner-installation.html
https://doi.org/10.5281/zenodo.4546174
https://doi.org/10.5281/zenodo.4546174
https://docs.emlid.com/navio2/common/ardupilot/configuring-raspberry-pi/
https://doi.org/10.5281/zenodo.4546174
https://www.balena.io/etcher/
https://ardupilot.org/copter/docs/initial-setup.html
https://doi.org/10.5281/zenodo.4546174
https://ardupilot.org/copter/docs/configuring-hardware.html
https://doi.org/10.5281/zenodo.4546174
https://dronekit-python.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.4546174
https://github.com/parallel-ml/drone
https://doi.org/10.5281/zenodo.4546174
http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/machine_hall/MH_01_easy/MH_01_easy.zip
https://doi.org/10.5281/zenodo.4546174

ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA Hadidi, et al.

• SLAM is now running in the background.
• To stop SLAM run $docker-compose down.

A.5 Experiment Workflow
With a fully working drone, this section describes and provides
simple scripts for measuring performancemetrics (any performance
metric that is available to perf tool).

This repository or /ParallelML-Drone contain all the required
files (and a full backup of our SD card). Specifically, shell scripts
perf_ardu_slam.sh and perf_ardupilot_loop.sh execute sim-
ple experiments for Ardupilot and SLAM, respectively. Directory
boot_pi_backup/ contains a backup of our SD card. To use this
version, copy the files to SD card and rename it to boot.

A.6 Evaluation and Expected Results
Performance Metric Measurements: Execute above scripts by
passing the PIDs of ArduCoptert, RCIO_Worker, and SLAM (in this
order). Then, the scripts print several metrics for branches, cache
operations, and virtual memory management. The exact flags de-
pend on the particular architecture and we have fine-tuned them
for Raspberry Pi 3B+.
Energy Measurements: To perform energy measurements an os-
cilloscope with high-frequency data logging and 30A current probes
is required. The current probes are used to measure the current
on the input power wires from the LiPo battery. To measure en-
ergy (or energy/second), another probe measures the voltage of
the battery. By setting the oscilloscope function to multiply these
measurements, we can log energy per second of the entire drone.
To distinguish between Raspberry Pi, additionally, an in-loop USB
powermeter tomeasure Raspberry Pi power consumption is needed.
Non-flight measurements can be done while the drone is not active.
For flight-related measurements, flip the propellers so the drone
pushes to the ground (while consuming a similar amount of energy).
Paper Graphs: You can find the raw data from which the graphs
are constructed at /Drone-CSVs.

A.7 Experiment Customization
Users are free to change any part of firmware or write their own
application for the drone. Additionally, users may add any new
sensors or hardware components that is compatible with Raspberry
Pi or its GPIO protocols (e.g., I2C).

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

ACKNOWLEDGMENTS
We thank the ASPLOS program and artifact-evaluation committees
for their valuable feedback in improving our paper. Preparing the
artifact would not be possible without the help of Sam Jijina and
Adriana Amyette. We gratefully acknowledge the support of NSF
CNS 1815047.

REFERENCES
[1] Ferran Giones and Alexander Brem. From toys to tools: The co-evolution of

technological and entrepreneurial developments in drone industry. Business
Horizons, 2017.

[2] Jong-Hyuk Kim and Salah Sukkarieh. Airborne simultaneous localisation and
map building. In 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), volume 1, pages 406–411. IEEE, 2003.

[3] Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli,
and Davide Scaramuzza. Autonomous, vision-based flight and live dense 3d
mappingwith a quadrotormicro aerial vehicle. Journal of Field Robotics, 33(4):431–
450, 2016.

[4] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birchfield. Toward
low-flying autonomous mav trail navigation using deep neural networks for
environmental awareness. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4241–4247. IEEE, 2017.

[5] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P Rodríguez,
Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni
Di Caro, et al. A machine learning approach to visual perception of forest trails
for mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667, 2015.

[6] Shantanu Chaudhary, Arka Prava, Neha Nidhi, and Vijay Nath. Design of all-
terrain rover quadcopter for military engineering services. In Nanoelectronics,
Circuits and Communication Systems, pages 507–513. Springer, 2019.

[7] NathanMichael, Shaojie Shen, KartikMohta, Vijay Kumar, Keiji Nagatani, Yoshito
Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya Yoshida, Kazunori Ohno, et al.
Collaborative mapping of an earthquake damaged building via ground and aerial
robots. In Field and service robotics, pages 33–47. Springer, 2014.

[8] Allison Ryan and J Karl Hedrick. A mode-switching path planner for uav-assisted
search and rescue. In Proceedings of the 44th IEEE conference on decision and
control, pages 1471–1476. IEEE, 2005.

[9] H Anil, KS Nikhil, V Chaitra, and BS Guru Sharan. Revolutionizing farming
using swarm robotics. In 2015 6th International Conference on Intelligent Systems,
Modelling and Simulation, pages 141–147. IEEE, 2015.

[10] Lian Pin Koh and Serge A Wich. Dawn of drone ecology: low-cost autonomous
aerial vehicles for conservation. Tropical Conservation Science, 2012.

[11] Si Jung Kim and et al. A survey of drone use for entertainment and avr. In
Augmented Reality and Virtual Reality, pages 339–352. Springer, 2018.

[12] Shuo Li, Michaël MOI Ozo, Christophe De Wagter, and Guido CHE de Croon.
Autonomous drone race: A computationally efficient vision-based navigation
and control strategy. arXiv preprint arXiv:1809.05958, 2018.

[13] Sunggoo Jung, Sungwook Cho, Dasol Lee, Hanseob Lee, and David Hyunchul
Shim. A direct visual servoing-based framework for the 2016 iros autonomous
drone racing challenge. Journal of Field Robotics, 35(1):146–166, 2018.

[14] NASA JPL. Drone race: Human versus artificial intelligence. nasa.gov/jpl/drone-
race-human-vs-ai.

[15] Haomiao Huang, Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin.
Aerodynamics and control of autonomous quadrotor helicopters in aggressive
maneuvering. In 2009 IEEE international conference on robotics and automation,
pages 3277–3282. IEEE, 2009.

[16] Minh-Duc Hua, Tarek Hamel, Pascal Morin, and Claude Samson. Introduction to
feedback control of underactuated vtolvehicles: A review of basic control design
ideas and principles. IEEE Control systems magazine, 33(1):61–75, 2013.

[17] Moses Bangura et al. Aerodynamics and control of quadrotors. 2017.
[18] Simon Lynen, Torsten Sattler, Michael Bosse, Joel A Hesch, Marc Pollefeys,

and Roland Siegwart. Get out of my lab: Large-scale, real-time visual-inertial
localization. In Robotics: Science and Systems, volume 1, 2015.

[19] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. Navion: A 2-mw fully integrated real-time visual-inertial odometry accel-
erator for autonomous navigation of nano drones. IEEE Journal of Solid-State
Circuits, 54(4):1106–1119, 2019.

[20] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas
Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning
monocular reactive uav control in cluttered natural environments. In 2013 IEEE
international conference on robotics and automation, pages 1765–1772. IEEE, 2013.

[21] Antonio Loquercio, Ana I Maqueda, Carlos R Del-Blanco, and Davide Scaramuzza.
Dronet: Learning to fly by driving. IEEE Robotics andAutomation Letters, 3(2):1088–
1095, 2018.

[22] Ewoud JJ Smeur, Guido CHE de Croon, and Qiping Chu. Gust disturbance
alleviation with incremental nonlinear dynamic inversion. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5626–
5631. IEEE, 2016.

[23] S Salazar-Cruz, A Palomino, and R Lozano. Trajectory tracking for a four rotor
mini-aircraft. In Proceedings of the 44th IEEE Conference on Decision and Control,
pages 2505–2510. IEEE, 2005.

[24] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. Real-time visual-
inertial odometry for event cameras using keyframe-based nonlinear optimiza-
tion. 2017.

[25] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous robots, 34(3):189–206, 2013.

https://github.com/parallel-ml/drone
https://doi.org/10.5281/zenodo.4546174
https://doi.org/10.5281/zenodo.4546174
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
 https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence
 https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence

Quantifying the Design-Space Tradeoffs in Autonomous Drones ASPLOS ’21, April 19–23, 2021, Detroit, MI, USA

[26] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Multi-sensor
fusion for robust autonomous flight in indoor and outdoor environments with a
rotorcraft mav. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 4974–4981. IEEE, 2014.

[27] WilliamKoch, RenatoMancuso, and Azer Bestavros. Neuroflight: Next generation
flight control firmware. arXiv preprint arXiv:1901.06553, 2019.

[28] Sikang Liu, Michael Watterson, Sarah Tang, and Vijay Kumar. High speed
navigation for quadrotors with limited onboard sensing. In 2016 IEEE international
conference on robotics and automation (ICRA), pages 1484–1491. IEEE, 2016.

[29] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra
Faust, and Vijay Reddi. Mavbench: Micro aerial vehicle benchmarking. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 894–907. IEEE, 2018.

[30] Srivatsan Krishnan, ZishenWan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra
Faust, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi. The sky is not the
limit: A visual performance model for cyber-physical co-design in autonomous
machines. IEEE Computer Architecture Letters, 19(1):38–42, 2020.

[31] Wikipedia. Mavlink. wiki/MAVLink.
[32] Nathan M Zimmerman. Flight control and hardware design of multi-rotor sys-

tems. 2016.
[33] SkyDio. Skydio. skydio.com.
[34] Pixhawk. Pixhawk. pixhawk.org.
[35] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md EHaque, Lingjia

Tang, and Jason Mars. The architectural implications of autonomous driving:
Constraints and acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 751–766, 2018.

[36] Sebastian Scherer, Joern Rehder, Supreeth Achar, Hugh Cover, Andrew Chambers,
Stephen Nuske, and Sanjiv Singh. River mapping from a flying robot: state
estimation, river detection, and obstacle mapping. Autonomous Robots, 33(1-
2):189–214, 2012.

[37] DJI. Manifold high-performance embedded computer. dji.com/manifold.
[38] Intel. Intel aero compute board. intel.com/aero-compute-board-guide.
[39] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient

alternative to sift or surf. In 2011 International conference on computer vision,
pages 2564–2571. Ieee, 2011.

[40] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algorithms: a
survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications,
9(1):16, 2017.

[41] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-dense visual odometry for
a monocular camera. In ICCV, pages 1449–1456, 2013.

[42] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-Whyte,
andMichael Csorba. A solution to the simultaneous localization andmap building
(slam) problem. IEEE Transactions on robotics and automation, 17(3):229–241,
2001.

[43] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense visual slam for rgb-d
cameras. In IROS, pages 2100–2106. IEEE, 2013.

[44] Huixiang Chen, Yuting Dai, Rui Xue, Kan Zhong, and Tao Li. Towards efficient
microarchitecture design of simultaneous localization andmapping in augmented
reality era. In ICCD, pages 397–404. IEEE, 2018.

[45] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In ECCV, pages 834–849. Springer, 2014.

[46] Daniel Törtei Tertei, Jonathan Piat, and Michel Devy. Fpga design and imple-
mentation of a matrix multiplier based accelerator for 3d ekf slam. In ReConFig,
pages 1–6. IEEE, 2014.

[47] Daniel Tertei, Jonathan Piat, andMichel Devy. Fpga design of ekf block accelerator
for 3d visual slam. Computers & Electrical Engineering, 55:123–137, 2016.

[48] Muhammad Shehzad Hanif, Muhammad Bilal, Khalid Munawar, and Abdul-
lah Saeed Balamash. Implementation of an embedded testbed for indoor slam. In
AICCSA, pages 1–8. IEEE, 2018.

[49] Leandro de Souza Rosa, Aravind Dasu, Pedro C Diniz, and Vanderlei Bonato. A
faddeev systolic array for ekf-slam and its arithmetic data representation impact
on fpga. Journal of Signal Processing Systems, 90(3):357–369, 2018.

[50] Weikang Fang, Yanjun Zhang, Bo Yu, and Shaoshan Liu. Fpga-based orb feature
extraction for real-time visual slam. In ICFPT, pages 275–278. IEEE, 2017.

[51] Runze Liu, Jianlei Yang, Yiran Chen, and Weisheng Zhao. eslam: An energy-
efficient accelerator for real-time orb-slam on fpga platform. In DAC, page 193.
ACM, 2019.

[52] Parrot. Parrot anafi. parrot.com/us/drones/anafi.
[53] DJI. Dji mavic. dji.com/mavic.
[54] DJI. Dji spark. dji.com/spark.

[55] DJI. Dji matrice 600. dji.com/matrice.
[56] Parrot. Parrot bebop 2. parrot.com/us/drones/parrot-bebop-2.
[57] iFlight. Succex-e f4 flight controller. iflight-rc.com/SucceX-E-F4.
[58] DJI. Naza-m lite. dji.com/naza-m-lite.
[59] DJI. Naza-m v2. dji.com/naza-m-v2.
[60] Pixhawk. Pixhawk 4. docs.px4.io.
[61] mateksys. Flight controller f405-std. mateksys.com/f405.
[62] Emlid. Emlid navio2 hat for raspberry pi. emlid.com/navio.
[63] Raspberry PI Foundation. Raspberry pi 4. raspberrypi.org/raspberry-pi-4-model-

b, 2017. [Online; accessed 04/10/20].
[64] NVIDIA. Nvidia jetson tx. nvidia.com/jetson-tx2, 2017. [Online; accessed

04/10/20].
[65] RunCam. Runcam night eagle 2 pro. runcam.com/uncam-night-eagle-2-pro/.
[66] emesent. Hovermap. emesent.io/hovermap/.
[67] YellowScan. Yellowscan surveyor. yellowscan-lidar.com/lidar-solutions/.
[68] Velodyne Lidar. Ultra puck. velodynelidar.com/ultra-puck/.
[69] Parrot. Parrot mambo mission. parrot.com/us/drones/mambo.
[70] DJI. Dji mavic air. dji.com/mavic-air.
[71] ArduPilot. Ardupilot. ardupilot.org.
[72] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–
1262, 2017.

[73] DroneKit. Dronekit api. dronekit.io.
[74] Thomas Nagy. Waf. waf.io.
[75] Michael Kerrisk. Linux daemon. linux/man-pages/daemon, 2019. [Online;

accessed 04/10/20].
[76] Bitcraze. Crazyflie 2.1. bitcraze.io/crazyflie-2-1, 2019. [Online; accessed 04/10/20].
[77] Drona Aviation. dronaaviation.com/plutox.
[78] Connor Soohoo and Yunchih Chen. Orb-slam2 gpu optimization.

github.com/connorsoohoo/ORB-SLAM2-GPU-RGBD, 2017. [Online; ac-
cessed 04/10/20].

[79] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics Research, 35(10):1157–1163,
2016.

[80] Philemon Sakamoto. UAV mission planning under uncertainty. PhD thesis, Mas-
sachusetts Institute of Technology, 2006.

[81] Adam Bry, Abraham Bachrach, and Nicholas Roy. State estimation for aggres-
sive flight in gps-denied environments using onboard sensing. In 2012 IEEE
International Conference on Robotics and Automation, pages 1–8. IEEE, 2012.

[82] Nils Gageik, Paul Benz, and Sergio Montenegro. Obstacle detection and collision
avoidance for a uavwith complementary low-cost sensors. IEEE Access, 3:599–609,
2015.

[83] Kimberly McGuire, Guido De Croon, Christophe De Wagter, Karl Tuyls, and
Hilbert Kappen. Efficient optical flow and stereo vision for velocity estimation
and obstacle avoidance on an autonomous pocket drone. IEEE Robotics and
Automation Letters, 2(2):1070–1076, 2017.

[84] Bardienus P Duisterhof, Srivatsan Krishnan, Jonathan J Cruz, Colby R Banbury,
William Fu, Aleksandra Faust, Guido CHE de Croon, and Vijay Janapa Reddi.
Learning to seek: Autonomous source seeking with deep reinforcement learning
onboard a nano drone microcontroller. arXiv preprint arXiv:1909.11236, 2019.

[85] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. Showcasing real-
time visual-inertial odometry. youtube.com/UZH-Robotics.

[86] Sam Jijina, Adriana Amyette, Nima Shoghi, Ramyad Hadidi, and Hyesoon Kim.
Understanding the software and hardware stacks of a general-purpose cognitive
drone. In 2020 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 212–214. IEEE, 2020.

[87] Sam Jijina, Adriana Amyette, Ramyad Hadidi, and Hyesoon Kim. Towards a gen-
eral purpose cognitive drone. In The Fourth Workshop on Cognitive Architectures
(CogArch 2020).

[88] Robert J Wood, Ben Finio, Michael Karpelson, Kevin Ma, Néstor Osvaldo Pérez-
Arancibia, Pratheev S Sreetharan, Hiro Tanaka, and John Peter Whitney. Progress
on ‘pico’air vehicles. The International Journal of Robotics Research, 31(11):1292–
1302, 2012.

[89] Kevin Y Ma, Pakpong Chirarattananon, Sawyer B Fuller, and Robert J Wood. Con-
trolled flight of a biologically inspired, insect-scale robot. Science, 340(6132):603–
607, 2013.

[90] Dario Floreano and Robert J Wood. Science, technology and the future of small
autonomous drones. Nature, 521(7553):460–466, 2015.

[91] Avinash Singh, Thomas Libby, and Sawyer B Fuller. Rapid inertial reorientation
of an aerial insect-sized robot using a piezo-actuated tail. In 2019 International
Conference on Robotics and Automation (ICRA), pages 4154–4160. IEEE, 2019.

https://en.wikipedia.org/wiki/MAVLink
https://www.skydio.com/
https://pixhawk.org/
 https://www.dji.com/manifold/info#specs
 https://www.intel.com/content/dam/support/us/en/documents/drones/development-drones/intel-aero-compute-board-guide.pdf
https://www.parrot.com/us/drones/anafi
 https://www.dji.com/mavic/info#specs
 https://www.dji.com/spark/info
 https://www.dji.com/matrice600-pro/info#specs
https://www.parrot.com/us/drones/parrot-bebop-2
https://shop.iflight-rc.com/index.php?route=product/product&path=20_27_135&product_id=978
https://www.dji.com/naza-m-lite/spec
https://www.dji.com/naza-m-v2/spec
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
http://www.mateksys.com/?portfolio=f405-std#tab-id-1
https://emlid.com/navio/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://developer.nvidia.com/embedded/jetson-tx2
 https://shop.runcam.com/runcam-night-eagle-2-pro/
 https://www.emesent.io/hovermap/
 https://www.yellowscan-lidar.com/lidar-solutions/
 https://velodynelidar.com/products/ultra-puck/
https://www.parrot.com/us/drones/parrot-mambo-mission
 https://www.dji.com/mavic-air/info#specs
https://ardupilot.org/copter/
https://dronekit.io/
https://waf.io/apidocs/index.html
http://man7.org/linux/man-pages/man7/daemon.7.html
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.dronaaviation.com/plutox
https://github.com/connorsoohoo/ORB-SLAM2-GPU-RGBD
 https://www.youtube.com/watch?v=F3OFzsaPtvI

	Abstract
	1 Introduction & Motivation
	2 Autonomous Drones
	2.1 Fundamental Subsystems
	2.2 Autonomy in Drones
	2.3 Drone Design Metrics

	3 Quantifying Design-Space Tradeoffs
	3.1 Important Tradoffs
	3.2 Computation Footprint

	4 Our Open-Source Drone
	5 Showcasing Optimizations
	5.1 Running Autopilot and SLAM on RPi
	5.2 Offloading SLAM to Hardware Accelerators

	6 Related Work
	7 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Methodology

	Acknowledgments
	References

