
Demystifying the Characteristics of 3D-Stacked
Memories: A Case Study for Hybrid Memory Cube

Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar,
Saibal Mukhopadhyay, Sudhakar Yalamanchili, and Hyesoon Kim

Email: {rhadidi,bahar.asgari,burhan.mudassar,saibal.mukhopadhyay,sudha,hyesoon}@gatech.edu
Georgia Institute of Technology

Abstract—Three-dimensional (3D)-stacking technology, which
enables the integration of DRAM and logic dies, offers high
bandwidth and low energy consumption. This technology also
empowers new memory designs for executing tasks not tradition-
ally associated with memories. A practical 3D-stacked memory is
Hybrid Memory Cube (HMC), which provides significant access
bandwidth and low power consumption in a small area. Although
several studies have taken advantage of the novel architecture
of HMC, its characteristics in terms of latency and bandwidth
or their correlation with temperature and power consumption
have not been fully explored. This paper is the first, to the
best of our knowledge, to characterize the thermal behavior of
HMC in a real environment using the AC-510 accelerator and
to identify temperature as a new limitation for this state-of-
the-art design space. Moreover, besides bandwidth studies, we
deconstruct factors that contribute to latency and reveal their
sources for high- and low-load accesses. The results of this paper
demonstrates essential behaviors and performance bottlenecks for
future explorations of packet-switched and 3D-stacked memories.

I. INTRODUCTION AND MOTIVATION
To date, the dominant architecture for computing systems has
been the processor-centric architecture, in which the processor
and DIMM-based memories are separate units connected via
the JEDEC protocol [1]. This architecture inherently enables
the use of a large centralized memory accessed by multiple
processors. However, the quest for increasing memory band-
width has led to the development of 3D-DRAM packages and
the resulting emergence of on-package, high-bandwidth 3D
memory tightly integrated with the processor, two examples
of which are High Bandwidth Memory (HBM) [2] and Hy-
brid Memory Cube (HMC) [3]. While HBM provides high
bandwidth on top of the traditional JEDEC-based commu-
nication, HMC utilizes modern packet-based interfaces and
relies on high degree of internal concurrency. Further, to
eliminate costly data movement between the processor and
memory subsystems, researchers are exploring the integration
of compute units within such high-bandwidth memories (e.g.,
the integration of CMOS logic and DRAM dies within a 3D
stack). This paper reports on experimental characterizations
of HMC to provide an understanding of sources of high
performance and bottlenecks; and therefore, implications for
effective application design for both traditional and processor-
in-memory (PIM) configurations.

The novel structure of HMC has motivated researchers
to develop architectures based on concepts introduced in
HMC [4]–[8]. Although many researchers have studied the
3D-stacked layered integration of computation and memory
based on simulation, experimental studies are few [9]–[11]. In
particular, to the best of our knowledge, no experimental work
has sought to characterize the relationship between temper-
ature, power consumption, bandwidth, and latency1 of these
memories. Importantly, in PIM configurations, a sustained

operation can eventually lead to failure by exceeding the
operational temperature of HMC, assumed to be 85°C [12],
[13]. Furthermore, the physical organization of 3D-stacked
memories introduces new structural abstractions with corre-
sponding new latency and bandwidth hierarchies. Therefore,
maximizing bandwidth utilization relies on data mappings and
associated reference patterns that are well matched to the
concurrency of the internal organization of HMC. Our analysis
examines the implications of this internal organization on the
mapping of data structures in applications.

Characterizations in this paper, as shown in Figure 1,
seek to explore and quantify the conceptual relationships
between bandwidth, temperature, power consumption, and
latency. Figure 1a depicts the first relationship: as bandwidth
increases, temperature increases that can eventually exceed the
operational range. To mitigate high temperatures, systems must
use costlier cooling solutions.2 Moreover, higher temperatures
trigger mechanisms such as frequent refresh [15], which also
increases power consumption. Therefore, as Figure 1b depicts,
as bandwidth increases, the power consumption of a device
and its required cooling power rises. In addition, to determine
the benefits of HMC in a system, an integral asset is the rela-
tionship between the bandwidth and latency (Figure 1c). Since
we use a prototype infrastructure, we deconstruct elements that
contribute to latency under low- and high-load utilizations with
various bandwidth profiles. We believe that understanding the
impact of such elements provides insights about the full-system
impact of the HMC in particular, and 3D-stacked memories in
systems in general.

To this end, in this paper, we use a system with a
controllable cooling system and an AC-510 [16] accelera-
tor board, which includes an HMC 1.1 (Gen2) [15] and an
FPGA. On the FPGA, we systematically generate synthetic
workloads using customized Verilog implementations based on
GUPS (giga updates per second) such as various combinations
of high-load, low-load, random, and linear access patterns,
which are building blocks of real applications. We analyze
the bandwidth, latency, and power consumption of HMC
while using a thermal camera to record its temperature. This
paper contributes the following: (i) This is the first study,

Operational	
Bound

Bandwidth

Te
m
pe

ra
tu
re

(a)
Bandwidth

Po
w
er

(b)
Bandwidth

La
te
nc
y

(c)

Device

Cooling

Fig. 1: Conceptual graphs showing relationships between the temper-
ature, power consumption, latency, and bandwidth of HMC.
1 This paper uses the term latency and round-trip time interchangeably.
2 For instance, AMD Radeon R9 Fury X GPU, which integrates an HBM
and a GPU on an interposer, requires a liquid cooling solution [14].

978-1-5386-1233-0/17/$31.00 ©2017 IEEE 66

to the best of our knowledge, that measures the effects of
increased bandwidth on temperature and power altogether in a
real 3D-stacked memory system and explores the sensitivities
to, and consequences of, thermal limits; (ii) it exposes the
interactions among bandwidth utilization, power consumption,
and access patterns in a real 3D-stacked memory system; (iii)
it explores contributing factors to latency and yields insights
into why, when, and how HMC benefits applications; and (iv)
it presents an analysis of latencies in HMC based on the
impact of packet-switched interfaces, and the relationship to
the structural organization (i.e., vaults, banks, and quadrants).

II. HYBRID MEMORY CUBE
This section introduces the architectural organization, commu-
nication interface and protocol, and address space mapping
of the HMC. We focus on the HMC 1.1 specification [15]
for which the hardware is currently available and used in the
experiments described in this paper. We also briefly compare
the specification of HMC 2.0 [17], whose hardware is yet to
be available, HMC 1.1 (Gen2), and HMC 1.0 (Gen1) [18].

A. HMC Structure
HMC is a 3D-stacked memory composed of a logic die upon
which multiple DRAM layers are stacked. The dies are verti-
cally connected by through-silicon-vias (TSVs), which provide
higher internal bandwidth, lower latency, and lower commu-
nication energy consumption within a cube than comparable
2D structures [3], [6], [19]. Figure 2 shows the HMC 1.1
structure, composed of one logic layer and eight DRAM layers,
each divided into 16 partitions. Accordingly, the 3D stack is
divided into 16 vertical vaults [18], each with its own memory
controller in the logic layer, connected to DRAM partitions
by 32 data TSVs3 reside above it [3]. Therefore, in HMC 1.1,
each memory controller is responsible for eight partitions of
DRAM layers. As shown in the figure, a collection of four
vaults is called a quadrant, whose vaults share a single external
link.4 Each DRAM layer in a Gen1 device (HMC 1.0) is a
68mm2 1 Gb die manufactured in 50 nm technology [3]. Each
Gen1 device has four layers of DRAM and the size of a Gen1
device is (1Gb⇥4)÷8bits/B = 512MB. Further, each layer is
composed of 16 partitions, so the size of each DRAM partition
is 1Gb÷ 16 = 64Mb = 8MB. In addition, in Gen1 devices,
each DRAM partition has two independent DRAM banks [3],
each 8MB÷2 = 4MB. In Gen2 devices, the number and size
of DRAM layers increase from four to eight and 1 Gb to 4 Gb,
respectively, with the same number of partitions. Thus, each
partition is 32 MB, and each bank is 16 MB [15]. Therefore,
the number of banks in each Gen2 device is equal to

#BanksHMC 1.1 =8layers⇥16partitions/layer⇥2banks/partition

=256banks.
(1)

Partition

Vault

DRAM Layer Logic Layer

Bank
Bank

TSVs

Quadrant

Vault Controller

Fig. 2: 4 GB HMC 1.1 internal structure.
3 Another reference [15] mentions that internally within each vault the
granularity of the DRAM data bus is 32 B. 4 As shown in Table I, each
quadrants contains 8 vaults in HMC 2.0.

For HMC 2.0, the number of vaults increases to 32, and
DRAM layers are denser. Table I summarizes the structural
properties of each generation of HMC devices.

TABLE I: Properties of HMC Versions [3], [15], [17], [18].

HMC 1.0 HMC 1.1 HMC 2.0†
(Gen1)† (Gen2)†

Size 0.5 GB 2/4 GB 4/8 GB
DRAM Layers 4 4/8 4/8

DRAM Layer Size 1 Gb 4 Gb 4/8 Gb
Quadrants 4 4 4

Vaults 16 16 32
Vault/Quadrant 4 4 8

Banks 128 128/256 256/512
Banks/Vault 8 8/16 16/32

Bank Size 4 MB 16 MB 16 MB
Partition Size 8 MB 32 MB 32 MB

† Reported values are for the four-link configuration. While HMC 2.0
only supports the four-link configuration, HMC 1.x supports both four-
and eight-link configurations.

B. HMC Communication Protocol
The HMC interface utilizes a packet-based communication
protocol implemented with high speed serialization/deseri-
alization (SerDes) circuits. Hence, implementations achieve
higher raw link bandwidth than achievable with synchronous
bus-based interfaces implementing the traditional JEDEC pro-
tocol. Packets are partitioned into 16-byte elements, called
flits. Supported packet sizes for data payloads range from
one flit (16 B) to eight flits (128 B). Each packet also carries
an eight-byte header and an eight-byte tail; therefore, each
request/response has an overhead of one flit [9]. The header
and tail ensure packet integrity and proper flow control [15].
Table II shows each HMC transaction size in flits. To connect

TABLE II: HMC read/write request/response sizes [15].

Type Read Write
Request Response Request Response

Data Size Empty 1⇠8 Flits 1⇠8 Flits Empty
Overhead 1 Flit 1 Flit 1 Flit 1 Flit

Total Size 1 Flit 2⇠9 Flits 2⇠9 Flits 1 Flit

to other HMCs or hosts, an HMC uses two or four external
links. Each independent link is connected to a quadrant that is
internally connected to other quadrants, which routes packets
to their corresponding vaults. As a result, an access to a local
vault in a quadrant incurs lower latency than an access to
a vault in another quadrant [15]. Furthermore, each external
link is a 16- (full-width) or eight-lane (half-width) connection
that supports full-duplex serialized communication across each
bit lane with configurable speeds of 10, 12.5, or 15 Gbps.
For instance, a two-link half-width HMC device whose link
operates at 15 Gbps has a maximum bandwidth of

BWpeak =2link⇥8 lanes/link⇥15Gbps⇥2full duplex
=480Gbps = 60GB/s.

(2)

C. HMC Memory Addressing
This section presents the internal address mapping used in
HMC and explores some of its implications and opportunities
for optimization. In HMC, DRAM operation follows a closed-
page policy [3]; therefore, on completion of a memory refer-
ence, the sense amplifiers are precharged and the DRAM row
is closed. The page size (i.e., row size) in HMC is 256 B [3],
smaller than that in DDR4 [1] which varies from 512 to
2,048 B. Since HMC has several banks, keeping DRAM rows

67

4K OS Page

Bank ID Quadrant ID
Vault ID in a QuadrantBlock Address

047911153233
…

Ignored

046810143233
…

04579133233
…

(a)128B

(b) 64B

(c) 32B M
ax

 B
lo

ck
 S

iz
e:

Fig. 3: Aaddress mapping of 4 GB HMC 1.1 with various maximum
block size of (a) 128 B, (b) 64 B, and (c) 32 B [15].

open incures high power consumption, so HMC employs the
closed-page policy. This policy and the small page size reduce
the power consumption for accesses with low temporal locality
and high miss ratio. Moreover, internally within each vault, the
granularity of the DRAM data bus is 32 B [15]. Thus, as the
specification points out, starting or ending a request on a 16-
byte boundary uses the DRAM bus inefficiently . As a result,
an application that targets bandwidth optimization should issue
requests on 32-byte boundaries.

The request header of HMC contains a 34-bit address
field (16 GB addressable memory). However, because current
hardware does not support a 16 GB capacity, the two high-
order address bits are ignored. HMC employs a low-order-
interleaving policy for mapping the memory blocks across
vaults and banks as illustrated in Figure 3. The block size
is 16 B, so low-order four bits are ignored. Next address
bits define the maximum block size in accessing the HMC.
Figure 3a illustrates mapping for the default maximum block
size of 128 B.5 The next four address bits are used to identify
a vault followed by four bits to identify a bank within the
selected vault. Thus, sequential blocks are first distributed
across various vaults and then banks. According to the spec-
ification, the user may fine-tune the address mapping scheme
by changing bit positions used for vault and bank mapping.
This paper studies the default address mapping of HMC.5

In a higher level of abstraction, a 4 KB OS page is
allocated in two banks across all vaults (HMC 1.1),6 promoting
memory level parallelism for reading/writing the contents of
a page. When we access multiple pages allocated serially
in the physical address space, as the number of concurrent
accesses to these pages increases, bank-level parallelism (BLP)
increases as well. For instance, in a 4 GB HMC 1.1 with 16
banks per vault, because a single page occupies two banks
in a vault, up to eight allocated pages reside in a vault.
Therefore, for 16 vaults, the total number of pages we can
access while increasing BLP is 16vaults⇥ 8 #pages/vault = 128.
In fact, combined with BLP that each page utilizes, the low-
order-interleaved address mapping enables maximum BLP for
sequential page accesses. To conclude, 3D DRAM exemplified
by HMC presents new address space abstractions and associ-
ated performance implications, the understanding of which is
necessary for optimizing compilers and data layout algorithms
for maximizing performance potential. In a scenario that an
application randomly accesses multiple pages, the frequency,
size, and coverage (in terms of number of banks, vaults, and

5 The maximum block size is controlled with the Address Mapping Mode
Register to be 16, 32, 64, or 128 B. The default mapping is defined by setting
Address Mapping Mode Register to 0x2, or 128 B max block size. 6 Note
that two banks is when the max block size is set to 128 B. We can increase
BLP in accessing a single page by reducing the max block size (Figure 3).

rows) of accesses determine performance. In this paper, we
explore HMC design space to understand its full-scale impact
on applications.

III. EXPERIMENTAL SETUP
This section introduces the infrastructure, cooling equipment,
and firmware, all of which are shown in Figure 4.

A. Infrastructure Overview
Hardware: Our infrastructure, Pico SC-6 Mini [20], con-

tains an EX700 [21] backplane, a PCIe 3.0 x16 board with
32 GB/s bandwidth. EX700 integrates a PCIe switch that routes
host communication to up to six AC-510 [16] accelerator
modules via PCIe 3.0 x8 buses. Each module has a Kintex
UltraScale Xilinx FPGA7 connected to a 4 GB HMC Gen2
(the same as Figure 2) with two half-width (8 lanes) links
operating at 15 Gbps, so the bi-directional peak bandwidth is
60 GB/s, as Equation 2.

Thermal Measurements: To cool both the FPGA and
HMC, an active heatsink equivalent to a low-end active cool-
ing solution with ⇠$30 cost [12] is attached on top of the
accelerator module. Figure 5a and 5b display the accelerator
module with and without the heatsink, respectively. For ther-
mal evaluations, we run each experiment for 200 seconds,8 and
we measure the heatsink surface temperature of HMC using
a thermal camera (Flir One [22]). Since thermal resistance of
a transistor chip is smaller than that of the external heatsink,
temperature of the heatsink surface is 5–10 degrees Celsius
lower than that of the in-package junction [23]. The FPGA
and HMC share the heatsink, but HMC is distinguishable
in thermal images, and it has a higher temperature than its
surroundings do, as seen in the thermal images of HMC
at two temperatures in Figure 5c and 5d. In other words,
the shared heatsink does not prevent us from observing the
effect of temperature variation because (i) HMC creates a heat
island, which indicates it causes temperature increments, (ii)
FPGA performs the same tasks during experiments, so its heat
dissipation is constant, and (iii) in real systems, one component
in the box is always affected by the heat profile of other
components. In near-processor architectures, the temperature
of an HMC is always affected by the temperature of a compu-
tational component such as a GPU, a CPU, or an FPGA. The
thermal coupling between the FPGA and HMC is a factor of
the integration substrate. Our measurements represent the PCB
coupling, a much weaker coupling than integration of compute
and memory in interposer or 3D. Thus, the configuration of
our experiments is a realistic representation of a future design.

Cooling Environment: The PCIe backplane resides in a
case and is air cooled via two fans attached to the top of the
case10 (total measured power of 4.5 W with 12 V). To mimic
the thermal impact of PIM techniques, which is a potential

TABLE III: Experiment cooling configurations.
Configuration DC Power Supply: 15 W Fan Average HMC

Name Voltage Current Distance Idle Temperature

Cfg1 12 V 0.36 A 45 cm 43.1° C
Cfg2 10 V 0.29 A 90 cm 51.7° C
Cfg3 6.5 V 0.14 A 90 cm 62.3° C
Cfg4 6.0 V 0.13 A 135 cm 71.6° C

7 Part#: xcku060-ffva1156-2-e 8 For all experiments, after 200 seconds,
temperature is stable. 9 To display the heat island created by HMC, we
modify the heat scale, also shown at the right of each image. 10 These fans
are for cooling only the backplane and not the machine.

68

Pico	SC6	Mini

45	cm
90	cm

135	cm

WPower	
Measurement

15W
Fan

45°

EX700

AC-510

+_
DC	Power	Supply:
Fan	Speed	Control

(a)

Host

Pico	API

Software

EX700

PCIe	SwitchPCIe	3.0	x16

AC
-5
10

PC
Ie 3.0	x8

FPGA	(GUPS)

Pico
PCIe	Driver

HMC

See	Fig.2

...

Two	15Gbps
8x	links

BW:	60	GB/s	

AXI-4

vault

vault

vault

qu
ad
ra
nt
s

Tr
an
sc
ei
ve
r

Tr
an
sc
ei
ve
r

H
M
C	
Co

nt
ro
lle
r

A
dd

.	G
en

.

M
on

ito
ri
ng

W
r.	
Re

q.
FI
FO

Rd
.	T
ag

Po
ol D
at
a	
G
en

.

A
rb
itr
at
io
n

A
dd

.	G
en

.

M
on

ito
ri
ng

W
r.	
Re

q.
FI
FO

Rd
.	T
ag

Po
ol D
at
a	
G
en

.

A
rb
itr
at
io
n

A
dd

.	G
en

.

M
on

ito
ri
ng

W
r.	
Re

q.
FI
FO

Rd
.	T
ag

Po
ol D
at
a	
G
en

.

A
rb
itr
at
io
n

A
dd

.	G
en

.

W
r.	
Re

q.
FI
FO

Rd
.	T
ag

Po
ol D
at
a	
G
en

.

A
rb
itr
at
io
n

Ports	(9x)

M
on

ito
ri
ng

Full-Scale	
Small-Scale
Stream

(b)
Fig. 4: Infrastructure overview: (a) Cooling environment configuration, (b) firmware and software overview.

HMC

4.325 cm

9.
65

5
cm

Heatsink
Thinkness:
3.00 mm

Blade
Depth:

1.600 cm

1.75 m
m

3.00 mm

8.30 mm

1.00 m
m

0.50 m
m

Blade

(a)

(c)

(d)(b)

FPGA

Fig. 5: AC-510 accelerator with (a) and without the heatsink (b),
and two images of the HMC with various temperature, taken by the
thermal camera showing heatsink surface temperature (c,d).9

application for 3D-stacked memories, we create various ther-
mal environments (see Table III) by tuning the speed of the
fans with a DC power supply, and placing a commodity fan
(Vornado Flippi V8) with a measured power of 15 W and at an
angle of 45° at three distances (45, 90, and 135 cm). Figure 4a
shows a diagram of our cooling environment.

Power Measurements: During the experiments, with a
power analyzer, we monitor the power consumption of the
machine, which includes the power of the FPGA, HMC, and
PCIe switch on the backplane, and report the average of the
power usage. Cooling fans are connected to another power
source. Since during experiments the host and FPGA do not
communicate, the power consumption of the PCIe switch is
negligible. Thus, power consumption above the idle power of
the machine, 100 W, is counted towards the activity of the
HMC and the FPGA. In our infrastructure, we cannot decouple
the power consumption of these two components since they
share the same board and power supply. However, since the
FPGA performs same task in all the experiments, variation in
measured power is attributed to the HMC.

B. Firmware and Software Overview
We use various firmware (i.e., digital design on the FPGA)
and software combinations to perform experiments. To mea-
sure the properties of accesses to the HMC with various
address patterns, we use the Pico API [24] and a Verilog
implementation of GUPS, which measures how frequently we
can generate requests to access memory locations (Figure 4b).
The FPGA uses Micron’s controller [25] to generate packets
for the multi-port AXI-4 interface between the FPGA and
HMC. The Pico API initializes the hardware and provides an
environment with the host OS to communicate with the FPGA
on each accelerator module. Although the Pico API provides an
interface to access HMC through the FPGA, since its read and
write operations are bundled with software, a pure software
solution to measure the bandwidth lacks sufficient speed.
Therefore, to generate and send various mixes of requests, we

use GUPS, which utilizes the full potential of available HMC
bandwidth. As the frequency of the FPGA is low (187.5 MHz),
to saturate the available bandwidth, GUPS uses nine copies
of the same module, or ports to generate requests. Each port
includes a configurable address generator, a monitoring unit
to measure read latencies, a read tag pool with the depth of
64, and an arbitration unit to generate the type of a request
(read or write). Each port is configurable to send read only
(ro), write only (wo), or read-modify-write (rw) requests for
random, or linear mode of addressing. Furthermore, requests
can be mapped to a specific part of the HMC by forcing some
bits of the address to zero/one by using address mask/anti-mask
registers. We use the following three implementations:

Full-scale GUPS: To measure bandwidth, temperature, and
high-load latency of various access patterns, we use full-scale
GUPS, which utilizes all nine ports. For such experiments,
first, we activate the ports, set the type of requests and size,
their mask and anti-mask, and linear or random addressing
mode. Then, we read the total number of accesses, maxi-
mum/minimum of read latency, and aggregate read latency
after 20 seconds for bandwidth and 200 seconds for thermal
measurements. We calculate bandwidth by multiplying the
number of accesses by the cumulative size of request and re-
sponse packets including header, tail and data payload (shown
in Table II), and dividing it by the elapsed time. Experiments
are done with full-scale GUPS, unless stated otherwise.

Small-scale GUPS: To measure latency-bandwidth rela-
tionships, we use a variation of full-scale GUPS, small-scale
GUPS, in which we change the number of active ports to tune
the request bandwidth. Similar to full-scale GUPS, we perform
each experiment for 20 seconds.

Stream GUPS: We use Xilinx’s AXI-Stream interface to
send/receive a group of requests/responses through streams
to each port. Stream interface provides fast and efficient
communication between the host and the FPGA. With stream
GUPS, we also confirm the data integrity of our writes and
reads. To measure low-load latency, we use stream GUPS, so
that we can tune the number of requests.

IV. EXPERIMENTAL RESULTS
A. Address Mapping Experiments
To characterize the bandwidth properties of HMC, we ex-
plore a range of address space mappings to its abstraction
hierarchy (i.e., quadrants, vaults, and banks) by generating
random accesses throughout the address space and evaluating
the achieved bandwidth. Address space mappings are achieved
by starting with the default low-order interleaved address space
mapping with 128 B blocks (as described in Section II-C) and
then applying an eight-bit mask, which forces eight bits of
address to 0. By applying the mask to various bit positions
we map the address space across quadrants, vaults and banks.
Figure 6 shows measured bandwidth for three request types
of ro, wo, and rw with the size of 128 B. In this figure,

69

0
5
10
15
20
25

24
-3
1

10
-1
7

7-
14

3-
10

2-
9

1-
8

0-
7

ro rw wo

1	
va
ul
t

2	
va
ul
ts

8	
va
ul
ts

Bit	Locations	Forced	to	Zero

Ba
nd

w
id
th
	(G

B/
s)

1	
ba
nk

Fig. 6: Applying an eight-bit mask to various bit positions of
addresses. Similar to all following experiments, two half-width links
are active, and raw bandwidth, including header and tail, is reported.

bandwidth is the lowest when the mask is applied to bits 7-14,
which forces all references to bank 0 of vault 0 in quadrant
0 (Figure 3a). The bandwidth rises with masking higher bits
after the lowest bandwidth point because we incrementally
spread the requests over more vaults, quadrants, and banks
with the masks after that. Bandwidth experiences a large drop
from masking bits 2-9 to the masking bits 3-10 in ro and
rw because for the latter mask the accesses are restricted to a
single vault with maximum internal bandwidth of 10 GB/s [26].
In the rest of the paper, based on the results of this section, we
create targeted access patterns. For instance, a 2-bank access
pattern targets two banks within a vault, and a 4-vault access
pattern targets all the banks within four vaults.

B. Bandwidth Experiments
Figure 7 illustrates the bandwidth of various access pat-

terns. As we pointed out in Section IV-A, since the bandwidth
of a vault is limited to 10 GB/s, we observe that accessing more
than eight banks of a vault does not affect the bandwidth for all
types of accesses. For distributed accesses, in which addresses
are spread across the address space (e.g., across vaults and
banks), bandwidth of rw is higher than that of ro because as
read-modify-write operations consists of a read followed by a
write, both its request and response include data payloads, so
rw utilizes bi-directional links more effectively. Meanwhile,
as reads and writes are not independent, the number of reads
are limited by the number of writes. Therefore, the bandwidth
of rw is roughly double the bandwidth of wo.

Figure 8 depicts the bandwidth of ro with the request
sizes of 128, 64, and 32 B. As discussed in Section II-C, the
granularity of the DRAM data bus within a vault is 32 B, and
DRAM row size is 256 B. Therefore, reading the values smaller
than 32 B requires one data transfer, and reading values larger
than 32 B requires multiple data transfers. Note that since the
maximum request size is smaller than the DRAM row size
and HMC follows the closed-page policy, each request incurs
the cost of opening just one DRAM row. (We investigate the
effects of closed-page policy in Section IV-D.) Figure 8 also
presents million requests per second (MRPS) for each data
size. Although for less distributed access patterns (e.g., two
banks) we see a similar number of requests, for distributed

0
5

10
15
20
25
30

ro rw wo

Ba
nd

w
id
th
	(G

B/
s)

Access	Pattern

Fig. 7: Measured HMC bandwidth for different types of accesses:
ro, wo, rw. The data size of each access is 128 B, or 8 flits.

0
50
100
150
200
250
300
350

0
5

10
15
20
25

128B 64B 32B
MRPS	128B MRPS	64B MRPS	32B

Ba
nd

w
id
th
	(G

B/
s)

Access	Pattern

#R
eq

.	(
M
)	/
	S
ec
on

d

Fig. 8: Measured HMC bandwidth for read-only requests with
different request sizes. Lines represent the number of sent requests
in millions per second (MRPS).

access patterns (e.g., 4, 8, and 16 vaults), the MRPS differs in
various request sizes. For instance, when accesses distributed
over 16 vaults, for small request sizes such as 32 B, HMC
handles twice as many requests as large request sizes such
as 128 B. This behavior in the number of requests handled by
HMC, combined with the relatively same bandwidth utilization
for various request sizes, demonstrates that the bottleneck in
bandwidth is limited by DRAM timings and communication
bandwidth, rather than the size of components in the FPGA
such as GUPS buffers, tag-pool, or in internal memory con-
trollers within vaults. In addition to request sizes shown in
Figure 8, we perform the same experiments with all possible
request sizes11 and discover that the trend in both bandwidth
and MRPS is similar.

C. Thermal and Power Experiments
In general, 3D systems present limiting thermal and power

challenges. Therefore, we are interested in understanding the
relationships between temperature, bandwidth, and power con-
sumption particularly considering that the high speed links
are responsible for significant power consumption. We are
specially interested in the perspective of future PIM architec-
tures that will create higher temperatures. Therefore, we push
operation to the thermal limits by creating high-temperature
environments through manipulation of the cooling configura-
tions in Table III to study the relationship between tempera-
ture and bandwidth. We use synthetic address generation to
explore these limits, and follow the methodology presented
in Section III-B for temperature and power experiments.
Figure 9 shows the outcomes of thermal experiments for
cooling configurations shown in Table III. (This figure does not
include configurations that trigger HMC failures.) Although
experiments are limited by the resolution of the experimental
infrastructure (±0.1°C), the absolute temperature values pro-
vide a close approximation for temperature-related behaviors.
The first observation is that the behavior of HMC temperature
(i.e., the reduction of temperature when bandwidth decreases)
is similar in all cooling environments. That is, during the
first three access patterns (accessing 16 to four vaults), in
which bandwidth utilizations are similar, temperature remains
constant. Then, during the execution of the rest of the access
patterns (accessing two vaults to one bank), in which the
bandwidth utilization decreases, temperature drops. In fact,
more bandwidth utilization causes more accesses in DRAM
layers, processes in memory controller, and data transfers in
SerDes circuits, which consume 43% of total power [3]–[5].
As bandwidth utilization increases, HMC temperature rises,

11 Possible request sizes are: 16, 32, 48, 64, 80, 96, 112, and 128 B. Note
that for each request, we have an overhead of 16 B as well. Therefore, as size
increases, the efficiency of data size to overhead also increases.

70

0
5
10
15
20
25
30

30
40
50
60
70
80

BW Cfg4 Cfg3 Cfg2 Cfg1
Te
m
pe

ra
tu
re
	(°
C)

Access	Pattern

Ba
nd

w
id
th
	(G

B/
s)

ro

(a)

0
5
10
15
20
25
30

30
40
50
60
70
80

BW Cfg2 Cfg1

Te
m
pe

ra
tu
re
	(°
C)

Access	Pattern

Ba
nd

w
id
th
	(G

B/
s)wo

(b)

0
5
10
15
20
25
30

30
40
50
60
70
80

BW Cfg3 Cfg2 Cfg1rw

Te
m
pe

ra
tu
re
	(°
C)

Access	Pattern

Ba
nd

w
id
th
	(G

B/
s)

(c)
Fig. 9: Heatsink surface temperature and bandwidth of HMC during
various access patterns and request types: (a) Read-only, (b) write-
only, and (c) read-modify-write.

which directly affects the power consumption. Note that the
bandwidth profile is directly affected by access patterns. Since
HMC, a 3D-stacked design, has a smaller size than traditional
DRAM DIMMs and has the capability to achieve high band-
width (by exploiting serial communication and high BLP), we
conclude that HMC and generally 3D-stacked memories are
susceptible to thermal bottleneck.

As mentioned, previous work assumed that the reliable
temperature bound of DRAM is 85°C [12], [13]. To distinguish
the operational temperature for HMC, we run several experi-
ments, forcing higher thermal fields by controlling the cooling
configurations during which failures occur around the same
temperatures. Operationally, to indicate an inevitable thermal
failure (i.e., shutdown), HMC uses the head/tail of response
messages to transmit this information to the host. Occurrence
of a thermal failure during an experiment stops the HMC
and recovery from it entails following steps: Cooling down,
resetting HMC, resetting FPGA modules such as transceivers,
and initializing HMC and FPGA. Notice that when failure
occurs, stored data in DRAM is lost. Data recovery must rely
on external techniques such as checkpointing and rollback.
During our experiments, we observe that read-only accesses
do not experience any thermal failures, even with the lowest
cooling environment in Cfg1, in which temperature reaches
to 80°C. However, for wo and rw requests, the same cooling
environment (Cfg1) triggers thermal failures. Hence, our ex-
periments indicate that reliable temperature bound is lower for
workloads with significant write content - around 75°C, which
is about 10°C lower than that for read-intensive accesses.

The relationship between the bandwidth and temperature,
shown conceptually in Figure 1a, is drawn in Figure 11a with
a linear regression fit to measured data. Figure 11 is extracted

0
5
10
15
20
25
30

104
106
108
110
112
114
116
118

Av
er
ag
e	
Po

w
er
	(W

)

Access	Pattern

BW Cfg4 Cfg3 Cfg2 Cfg1

Ba
nd

w
id
th
	(G

B/
s)

ro

(a)

0
5
10
15
20
25
30

104
106
108
110
112
114
116
118

Access	Pattern

BW Cfg2 Cfg1

Ba
nd

w
id
th
	(G

B/
s)

wo

Av
er
ag
e	
Po

w
er
	(W

)

(b)

0
5
10
15
20
25
30

104
106
108
110
112
114
116
118

Av
er
ag
e	
Po

w
er
	(W

)
Access	Pattern

BW Cfg3 Cfg2 Cfg1

Ba
nd

w
id
th
	(G

B/
s)

rw

(c)
Fig. 10: Average power consumption of the system and HMC
bandwidth during various access patterns and request types: (a) Read-
only, (b) write-only, and (c) read-modify-write.

based on results in Cfg2, a configuration with highest tem-
perature, in which none of the ro, wo, or rw experienced
any thermally induced failures, providing a fair comparison.
As this graph illustrates, when bandwidth increases from five
to 20 GB/s, the temperature rises 3°C and 4°C for ro and
rw accesses respectively. The positive slope of all three lines
in the graph illustrates that the temperature bottleneck with
increasing bandwidth is inevitable in such 3D memory organi-
zations and therefore this characterization is important. Also,
the greater slope of the line corresponding to wo indicates
that write operations are more temperature sensitive across this
bandwidth range. We could not assert the reason behind this
with our current infrastructure. However, the results suggest
that such sensitivity favors read-intensive workloads such as
streaming applications to maximize bandwidth capacity.

Figure 10 illustrates power consumption behavior across re-
quest types and distributions. First, as one might expect power
consumption increases with increased bandwidth. Second, de-
creased cooling capacity leads to higher power consumption
for the same bandwidth reflecting the coupling between power
and temperature. This is particularly important to be aware
of for PIM configurations. Figure 11b provides a linear re-
gression fit line based on data from Figure 10. The figure
illustrates a 2 W increment in device power consumption when
bandwidth utilization rises from five to 20 GB/s. However,
cooling capacity is also another contributing factor to power
consumption. In fact, the cooling solution that is required
to maintain a device at a reliable temperature, can consume
significant power, and we study the impact as follows. With
respect to voltage and current, listed in Table III for two PCIe
backplane fans, and by the fact that as distance increases,
the effective power consumption for cooling of the external

71

48
50
52
54
56
58
60

0 5 10 15 20 25 30
Bandwidth	(GB/s)

ro wo rw

Bandwidth	(GB/s)

Po
w
er
	(W

)

106

108

110

112

114

0 5 10 15 20 25 30

Te
m
pe

ra
tu
re
	(°
C)

(a) (b)
Fig. 11: (a) Temperature and (b) power consumption relationships
with bandwidth in Cfg2 for different request types.

12
13
14
15
16
17
18
19
20

5 15 25
Bandwidth	(GB/s)

50 55 60 65 70

16

17

18

19

20

4 9 14
Bandwidth	(GB/s)

45 50

15

16

17

18

19

20

0 10 20 30
Bandwidth	(GB/s)

45 50 55

Co
ol
in
g	
Po

w
er
	(W

)

Co
ol
in
g	
Po

w
er
	(W

)

Co
ol
in
g	
Po

w
er
	(W

)

(a) (b) (c)

ro wo rw

Fig. 12: Observed cooling power and bandwidth relationships for
three access types. Each line indicates cooling power required for
maintaining the system at a specific temperature.

fan decreases, we calculated the power consumption of each
cooling configurations as 19.32, 15.9, 13.9, and 10.78 W for
Cfg1 to Cfg4, respectively. Then, by using linear regression
over measured data of temperature and bandwidth (Figure 9),
we extract the graphs in Figure 12, which reflect the con-
ceptual behaviors shown in Figure 1b. In Figure 12, each
line shows required cooling power for maintaining a specific
temperature as bandwidth utilization increases. Note that the
absolute values of cooling power are related to our cooling
infrastructure. However, Figure 11b and 12 indicate that as
bandwidth utilization increases, power consumption of both
the device and the cooling solution increases. In average, an
increase of 16 GB/s in bandwidth causes a growth of 1.5 W
in cooling power. Also, as the peak temperature increases
exponentially with the proximity of the compute unit [12],
adding PIM-like capabilities in the logic layer significantly
increases the cost of cooling.

D. Closed-Page Policy Experiments
As discussed in Section II-C, the HMC implements a closed-
page policy. While with the open-page policy, the average
latency of linear accesses is lower than that of random accesses
because of row buffer hits; with a closed-page policy, the
average latencies of linear and random accesses should be the
same. To illustrate this, we perform an experiment by issuing
linear and random addresses and measure the bandwidth uti-
lization. As Figure 13 illustrates, the bandwidth of random and

0
5

10
15
20
25

linear random linear random

16	vaults 1	vault

128B 112B 96B 80B 64B 48B 32B 16B

Ba
nd

w
id
th
	(G

B/
s)

Access	Pattern

Fig. 13: Measured HMC bandwidth for random and linear read-only
requests with different request sizes.

linear accesses are similar (random accesses, compared to lin-
ear accesses, have slightly higher bandwidth because of fewer
conflicts on any of the shared resources). We conjecture that
the increase in bandwidth from 32 B blocks to 128 B blocks is
due to efficiencies in streaming a block size greater than the
width of the 32 B DRAM bus and reduced packet overhead
due to the larger data size. We observe that applications benefit
from increasing parallelism over vaults and banks (e.g., stripe
data across the vaults and banks), rather than increasing refer-
ence locality. For instance, a streaming application that exhibits
linear references should not allocate data sequentially within
a vault for two reasons: (i) The maximum internal bandwidth
of a vault is 10 GB/s, which limits the total bandwidth; and
(ii) references to successive addresses cannot exploit spatial
locality because of the closed-page policy. Furthermore, to
increase the effective bandwidth, the application should use
128 B size for requests because each request/response has an
overhead of one flit, so a larger data size utilizes the available
bandwidth more effectively. For instance, when using 128 B
request size, the effective bandwidth is 128B/(128B+16B) = 89%
of raw bandwidth. However, when using 16 B request size, the
effective bandwidth is 16B/(16B+16B) = 50% of raw bandwidth.
Therefore, the OS, memory controller, or programmer has to
promote parallelism, remapping of data, and concatenation of
requests to achieve high effective bandwidth.

E. Latency Experiments
As HMC, a 3D-stacked design, exploits packet-switched in-
terfaces for scalability and PIM features, it yields another
important performance attribute, latency, a less-focused at-
tribute in traditional DIMM memories because of their constant
timing characteristics. Thus, we dedicate this section to latency
experiments and deconstruction of its contributing factors.

1) Contributing factors: Each port in the GUPS (Section-
III-B) measures the read latency as the number of cycles from
when a read request is submitted to the HMC controller (on the
FPGA) until the port receives the read response. This latency
includes cycles for (1) arbitrating among ports, (2) creating a
packet (i.e., generating head and tail flits, converting to flits,
adding sequence numbers, and generating CRCs), (3) perform-
ing flow control, (4) converting the packet to the SerDes proto-
col [15], (5) serializing the packet, (6) transmitting the packet
on the links, (7) processing the packet in the HMC (or mem-
ory) and generating a response, (8) transmitting the response
back, (9) deserializing the response, (10) performing necessary
verifications (i.e., checking errors and sequence numbers), and
(11) routing the response back. Although conventional memory
access latency for DDR memories is only reported by including
items 6 to 8, a comprehensive latency should also include the
number of cycles of similar related items.12 In addition, since
packet communication enables features such as data integrity,
remaining items might have noticeable latencies, so reporting
only the items from 6 to 8 does not faithfully represent latency.

To understand the factors which contribute to latency,
we inspect the latencies associated with each module in
the transmit (TX) and receive (RX) paths by time stamping
requests and reading the stamps from each module. Figure 14
presents the latency deconstruction of the TX path after a

12 The reason for that items from 6 to 8 are reported in the JEDEC is that the
standard specifies deterministic latencies, and the memory controller is on the
host side. Therefore, memory vendors are not responsible for extra latencies.

72

Flow	
Control

Ad
d	
Se
q#

hmc_phy (2x)

hmc_node (2x)
TX_port (5x)

D
at
a	
G
en

.	
5:1

Ar
bi
te
r

ToFlit FlitsTo
Parallel

1 Ad
d	
Se
q# Req.	Flow	

Control

from	RX

Ad
d	
CR

C

pma pmd

2
3

Lane
Reversal

4

Covert	to
SerDes

gtwizard_ultrascale (2x)

6

15Gbps
8x	links	(2x)

H
M
C

Ad
d	
CR

C

7

Serialization

Stop	Signal

5

Start	Latency
Measurements

8

9

HMC Controller

Fig. 14: Deconstruction of transmit path (TX) in the HMC controller
module of Figure 4b.

request is submitted to the HMC controller. Each external
link is connected to an hmc_node module, which consists
of five TX_ports that correspond to a port. Since the AC-
510 has two links to the HMC, this means 10 ports are
available on the FPGA, but one is reserved for system use.
After a request is submitted to the HMC controller (∂ in
Figure 14), the TX_port unit converts it to flits and buffers
up to five flits in the FlitsToParallel unit (∑), which
takes ten cycles or 53.3 ns (based on the max frequency of the
FPGA at 187.5 MHz). Then, flits from each port are routed to
subsequent units in a round-robin fashion by an arbiter (∏).
This routing latency is between two to nine cycles. Afterwards,
Add-Seq#, Req. Flow Control, and Add-CRC units
contribute a latency of ten cycles (π, ∫, and ª, respectively).
These units add fields in packets for reordering and data
integrity. Moreover, if the number of outstanding requests
exceeds a threshold, the request flow-control unit sends a stop
signal to the corresponding port (∫) requesting a pause in
the generation of memory access requests. For low-contention
latency measurements, the request flow-control unit does not
stop the transfer of any flit. Finally, flits are converted to the
SerDes protocol [15] and serialized (º and Ω, respectively),
which takes around ten cycles. In addition, transmitting one
128 B request takes around 15 cycles (æ). Overall, up to 54
cycles, or 287 ns, are spent on the TX path. Similarly, for a
packet, 260 ns are spent on the RX path. In total, 547 ns of
measured latency is related to link transfers and packet genera-
tion on the FPGA. Note that this is the minimum latency and is
incurred when the flow-control unit does not stall transfers. For
high-load studies, queuing delays will substantially increase
this latency measurement.

2) Low-load latency: This paragraph explores the latency
of low-load read accesses (i.e., no-load latency) and demon-
strates the correlation between latency and the number of read
accesses for varied packet sizes. As mentioned in Section III-B,
for these explorations, we use stream GUPS. Each subfigure
of Figure 15 shows variations in average, minimum, and
maximum latency when the number of read requests in a
stream changes from two to 28. This figure provides the
following information about the behavior of low-load accesses.
First, a comparison between the slopes of four diagrams in
this figure reveals that when the request size is larger, latency
increases faster with regard to the number of read requests.
In other words, the latency of a stream of 28 large packets
(i.e., 128 B packets) is 1.5x as high as that of a stream of
28 short packets (i.e., 16 B packets). However, a small stream
(e.g., a stream of two packets) incurs almost the same latency
regardless of packet size. Second, based on Figure 15, as
we expected, the increase in average latency comes from

0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28

La
te
nc
y	
(u
s)

Number	of	Read	Requests
2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number	of	Read	Requests

(a) Size	16B (b)	Size	32B

(c)	Size	64B (d)	Size	128B

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number	of	Read	Requests

0.40
0.60
0.80
1.00
1.20
1.40
1.60

2 4 6 8 10 12 14 16 18 20 22 24 26 28

La
te
nc
y	
(u
s)

Number	of	Read	Requests

Fig. 15: Average, minimum, and maximum latency of low-load
accesses for various request sizes.

increasing maximum latencies. This is probably primarily as a
result of interference between packets in the logic layer which
increases with number of references and size of packets. In
addition, unlike maximum latencies, minimum latencies have
a constant value as the number of requests increases. Third,
the results for various sizes show that the minimum latency
of 128 B packet sizes is 711 ns, 56 ns higher than that of 16 B
packet sizes. We should also add delay for transition across
the interface between a GUPS port and the HMC controller
— not expected to be more than a few cycles in the low-
load case. These latencies contain 547 ns infrastructure-related
latency, so in average 125 ns is spent in the HMC. The latency
variation within HMC is due to packet-switched interface, and
TSV and DRAM timings. In comparison with typical DRAM
access latency for a closed-page policy, we estimate the latency
impact of a packet-switched interface to be about two times
higher. In return, we obtain higher bandwidths via high BLP,
more scalability via the interconnect, and better package-level
fault tolerance via rerouting around failed packages.

3) High-load latency: Figure 16 illustrates the latency
behavior of high-load accesses (ro). The read latency varies
from 1,966 ns for 32 B requests spread across 16 vaults to
24,233 ns for 128 B requests targeted to a single bank. The
average reference latency of a high-load access pattern is 12
times as high as that of a low-load access pattern. These latency
measurements are made at the data generation component of
a GUPS port and prior to the HMC controller. At high loads,
reference requests are queued up at the HMC controller input
and we conjecture that the bulk of the growth in latency is
due to this queuing delay. This observation is supported by
the fact that the bandwidth utilization profile is similar across
all experiments described earlier. Further, the latency of 32 B
read requests is always lower than that of 64 B and 128 B read
requests because the granularity of the DRAM data bus within
each vault is 32 B, as pointed out in Section II-C. Therefore,

0
5
10
15
20
25

0
5

10
15
20
25
30

BW	128B BW	64B BW	32B
Latency	128B Latency	64B Latency	32B

La
te
nc
y	
(u
s)

Access	Pattern

Ba
nd

w
id
th
	(G

B/
s)

Fig. 16: Measured read latency of high-load accesses for various
access patterns and request sizes.

73

0
2
4
6
8

10

0 5 10 15

size	16B size	32B size	64B size	128B

Highest
Request Rate

Lowest
Request	Rate

0
2
4
6
8

10
12
14

0 2 4 6 8
Bandwidth	(GB/s)Bandwidth	(GB/s)

La
te
nc
y	
(u
s)

La
te
nc
y	
(u
s)

4-banks 2-banks

(a) (b)
Fig. 17: Latency and request bandwidth relationships for (a) four-
banks, and (b) two-banks access patterns.

the memory controller in the logic layer has to wait a few more
cycles when accessing data larger than 32 B. Figure 16 shows
that latency is directly related to bandwidth. A more distributed
access pattern exploits both multiple vault controllers and BLP.
By contrast, a targeted access pattern to a vault or to the banks
within a vault incurs high latency because of the serialization
of requests and limited number of resources per bank. The
micro-second order of reported values for latency illustrates
the importance of understanding the internal structure and
abstractions supported by HMC, sensitivity to the internal
frequency of operation,13 and the importance of the design
of the host-side memory interfaces.

4) Bandwidth-latency relationship: To explore bandwidth
and latency relationship, we first examine two specific access
patterns, and then all access patterns by using small-scale
GUPS. As pointed out in Section III-B, we use small-scale
GUPS to tune the request rate by changing the number of
active ports. Figure 17a presents the results for read accesses to
four banks within a vault. The figure, an actual demonstration
of Figure 1c, shows that latency saturates at some rates that
vary according to the packet size. This limiting factor that
causes saturation can be the size of a queue in the vault
controller. By assuming that a vault controller is a black
box that includes a server and a queue, the average number
of requests in a vault controller can be calculated based on
Little’s law by multiplying the average time a request spends
in the controller (i.e., vertical axis) by the input rate (i.e.,
horizontal axis) at the saturated point, the result of which
provides the number of outstanding requests in terms of bytes.
By accounting for the request sizes, we achieve a constant
number, 375. Similar analysis of Figure 17b infers that the
number of outstanding requests for two-bank accesses is half
of that for four-bank accesses. This observation suggests that
a vault controller has one queue for each bank or for each
DRAM layer.

To explore further the limits of latency, Figure 18 presents
an extended version of Figure 17 for various sizes and access
patterns. As shown, accesses to more than eight banks of a
vault do not follow the inferred trend of doubling the number
of outstanding requests (i.e., benefiting from BLP) followed
by accesses to one, two, and four banks. In fact, another
factor, which is 10 GB/s access bandwidth within a vault,
is responsible for this limitation. In addition, when accesses
are spread over two vaults, the saturation point occurs at
19 GB/s, which is about 2x as high as that at 10 GB/s, the
bandwidth limit of a vault. Notice that since we could not
generate more parallel accesses to the HMC, the saturation
points of accesses to more than two vaults does not occur.
13 As Lee et al. [27] pointed out, current 3D-stacked designs operate at lower
frequencies than DDRs (e.g., Wide I/O [28] operates at 200-266 MHz while
DDR3 operates at 2,133 MHz).

These results reiterate the importance of understanding the
internal structure and abstractions of HMC for maximizing
application performance. Besides, some limits exist on vault
bandwidth (10 GB/s) that can be exceeded by appropriate data
layout schemes. Further, we note the asymmetry in requests,
for example each read request can consume 128 B of return
bandwidth while the request itself takes only 16 B. Thus,
achievable bidirectional bandwidth is derated from the peak
bandwidth. Appropriate data mappings are necessary to not
derate achievable bandwidth further.

V. RELATED WORK
HMC is a practical 3D-stacked memory that integrates DRAM
dies and computational logic. Understanding the features of
HMC is crucial for state-of-the-art applications that want
to benefit from high bandwidth or low latency. Therefore,
this work, in continuation of previous studies, have explored
the characterization of HMC in terms of bandwidth, latency,
thermal behavior, and power consumption. Recently, actual
hardware-based studies continued the trend of HMC character-
ization, started by simulation-based explorations. In a technical
report, Rosenfeld et al. [29] explored HMC performance in
terms of bandwidth, latency and power consumption under
HMCSim simulation. They showed that maximum link effi-
ciency is achieved by a read ratio between 53% to 60% (based
on packet size). The conclusion was while only memory-
intensive applications achieve remarkable speedup from HMC,
all applications may benefit from the low power consump-
tion of HMC. In the first real-world HMC characterization
work, Gokhale et al. [11] measured bandwidth and latency of
HMC 1.1 by running a set of data-centric benchmark using an
FGPA emulator. They showed that read-dominated applications
achieve a 80% of peak bandwidth. Moreover, they discern that
high concurrency of accesses leads to an exponential increase
in latency. Furthermore, they reported a correlation between
latency and bandwidth, in which latency changes from 80 ns
for serial workloads, to 130 ns for concurrent workloads, while
the bandwidth increases from 1 GB/s to 65 GB/s and power
consumption increases from 11 W to 20 W.

In another real-world characterization study, Schmidt et
al. [9] characterized HMC 1.0 using OpenHMC, an open-
source digital design (i.e., infrastructure). They confirmed
previously mentioned simulation-based results that a read ratio
between 53% to 66% maximizes the access bandwidth of

0

5

10

15

0 5 10 15 20

La
te
nc
y	
(u
s)

Bandwidth	(GB/s)
0 5 10 15 20

Bandwidth	(GB/s)
(d) Size	128B

0

5

10

15

0 5 10 15 20

La
te
nc
y	
(u
s)

Bandwidth	(GB/s)

1	bank 2	banks 4	banks 8	banks 1	vault 2	vaults 4	vaults 8	vaults 16	vaults

0 5 10 15 20
Bandwidth	(GB/s)

(a) Size	16B (b)	Size	32B

(c) Size	64B
Fig. 18: Read latency and request bandwidth relationships for various
request sizes.

74

HMC. Moreover, they showed that read latency increases
dramatically to more than 4000 ns, if the read ratio exceeds
the optimal rate. However, for less than 53% read ratio, a total
read latency of 192 ns and 224 ns (for 12.5 and 10 Gpbs respec-
tively) is reported. Also, the power consumption, measured in
that paper is up to 9 W. In another experimental paper, Ibrahim
et al. [10] analyzed the effect of spatial and temporal locality of
accesses to HMC on its throughput with an EX800 backplane
consisting of four Stratix FPGAs. They emphasized that access
patterns with high temporal and spatial locality can operate up
to 20 times as fast as other applications. Similar to our result,
their outcome reveals that write bandwidth is lower than read
bandwidth. While these studies, including our work, agree on
the general performance behaviors in terms of bandwidth and
latency, as a result of varied platforms, some of the provided
results are slightly different. Although previous work have
illustrated fascinating facts about the features of HMC, these
real-world characterization studies have not covered the impact
of utilizing desirable features of HMC on temperature, power
consumption, and latency.

In the meantime, some of the recent studies explored
thermal behavior of HMC by simulation. Zhu et al. [12]
analyzed the thermal behavior of PIM systems, in which
processing elements are integrated with die-stacked memory.
They show that a higher ambient temperature lowers the power
budget for each functional unit at PIM. Also, to provide a safe
operational environment for PIM, a stronger cooling solution
(i.e. costlier in terms of price and power consumption) should
be used. In addition, Eckert et al. [13] evaluated various
cooling solutions for PIM-based systems. Their simulation
using HotSpot showed that a low-cost passive heatsink is
enough for keeping DRAM under the threshold temperature
(85°C), while provisioning sufficient power for computations
in memory. While simulation-based thermal analysis in these
works yields useful insights, it does not accurately reflect the
actual issues and the correlation between bandwidth, temper-
ature, and power consumption.

VI. CONCLUSION
This work demystified the characteristics of HMC, one of the
two commodity 3D-DRAM technologies, which represents a
class of 3D memories with high internal concurrency. The
insights and projected results are generic not only to the
class of 3D-memory systems but also to architectures that
utilize packet-switched communications. Our experiments re-
vealed the following key insights: (i) To efficiently utilize
bi-directional bandwidth, accesses should have large sizes
and use a mix of reads and writes. (ii) To avoid structural
bottlenecks and to exploit BLP, accesses should be distributed
and request rate should be controlled from any level of
abstraction (i.e., OS, compiler, software, or hardware). (iii)
To avoid complexity, one should not consider to improve
performance resulting from spatial locality. (iv) To benefit from
scalability of packet-switched communications, a low-latency
infrastructure is crucial. (v) To enable temperature-sensitive
operations, fault-tolerant mechanisms should be employed. (vi)
To attain high bandwidth, optimized low-power mechanisms
should be integrated with proper cooling solutions. While some
experiments in this papers provide anticipated results, they
yield a concrete real measured data to verify and also to ex-
plore future architecture research for an emerging technology.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their valuable comments
and feedbacks for improving the paper. Our experimental
hardware is partially supported by Micron. This study was
supported in part by National Science Foundation under grant
number CCF-1533767.

REFERENCES

[1] JEDEC Solid State Technology Association and others, “JEDEC Stan-
dard: DDR4 SDRAM,” JESD79-4, Sep, 2012.

[2] D. U. Lee et al., “25.2 A 1.2V 8Gb 8-channel 128GB/s High-Bandwidth
Memory (HBM) Stacked DRAM with Effective Microbump I/O Test
Methods Using 29nm Process and TSV,” in ISSCC’14, pp. 432–433.

[3] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Archi-
tecture Increases Density and Performance,” in VLSIT’12, pp. 87–88.

[4] S. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Mem-
ory+Logic Devices on MapReduce Workloads,” in ISPASS’14, pp. 190–
200.

[5] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading
in Graph Computing Frameworks,” in HPCA’17, pp. 457–468.

[6] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Pro-
cessing in Memory,” in HPDC’14, pp. 85–98.

[7] G. Kim et al., “Memory-Centric System Interconnect Design with
Hybrid Memory Cubes,” in PACT’13, pp. 145–156.

[8] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-data Processing in GPU Systems,” in
ISCA’16, pp. 204–216.

[9] J. Schmidt et al., “Exploring Time and Energy for Complex Accesses
to a Hybrid Memory Cube,” in MEMSYS’16, pp. 142–150.

[10] K. Z. Ibrahim et al., “Characterizing the Performance of Hybrid
Memory Cube Using ApexMAP Application Probes,” in MEMSYS’16,
pp. 429–436.

[11] M. Gokhale et al., “Hybrid Memory Cube Performance Characterization
on Data-Centric Workloads,” in IA3’15, pp. 7:1–7:8.

[12] Y. Zhu et al., “Integrated Thermal Analysis for Processing In Die-
Stacking Memory,” in MEMSYS’16, pp. 402–414.

[13] Y. Eckert et al., “Thermal Feasibility of Die-Stacked Processing in
Memory,” in WoNDP’14.

[14] J. Macri, “AMD’s Next Generation GPU and High Bandwidth Memory
Architecture: FURY,” in HCS’15, pp. 1–26.

[15] HMC Consortium, “Hybrid Memory Cube Specification 1.1,” Retrieved
from hybridmemorycube.org, [Online; accessed 6/1/17].

[16] PicoComputing, “AC-510 HPC Module,” http://picocomputing.com/ac-
510-superprocessor-module/, [Online; accessed 6/1/17].

[17] HMC Consortium, “Hybrid Memory Cube Specification 2.0,” Retrieved
from hybridmemorycube.org, [Online; accessed 6/1/17].

[18] HMC Consortium, “Hybrid Memory Cube Specification 1.0,” Retrieved
from hybridmemorycube.org, [Online; accessed 6/1/17].

[19] T. Pawlowski, “Hybrid Memory Cube (HMC),” in HCS’11, pp. 1–24.
[20] PicoComputing, “SC6-Mini,” http://picocomputing.com/products/

picocube/picomini/, [Online; accessed 6/1/17].
[21] PicoComputing, “EX700 Backplane,” http://picocomputing.com/

products/backplanes/ex-700/, [Online; accessed 6/1/17].
[22] FLIR, “FLIR One Thermal Camera,” http://www.flir.com/flirone/ios-

android/, [Online; accessed 6/1/17].
[23] E. Bogatin et al., Roadmaps of Packaging Technology. Integrated

Circuit Engineering, 1997.
[24] PicoComputing, “Pico Framework Documentation,” http:

//picocomputing.zendesk.com/hc/, [Online; accessed 6/1/17].
[25] PicoComputing, “HMC Controller IP,” [Online; accessed 6/1/17].
[26] Rosenfeld, Paul, “Performance Exploration of the Hybrid Memory

Cube,” Ph.D. dissertation, University of Maryland, College Park, 2014.
[27] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-

Stacked Memory Bandwidth at Low Cost,” TACO, vol. 12, no. 4, pp.
63:1–63:29, 2016.

[28] J.-S. Kim et al., “A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM
With 4 x 128 I/Os Using TSV Based Stacking,” Journal of Solid-State
Circuits, vol. 47, no. 1, pp. 107–116, 2012.

[29] P. Rosenfeld et al., “Peering Over the Memory Wall: Design Space and
Performance Analysis of the Hybrid Memory Cube,” Technical Report
UMD-SCA-2012-10-01, University of Maryland, Tech. Rep.

75

