
Empirical Software Engineering
Where are we headed?

Victor R. Basili

University of Maryland
and

Fraunhofer Center - Maryland

© 2005 Experimental Software Engineering Group, University of Maryland

2

Why Empirical Software Engineering?

Understanding a discipline involves building models,
e.g., application domain, problem solving processes

And checking our understanding is correct,
e.g., testing our models, experimenting in the real world

Analyzing the results involves learning, the encapsulation of
knowledge and the ability to change or refine our models over
time

The understanding of a discipline evolves over time

This is the empirical paradigm that has been used in many
fields, e.g., physics, medicine, manufacturing

Like other disciplines, software engineering requires an empirical
paradigm

3

Why Empirical Software Engineering?

Empirical software engineering requires the scientific use of
quantitative and qualitative data to understand and improve the
software product, software development process and software
management

It requires real world laboratories

Research needs laboratories to observe & manipulate the variables
- they only exist where developers build software systems

Development needs to understand how to build systems better
- research can provide models to help

Research and Development have a symbiotic relationship
requires a working relationship between industry and academe

4

Where are we today?

“Under specified conditions, …”
Technique Selection Guidance
• Peer reviews are more effective than functional testing for faults of

omission and incorrect specification (UMD, USC)
• Functional testing is more effective than reviews for faults

concerning numerical approximations and control flow (UMD, USC)

Technique Definition Guidance
• For a reviewer with an average experience level, a procedural

approach to defect detection is more effective than a less procedural
one. (UMD)

• Procedural inspections, based upon specific goals, will find defects
related to those goals, so inspections can be customized. (UMD)

• Readers of a software artifact are more effective in uncovering
defects when each uses a different and specific focus. (UMD)

5

What do I believe?

• Software engineering is an engineering discipline

• We need to understand products, processes, and the relationship
between them (we assume there is one)

• We need to experiment (human-based studies), analyze, and
synthesize that knowledge

• We need to package (model) that knowledge for use and evolution

• Believing this changes how we think, what we do, what is
important

6

What do I believe?

• Measurement is fundamental to any engineering science

• User needs must be made explicit (measurable models)

• Organizations have different characteristics, goals, cultures;
stakeholders have different needs

• Process is a variable and needs to be selected and tailored to
solve the problem at hand

• We need to learn from our experiences, build software core
competencies

• Interaction with various industrial, government and academic
organizations is important to understand the problems

• To expand the potential competencies, we must partner

7

Where do we need to go?

• Propagate the empirical discipline

• Build an empirical research engine for software engineering

• Build testbeds for experimentation and evolution of processes

• Build product models that allow us to make trade-off decisions

• Build decision support systems offering the best empirical advice
for selecting and tailoring the right processes for the problem

8

What am I doing now?

•Consider the following projects:

• CeBASE – Center for Empirically-Based
Software Engineering

• HDCP – High Dependability Computing
Project

• HPCS – High Productivity Computing Study

• Best Practices Clearinghouse

9

CeBASE
Center for Empirically Based Software Engineering

CeBASE Project Goal: Enable a decision framework and
experience base that forms a basis and infrastructure needed to
evaluate and choose among software development technologies

CeBASE Research Goal: Create and evolve an empirical
research engine for building the research methods that can
provide the empirical evidence of what works and when

Partners: UMD, FC-MD, USC, UNC, …

10

CeBASE Empirical Research Engine

Define and improve methods to

• Formulate evolving hypotheses regarding software development
decisions

• Collect empirical data and experiences

• Record influencing variables

• Build models (Lessons learned, heuristics/patterns, decision
support frameworks, quantitative models and tools)

• Integrate models into a framework

• Testing hypotheses by application

11

CeBASE Approach

Empirical Data

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

Observation and
Evaluation Studies

of Development
Technologies and

Techniques

E.g. COCOTS excerpt:

Cost of COTS tailoring = f(# parameters
initialized, complexity of script writing,
security/access requirements, …)

E.g. Defect Reduction Heuristic:

For faults of omission and incorrect
specification, peer reviews are more
effective than functional testing.

12

NASA High Dependability
Computing Program

Project Goal: Increase the ability of NASA to engineer highly
dependable software systems via the development of new
techniques and technologies

Research Goal: Quantitatively define dependability, develop high
dependability technologies and assess their effectiveness under
varying conditions and transfer them into practice

Partners: NASA, CMU, MIT, UMD, USC, U. Washington,
Fraunhofer-MD

13

Main Questions

How can I
understand the
stakeholders
quality needs?

Experience
BaseHow can I apply

the available
processes to
deliver the
required
quality?

System Developers

14

What are the top level research problems?
System Users Failures Space

Research Problem 3
What set of processes should be
applied to achieve the desired
quality? (Decision Support)

Research Problem 1
Can the quality needs be
understood and modeled?
(Product Models)

Process Developers Fault Space

System Developers

Research Problem 2
What does a process do?
Can it be empirically demonstrated?

15

System User Issues

How do I elicit quality requirements?
How do I express them in a consistent, compatible way?

• How do I identify the non-functional requirements in a
consistent way?
– Across multiple stakeholders
– In a common terminology (Failure focused)
– Able to be integrated

• How can I take advantage of previous knowledge about
failures relative to system functions, models and measures,
reactions to failures?
– Build an experience base

• How do I identify incompatibilities in my non-functional
requirements for this particular project?

16

UMD - Unified Model of Dependability

• The Unified Model of Dependability is a requirements engineering
framework for eliciting and modeling quality requirements

• Requirements are expressed by specifying the actual issue (failure
and/or hazard), or class of issues, that should not affect the system or
a specific service (scope).

• As issues can happen, tolerable manifestations (measure) may be
specified with a desired corresponding system reaction. External
events that could be harmful for the system may also be specified.

• For an on-line bookstore system, an example requirement is:

“The book search service (scope) should not have a response time
greater than 10 seconds (issue) more often than 1% of the cases
(measure); if the failure occurs, the system should warn the user and
recover full service in one hour”.

17

UMD is a model builder

scope

- Type
 - Whole System
 - Service
- Operational Profile
 - Distribution of transaction
 - Workload volumes
 - etc.

reaction

- Impact mitigation
 - warnings
 - alternative services
 - mitigation services
- Recovery
 - recovery time / actions
- Occurrence reduction
 - guard services

- Type
 - Adverse Condition
 - Attack
 - etc.

event

measure

- Measurement Model
 - MTBF
 - Probability of Occurrence
 - % cases
 - MAX cases in interval X
 - Ordinal scale
 (rarely/sometimes/....)

cause

concern manifest

trigger

FAILURE
- Type
 - Accuracy
 - Response Time
 - etc.
- Availability impact
 - Stopping
 - Non-Stopping
- Severity
 - High
 - Low

HAZARD
- Severity
 - People affected
 - Property only
 - etc.issue

18

UMD assimilates new experience

Characterizations (e.g., types, severity, etc.) of the basic UMD
modeling concepts of issue, scope, measure, and event depend on
the specific context (project and stakeholders).

System
Context

Framework
customization
to the specific context

Extraction of the
new knowledge
to enrich UMD

Specific System
Dependability

Model

Analysis and
packaging for reuse

UMD
Experience Base of Issues, Failures, Hazards
Events, Scope, etc

System
Context

Framework
customization
to the specific context

Extraction of the
new knowledge
to enrich UMD

Specific System
Dependability

Model

Analysis and
packaging for reuse

UMD
Experience Base of Issues, Failures, Hazards
Events, Scope, etc

They can be
customized while
applying UMD to
build a quality model
of a specific system
and enriched with
each new application

19

UMD: a framework for engineering decisions

UMD support engineering decisions at requirements phase for
quality validation, negotiation, trade-offs analysis

1.E+00

1.E+03

1.E+06

system

D
isplay

aircraft
position

D
isplay

planned route

D
isplay

synthetized
route

H
ighlight non

conform
ance

Select flight

MTBF vs. Services

MTBF all failures

MTBF Stopping Failures

scope

- Type
 - Whole System
 - Service
- Operational Profile
 - Distribution of transaction
 - Workload volumes
 - etc.

reaction

- Impact mitigation
 - warnings
 - alternative services
 - mitigation services
- Recovery
 - recovery time / actions
- Occurrence reduction
 - guard services

- Type
 - Adverse Condition
 - Attack
 - etc.

event

measure

- Measurement Model
 - MTBF
 - Probability of Occurrence
 - % cases
 - MAX cases in interval X
 - Ordinal scale
 (rarely/sometimes/....)

cause

concern manifest

trigger

FAILURE
- Type
 - Accuracy
 - Response Time
 - etc.
- Availability impact
 - Stopping
 - Non-Stopping
- Severity
 - High
 - Low

HAZARD
- Severity
 - People affected
 - Property only
 - etc.issue

9.99000E-01

9.99500E-01

1.00000E+00

D
isplay

aircraft
position

D
isplay

planned route

D
isplay

synthetized
route

H
ighlight non

conform
ance

S
elect flight

Availability vs. Services

1.E+00

1.E+03

1.E+06

system

D
isplay

aircraft
position

D
isplay

planned route

D
isplay

synthetized
route

H
ighlight non

conform
ance

Select flight

MTBF vs. Services

MTBF all failures

MTBF Stopping Failures

Requirements
Visualization Computation of

aggregate values of
dependability

(availability, MTBF
per service, etc)

UMD

20

Technology Researcher Issues

How well does my technology work?
Where can it be improved?

• How does one articulate the goals of a technology?
– Formulating measurable hypotheses

• How does one empirically demonstrate its goals?
– Performing empirical studies
– Validate expectations/hypotheses

• What are the requirements for a testbed?
– Fault seeding

• How do you provide feedback for improving the technology?

21

Using testbeds to transfer technology

• Define Testbeds
– Projects, operational scenarios, detailed evaluation criteria

representative of product needs
– Stress the technology and demonstrate its context of

effectiveness
– Help the researcher identify the strengths, bounds, and limits

of the particular technology at different levels
– Provides insight into the integration of technologies
– Reduce costs by reusing software artifacts
– Reduce risks by enabling technologies to mature before

taking them to live project environments
– Assist technology transfer of mature results

Conduct empirical evaluations of emerging processes
– Establish evaluation support capabilities: instrumentation,

seeded defect base; experimentation guidelines

22

TSAFE testbed:
Tactical Separation Assisted Flight Environment

• Aids air-traffic controllers in detecting short-term aircraft conflicts

Computing System by Heinz Erzberger at NASA Ames
• MIT TSAFE: a partial implementation by Gregory Dennis

– Trajectory synthesis and Conformance Monitoring
• TSAFE Testbed: developed at FC-MD, based on MIT TSAFE

– Added testbed specific features, e.g. to monitor faults, output
– Added features to make it easier to run and experiment with

Testbed
– Synthesized faults that were seeded
– Added documentation
– Added functionality, algorithms

• Used to evaluate a family of software architecture techniques

• Proposed as principle component of larger Automated Airspace

23

Testbed Development: Fault Seeding

Fault Seeding Drivers
• Intervention-driven: seed faults based upon what the

intervention is expected to find
– Assumes interventionist can express goals in terms of fault

classes
– Focus on intervention (no direct dependability link)
– Each intervention can generate a different set of faults

• History-driven: seed faults based upon the fault history from
similar NASA projects
– Assumes we have historical data from similar systems
– Maybe we have the relationship of failure to fault

• Dependability-driven: seed faults that create issues (failures)
that the user sees as hindering dependability
– Assumes we can identify issues that would impact

stakeholders needs
– Fault may not be representative of what caused the failure

Approaches can be combined

24

Problem: Satisfying dependability needs
by applying the right interventions:
Matching Failures Classes & Faults Classes

Faults Space Failures Space

25

High Productivity Computing Systems

Project Goal: Improve the buyers ability to select the high end
computer for the problems to be solved based upon
productivity, where productivity means

Time to Solution = Development Time + Execution Time

Research Goal: Develop theories, hypotheses, and guidelines
that allow us to characterize, evaluate, predict and improve
how an HPC environment (hardware, software, human)
affects the development of high end computing codes.

Partners: MIT Lincoln Labs, MIT, UCSD, UCSB, UMD, USC,
FC-MD

26

HPCS Phase II Teams

Mission Partners

Productivity Team (Lincoln Lead)

PI: SmithPI: Elnozahy PI: Mitchell

MIT Lincoln
Laboratory

PI: Kepner PI: Lucas

PI: Koester

PI: Basili PI: Benson & Snavely

PIs: Vetter, Lusk, Post, Bailey PIs: Gilbert, Edelman, Ahalt, Mitchell
CSAILOhio

State

Industry

PI: Dongarra

Create a new generation of economically viable computing systems and a
procurement methodology for the security/industrial community (2010)

27

Trade-offs Drive Designs
Execution Time (Example)

Current metrics favor caches and pipelines
• Systems ill-suited to applications with
• Low spatial locality
• Low temporal locality

Development Time (Example)

No metrics widely used
• Least common denominator standards
• Difficult to use
• Difficult to optimize

Top500 Linpack
Rmax

Large FFTs
(Reconnaissance)

STREAM ADD

RandomAccess
(GUPS)

High

High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity

Temporal Locality

Adaptive Multi-Physics
Weapons Design
Vehicle Design

Weather
C/Fortran

MPI/OpenMP

Matlab/
Python

Assembly/
VHDL

High Performance
High Level Languages

Language
Performance

La
ng

ua
ge

Ex
pr

es
si

ve
ne

ss

UPC/CAF

SIMD/
DMA

HPCS

Low

Low

High

High

• HPCS needs a validated assessment methodology that values the “right”
vendor innovations (see HPCchallenge)

• Allow tradeoffs between Execution and Development Time

• HPCS needs a validated assessment methodology that values the “right”
vendor innovations (see HPCchallenge)

• Allow tradeoffs between Execution and Development Time

Tradeoffs

28

Decision-support

• Ultimate goal of the empirical research is to provide guidance to
mission partners, vendors, researchers, practitioners about which
technologies to choose under what circumstances

• Package knowledge so it can be used to help make decisions
• Integrate models into a framework that provide users with the

information they need, e.g., Given a particular context, what approach
should a programmer choose?

Decision-support
system

Question

Advice with supporting
evidence

Context

Collected data

29

Stakeholder Needs
• Mission Partners

– Which parallel programming technologies are most effective for the
kinds of problems we work on?

– What model allows me to increase my effective work staff?
– How do I shrink the learning curve?

• Vendors
– Can I confidently demonstrate the elimination or minimization of effort

in any workflow steps using my technology?

• Parallel Technology Developers
– How can I incorporate the study of development time into my work?
– What technologies help improve development time?
– What is the tradeoff of development time to speed-up benefits?

• Practitioners
– What is the best technology available for solving my problem?

30

Building the knowledge base

• Knowledge is often either:
– High confidence in a very small region of context space

(e.g., classroom experiment)
– Over a broad context region, but low confidence (e.g., folklore)

• Using meta-analysis, we can combine results from studies
– What results are consistent across studies, and which ones differ?
– Can we identify the context variables that are changing across the

studies that can account for differences?
– Can we build useful knowledge across classroom studies, case

studies, using hypotheses and validated folklore, providing useful
measurements?

• Learning over time
– Start small – crawl before you walk before you run
– Evolve studies, models, hypotheses,

31

Goals: Evolving studies

• Pilot Classroom Studies on single programmer assignments
– Identify variables, data collection problems, single programmer

workflows, experimental designs

• Lead to Observational Studies on single programmer assignments
– Develop variables and data we can collect with confidence based

upon our understanding of the problems

• Lead to Controlled single programmer experiments
– Generate more confidence in the variables, data collection, models,

provide hypotheses about novices

• Lead to team student projects
– Study scale-up, multi-developer workflows,

• Lead to professional developer studies
– Study scale-up, multi-developer workflows, porting, reusing,

developing from scratch

32

Goals: Building models
• Identify the relevant variables and the context variables, programmer

workflows, mechanisms for identifying variables and relationships
– Developers: Novice, experts
– Problem spaces: various kernels; computationally- based vs.

communication based; …
– Work-flows: single programmer research model, …
– Mechanisms: controlled experiments, folklore elicitation, case

studies

• Identify what variables can be collected accurately or what proxies can
be substituted for those variables, understand data collection problems, …

• Identify the relationship among those variables, and the contexts in
which those relationships are true

• Build models of time to development, relative effectiveness of different
programming models, productivity, i.e., Productivity = Value/Cost

• E.g., In the context of a single programmer, productivity might be Relative
Speedup/Relative Effort (how do you measure speed-up, how do you
measure effort?)

33

Goals: Evolving Hypotheses
• Identify folklore*: elicit expert opinion to identify the relevant variables

and terminology, some simple relationships among variables, looking
for consensus or disagreement

• Evolve the folklore: evolve the relationships and identify the context
variables that affect their validity, using surveys and other mechanisms

• (Actually we: Identified a set of opinions from an particular set of
experts and then tested these opinions against the larger community
several times, having modified them after each data collection activity)

• Turn the folklore into hypotheses using variables that can be specified
and measured

• Verify hypotheses or generate more confidence in their usefulness in
various studies about development, productivity, relative effectiveness
of different programming models,
– E.g., OpenMP offers more speedup for novices in a shorter

amount of time when the problem is more computationally-
based than communication based.

*Folklore: An often unsupported notion, story, or saying that is widely
circulated

34

Class assignments

Single programmer (expert studies)
KernelsSingle programmer

classroom studies

Team projects

Case studies

Class projects

compact apps

porting
HEC community

folklore

HEC community provides questions to study that lead
to successively larger and more complex experiments

P
ro

bl
em

 S
ca

le

Experiments, observational studies

Time/Duration
Evolving measurement, models, hypotheses

35

Experimental designs
Hypotheses

Heroic scale
apps

Blue collar apps

Folklore/
Results

Folklore/
Results

Folklore/
Results

Quantitative insights
Models in context

DECISION SUPPORT BASE

Insights
Models
Results

Insights
Models
Results

Insights
Models
Results

scale

Single
programmer

Experiments are used to build a
decision support base of results

36

Relationships
among variables

Programmer experience
Low High

Sp
ee

du
p

The results of the experiments provide a
variety of models and relationships useful
for understanding HEC workflows

Program performance

Research
Design,

15%

Code, 20%

Optimize,
25%

Debug,
40%

Baseline data

Workflows

Lines of code

E
ffo

rt

Evaluation
of measures

Productivity

37

Data collection software

Experimental Packages

Programming problemsExperimental artifacts

Industrial studiesClassroom studies

Advice to vendorsAdvice to mission partners

- Language features utilization- Workflow models

- Productivity models
- Workflow models

Advice to university professors

- Effective programming
methods

- Student workflows

We will produce experimental
packages to use to increase our
knowledge and allow us to give
advice back to HEC community on
how to program HEC machines
effectively

38

OSD Clearinghouse Project

Project Goal: Populate an experience base for acquisition best
practices, defining context and impact attributes allowing
users to understand the effects of applying the processes
based upon the best empirical evidence available

Research Goal: Define a repeatable model-based empirical
evidence vetting process enabling different people to create
profiles consistently and the integration of new evidence

Partners: OSD, UMD, FC-MD, DAU, Northup-Grumman, …

39

Clearinghouse Key Concepts

Best
Practices

CH

Users

Experts

Analyst

Admin

Submit BP
Vetting process

Submit feedback

Upload/update BP

Maintain

Candidates

Analyze/
Refine

Experts

Questions

Answers

Extract
BPs

AskAnExpert
Log

Discussion
Group
Log

External sources
DOD, SEI, DACS, BMC, STSC

PMN, SWEBOKGateway

Browse,Search
& Retrieve

40

Best Practices Vetting Process
Each cycle allows more experience to be gathered and processed, leading
to better characterization of the practice, improved recommendations, and
more dependable implementation guidance.

Identification Characterization Analysis & Synthesis Validation Packaging
&Dissemination

Inputs:
Leads to practices
Activities:
•Collect
•Categorize
•Filter
•Synthesize
•Prioritize
Outputs: Candidate set of
practices

Inputs:
Set of candidate practices and
rationale for consideration
Activities:
•Gather/research characteristics
about the practice including
context (project, etc.), evidence of
use, lessons learned
•Complete “story” profile
Outputs:
More detailed set of candidate
practices with “stories”

Inputs:
Detailed set of candidate
practices
Activities:
•Aggregate stories, create profile
of practice
•Populate the repository
•Identify/define Interrelationships
Outputs:
Single profile for each best
practice, associated artifacts, and
confidence levels

Inputs:
Sets of practice data;
validation criteria
Activities:
•Check outputs from
previous phases
•Color Code practices
•Approve practices via
panel of experts
Outputs:
Validated practices

Inputs:
Sets of practice data; validation
criteria
Activities:
•Packaging
•Publishing
•Promoting
•Providing user help
•Discussions
Outputs:
•Repository update
•Papers & conference
presentations
•Course materials/updates

Practice/packaging maturation cycle

Proven

Consistent results

Initial validation

Nominated

Possible practice validation coding

Proven

Consistent results

Initial validation

Nominated

Possible practice validation coding

41

Empirically-Based Practices
• Profile

– Attributes, Values, Brief justification, links to
• Empirical evidence

– Justification, Summary, Statement, Source, Valuation, links to
• Sources

– (Full report/paper, Summary/Story)
Need models for evaluating the maturity of best practices, weighting
empirical evidence

42

Areas of Research Needed

• Eliciting quality requirements in measurable terms

• Evaluating technology in context

• Building testbeds to support experimentation

• Building heuristics to deal with the fault/failure relationship

• Building decision support systems

• Finding better ways to experiment and integrate the results of
the studies

43

Conclusion

• The synergistic relationship between research, applied
research, and practice

collaborations among multiple groups

• Software developers need to know what works and under what
circumstances

• Technology developers need feedback on how well their
technology works and under what conditions

• We need
– to continue to collect empirical evidence
– analyze and synthesize the data into models and theories
– Collaborate to evolve software engineering into an

engineering discipline

	Empirical Software EngineeringWhere are we headed?
	Why Empirical Software Engineering?
	Why Empirical Software Engineering?
	Where are we today?
	What do I believe?
	What do I believe?
	Where do we need to go?
	What am I doing now?
	CeBASE Center for Empirically Based Software Engineering
	CeBASE Empirical Research Engine
	CeBASE Approach
	NASA High Dependability Computing Program
	Main Questions
	What are the top level research problems?
	System User IssuesHow do I elicit quality requirements?How do I express them in a consistent, compatible way?
	UMD - Unified Model of Dependability
	UMD is a model builder
	UMD assimilates new experience
	UMD: a framework for engineering decisions
	Technology Researcher IssuesHow well does my technology work? Where can it be improved?
	Using testbeds to transfer technology
	TSAFE testbed: Tactical Separation Assisted Flight Environment
	Testbed Development: Fault Seeding
	Problem: Satisfying dependability needsby applying the right interventions: Matching Failures Classes & Faults Classes
	High Productivity Computing Systems
	HPCS Phase II Teams
	Trade-offs Drive Designs
	Decision-support
	Stakeholder Needs
	Building the knowledge base
	Goals: Evolving studies
	Goals: Building models
	Goals: Evolving Hypotheses
	OSD Clearinghouse Project
	Clearinghouse Key Concepts
	Best Practices Vetting Process
	Empirically-Based Practices
	Areas of Research Needed
	Conclusion

