
The Role of Empirical Study in
Software Engineering

Victor R. Basili

University of Maryland
and

Fraunhofer Center - Maryland

2

Setting the Context

• Software engineering is an engineering discipline

• We need to understand products, processes, and the relationship
between them (we assume there is one)

• We need to experiment (human-based studies), analyze, and
synthesize that knowledge

• We need to package (model) that knowledge for use and evolution

• Recognizing these needs changes how we think, what we do,
what is important

3

Motivation for Empirical Software Engineering

Understanding a discipline involves observation, model building,
and experimentation

Learning involves the encapsulation of “knowledge”, checking
our “knowledge” is correct, and evolving it over time

This is the empirical paradigm that has been used in many
fields, e.g., physics, medicine, manufacturing

Like other disciplines, software engineering requires an empirical
paradigm

The nature of the field influences the approach to empiricism.

4

Motivation for Empirical Software Engineering

Empirical software engineering involves the scientific use of
quantitative and qualitative data to understand and improve the
software product, software development process and software
management

It requires real world laboratories

Research needs laboratories to observe & manipulate the variables
- they only exist where developers build software systems

Development needs to understand how to build systems better
- research can provide models to help

Research and Development have a synergistic relationship that
requires a working relationship between industry and academe

5

Motivation for Empirical Software Engineering

For example, a software organization needs to ask:
What is the right combination of technical and managerial

solutions?
What are the right set of process for that business?
How are they tailored?
How do they learn from their successes and failures?
How do the demonstrate sustained, measurable improvement?

More specifically:
When are peer reviews more effective than functional testing?
When is an agile method appropriate?
When do I buy rather than make my software product elements?

6

Examples of Useful Empirical Results

“Under specified conditions, …”
Technique Selection Guidance
• Peer reviews are more effective than functional testing for faults of

omission and incorrect specification (UMD, USC)
• Functional testing is more effective than reviews for faults

concerning numerical approximations and control flow (UMD, USC)

Technique Definition Guidance
• For a reviewer with an average experience level, a procedural

approach to defect detection is more effective than a less procedural
one. (UMD)

• Procedural inspections, based upon specific goals, will find defects
related to those goals, so inspections can be customized. (UMD)

• Readers of a software artifact are more effective in uncovering
defects when each uses a different and specific focus. (UMD)

7

Basic Concepts
for Empirical Software Engineering

The following concepts have been applied in a number of organizations

Quality Improvement Paradigm (QIP)

An evolutionary learning paradigm tailored for the software business

Goal/Question/Metric Paradigm (GQM)

An approach for establishing project and corporate goals and
a mechanism for measuring against those goals

Experience Factory (EF)

An organizational approach for building software competencies and
supplying them to projects

8

Quality Improvement Paradigm

Characterize
& understand

Set
goals

Choose
processes,
methods,
techniques,
and tools

Package &
store experience

Analyze
results

Execute
process

Provide process
with feedback

Analyze
results

CorporateCorporate
learninglearning

ProjectProject
learninglearning

9

The Experience Factory Organization

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

environment
characteristics

tailorable
knowledge,
consulting

project
analysis,
process

modification

data,
lessons
learned

10

The Experience Factory Organization
A Different Paradigm

Project Organization Experience Factory
Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project

11

SEL: An Example Experience Factory Structure

DEVELOPERS
(SOURCE OF EXPERIENCE) (PACKAGE EXPERIENCE FOR REUSE)

DATA BASE SUPPORT
(MAINTAIN/QA EXPERIENCE INFORMATION)

Development
measures for each

project

Refinements to
development

process

STAFF 275-300 developers

TYPICAL PROJECT
SIZE 100-300 KSLOC

ACTIVE PROJECTS 6-10 (at any given time)

PROJECT STAFF SIZE 5-25 people

TOTAL PROJECTS
(1976-1994) 120

STAFF 10-15 Analysts

FUNCTION • Set goals/questions/metrics
- Design studies/experiments

• Analysis/Research

• Refine software process
- Produce reports/findings

PRODUCTS
(1976-1994) 300 reports/documents

SEL DATA BASE

FORMS LIBRARY

REPORTS LIBRARY

160 MB

220,000

• SEL reports
• Project documents
• Reference papers

STAFF 3-6 support staff

FUNCTION • Process forms/data

• QA all data

• Record/archive data

• Maintain SEL data base

• Operate SEL library

NASA + CSC + U of MDNASA + CSC

NASA + CSC

PO PROCESS ANALYSTS
EF

12

Using Baselines to Show Improvement
1987 vs. 1991 vs. 1995

Continuous Improvement in the SEL

Decreased Development Defect rates by
75% (87 - 91) 37% (91 - 95)

Reduced Cost by
55% (87 - 91) 42% (91 - 95)

Improved Reuse by
300% (87 - 91) 8% (91 - 95)

Increased Functionality five-fold (76 - 92)

CSC officially assessed as CMM level 5 and ISO certified (1998),
starting with SEL organizational elements and activities

These successes led to

Fraunhofer Center for Experimental Software Engineering - 1997

CeBASE Center for Empirically-based Software Engineering - 2000

13

CeBASE
Center for Empirically Based Software Engineering

CeBASE Project Goal: Enable a decision framework and
experience base that forms a basis and infrastructure needed to
evaluate and choose among software development technologies

CeBASE Research Goal: Create and evolve an empirical
research engine for building the research methods that can
provide the empirical evidence of what works and when

Partners: Victor Basili (UMD), Barry Boehm (USC)

14

CeBASE Approach

Empirical Data

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

Observation and
Evaluation Studies

of Development
Technologies and

Techniques

E.g. COCOTS excerpt:

Cost of COTS tailoring = f(# parameters
initialized, complexity of script writing,
security/access requirements, …)

E.g. Defect Reduction Heuristic:

For faults of omission and incorrect
specification, peer reviews are more
effective than functional testing.

15

CeBASE
Three-Tiered Empirical Research Strategy

Primary activities Evolving resultsTechnology maturity

Increasing success rates
in developing agile,
dependable, scalable
applications.

Practitioner use, tailoring,
and feedback. Maturing the
decision support process.

Practical
applications

(Government,
industry, academia)

Basic
Research

Experimentation and analysis
with the concepts in selected
areas.

Applied
Research

Building a SE Empirical
Research Engine and
Experience base structure

Partly filled EB, more
mature empirical
methods, technology
maturation and transition.

Empirical methods for
SE, Experience Base
definition, decision
support structure

16

CeBASE Basic Research Activities

Define and improve methods to

• Formulate evolving hypotheses regarding software development decisions

• Collect empirical data and experiences

• Record influencing variables

• Build models (Lessons learned, heuristics/patterns, decision support
frameworks, quantitative models and tools)

• Integrate models into a framework

• Testing hypotheses by application

• Package what has been learned so far so it can be evolved

17

Applied Research
NASA High Dependability Computing Program
Problem: How do you elicit the software dependability needs of

various stakeholders and what technologies should be applied to
achieve that level of dependability?

Project Goal: Increase the ability of NASA to engineer highly
dependable software systems via the development of new
technologies in systems like Mars Science Laboratory

Research Goal: Quantitatively define dependability, develop high
dependability technologies and assess their effectiveness under
varying conditions and transfer them into practice

Partners: NASA, CMU, MIT, UMD, USC, U. Washington,
Fraunhofer-MD

18

What are the top level research problems?
System Users Failures Space

Research Problem 3
What set of technologies should be
applied to achieve the desired
quality? (Decision Support)Research Problem 1

Can the quality needs be
understood and modeled?

Technology Developers Fault Space

System Developers

Research Problem 2
What does a technology do?
Can it be empirically demonstrated?

19

System User Issues

How do I elicit quality requirements?
How do I express them in a consistent, compatible way?

• How do I identify the non-functional requirements in a
consistent way?
– Across multiple stakeholders
– In a common terminology (Failure focused)
– Able to be integrated

• How can I take advantage of previous knowledge about
failures relative to system functions, models and measures,
reactions to failures?
– Build an experience base

• How do I identify incompatibilities in my non-functional
requirements for this particular project?

20

UMD - Unified Model of Dependability

• The Unified Model of Dependability is a requirements engineering
framework for eliciting and modeling quality requirements

• Requirements are expressed by specifying the actual issue (failure
and/or hazard), or class of issues, that should not affect the system or
a specific service (scope).

• As issues can happen, tolerable manifestations (measure) may be
specified with a desired corresponding system reaction. External
events that could be harmful for the system may also be specified.

• For an on-line bookstore system, an example requirement is:

“The book search service (scope) should not have a response time
greater than 10 seconds (issue) more often than 1% of the cases
(measure); if the failure occurs, the system should warn the user and
recover full service in one hour”.

21

UMD is a model builder

scope

- Type
 - Whole System
 - Service
- Operational Profile
 - Distribution of transaction
 - Workload volumes
 - etc.

reaction

- Impact mitigation
 - warnings
 - alternative services
 - mitigation services
- Recovery
 - recovery time / actions
- Occurrence reduction
 - guard services

- Type
 - Adverse Condition
 - Attack
 - etc.

event

measure

- Measurement Model
 - MTBF
 - Probability of Occurrence
 - % cases
 - MAX cases in interval X
 - Ordinal scale
 (rarely/sometimes/....)

cause

concern manifest

trigger

FAILURE
- Type
 - Accuracy
 - Response Time
 - etc.
- Availability impact
 - Stopping
 - Non-Stopping
- Severity
 - High
 - Low

HAZARD
- Severity
 - People affected
 - Property only
 - etc.issue

22

UMD assimilates new experience

Characterizations (e.g., types, severity, etc.) of the basic UMD
modeling concepts of issue, scope, measure, and event depend on
the specific context (project and stakeholders).

System
Context

Framework
customization
to the specific context

Extraction of the
new knowledge
to enrich UMD

Specific System
Dependability

Model

Analysis and
packaging for reuse

UMD
Experience Base of Issues, Failures, Hazards
Events, Scope, etc

System
Context

Framework
customization
to the specific context

Extraction of the
new knowledge
to enrich UMD

Specific System
Dependability

Model

Analysis and
packaging for reuse

UMD
Experience Base of Issues, Failures, Hazards
Events, Scope, etc

They can be
customized while
applying UMD to
build a quality model
of a specific system
and enriched with
each new application

23

UMD: a framework for engineering decisions

UMD support engineering decisions at requirements phase for
quality validation, negotiation, trade-offs analysis

1.E+00

1.E+03

1.E+06

system

D
isplay

aircraft
position

D
isplay

planned route

D
isplay

synthetized
route

H
ighlight non

conform
ance

Select flight

MTBF vs. Services

MTBF all failures

MTBF Stopping Failures

scope

- Type
 - Whole System
 - Service
- Operational Profile
 - Distribution of transaction
 - Workload volumes
 - etc.

reaction

- Impact mitigation
 - warnings
 - alternative services
 - mitigation services
- Recovery
 - recovery time / actions
- Occurrence reduction
 - guard services

- Type
 - Adverse Condition
 - Attack
 - etc.

event

measure

- Measurement Model
 - MTBF
 - Probability of Occurrence
 - % cases
 - MAX cases in interval X
 - Ordinal scale
 (rarely/sometimes/....)

cause

concern manifest

trigger

FAILURE
- Type
 - Accuracy
 - Response Time
 - etc.
- Availability impact
 - Stopping
 - Non-Stopping
- Severity
 - High
 - Low

HAZARD
- Severity
 - People affected
 - Property only
 - etc.issue

9.99000E-01

9.99500E-01

1.00000E+00

D
isplay

aircraft
position

D
isplay

planned route

D
isplay

synthetized
route

H
ighlight non

conform
ance

S
elect flight

Availability vs. Services

1.E+00

1.E+03

1.E+06

system

D
isplay

aircraft
position

D
isplay

planned route

D
isplay

synthetized
route

H
ighlight non

conform
ance

Select flight

MTBF vs. Services

MTBF all failures

MTBF Stopping Failures

Requirements
Visualization Computation of

aggregate values of
dependability

(availability, MTBF
per service, etc)

UMD

24

Technology Developer Issues

How well does my technology work?
Where can it be improved?

• How do I articulate the goals of a technology?
– Formulating measurable hypotheses

• How do I empirically demonstrate its goals?
– Performing empirical studies
– Validate expectations/hypotheses

• What are the requirements for a testbed?
– Fault seeding

• How do I provide feedback for improving the technology?

25

Example Technology Evolution
A process for inspections of Object-Oriented designs was

developed using multiple iterations through this method.
Early iterations concentrated on feasibility:

- effort required, results due to the process in the context of
offline, toy systems.
Is further effort justified?

Mid-process iterations concentrated on usability:
- usability problems, results due to individual steps in the
context of small systems in actual development.
What is the best ordering and streamlining of process
steps to match user expectations?

Most recent iterations concentrated on effectiveness:
- effectiveness compared to other inspection techniques
previously used by developers in the context of real systems
under development. Does the new techniques represent a
usable improvement to practice?

26

Using testbeds to transfer technology

• A testbed is a set of artifacts and the infrastructure needed for
running experiments, e.g., evaluation support capabilities such
as instrumentation, seeded defect base; experimentation
guidelines, specific features to monitor faults, …

• Used to
– Conduct empirical evaluations of emerging technology
– Stress the technology and demonstrate its context of

effectiveness
– Help the researcher identify the strengths, bounds, and limits

of the particular technology at different levels
– Provide insight into the integration of technologies
– Reduce costs by reusing software artifacts
– Reduce risks by enabling technologies to mature
– Assist technology transfer of mature results

27

Example Technology and Testbed Evolution

• Testbed: a safety critical air traffic control software component
(FC-MD’s TSAFE III)

• Technology: Tevfik Bultan’s model checking design for verification
approach applied to concurrent programming in Java

• Technology goal: Eliminate synchronization errors techniques

• Empirical Study Goal: investigate the effectiveness of the design
for verification approach on safety critical air traffic control software
– Applied the design for verification approach to a safety critical

air traffic control software component (FC-MD’s TSAFE III)
– TSAFE III software was reengineered based on the

concurrency controller design pattern

28

Example Technology and Testbed Evolution

• Testbed :
– 40 versions of TSAFE source code were created via fault

seeding
– The faults were created to resemble possible errors that can

arise in using the concurrency controller pattern such as
• making an error while writing a guarded command or
• forgetting to call a concurrency controller method before

accessing a shared object
• Results:

– The experimental study resulted in a
• Better fault classification
• Identified strengths and weaknesses of the technology
• Helped improve the design for verification approach

– However, there was one type of fault that was difficult to catch
• Three uncaught faults were created to test this

29

System Developer Issues

How can I understand the stakeholders dependability needs?
How can I apply the available techniques to deliver the

required dependability?

• How do I identify what dependability properties are desired?
– Stakeholders needs, dependability goals and models,

project evaluation criteria
• How do I evaluate the effectiveness of various technologies

for my project?
– What is he context for the empirical studies?

• How do I identify the appropriate combinations of
technologies for the project needs?
– Technologies available, characterization, combinations of

technologies to achieve goals
• How do I tailor the technologies for the project?

30

Applied Research
DoE High Productivity Computing Systems

Problem: How do you improve the time and cost of developing high end
computing (HEC) codes?

Project Goal: Improve the buyers ability to select the high end computer
for the problems to be solved based upon productivity, where
productivity means
Time to Solution = Development Time + Execution Time

Research Goal: Develop theories, hypotheses, and guidelines that
allow us to characterize, evaluate, predict and improve how an HPC
environment (hardware, software, human) affects the development of
high end computing codes.

Partners: MIT Lincoln Labs, MIT, UCSD, UCSB, UMD, USC, FC-MD

31

HPCS Example Questions

• How does a HEC environment (hardware, software, human)
affect the development of an HEC program?

– What is the cost and benefit of applying a particular HPC
technology (MPI, Open MP, UPC, Co-Array Fortran, XMTC,
StarP,…)?

– What are the relationships among the technologies, the work
flows, development cost, the defects, and the performance?

– What context variables affect the development cost and
effectiveness of the technology in achieving its product goals?

– Can we build predictive models of the above relationships?

– What tradeoffs are possible?

– …

32

HPCS Research Activities

Empirical Data
Development Time

Experiments –
Novices and Experts

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

E.g. Tradeoff between effort and performance:

MPI will increase the development effort by y%
and increase the performance z% over OpenMP

E.g. Experience:

Novices can achieve speed-up in cases
X, Y, and Z, but not in cases A, B, C.

33

HPCS Testbeds

We are experimenting with a series of testbeds ranging in size from:

– Classroom assignments (Array Compaction, the Game of Life,
Parallel Sorting, LU Decomposition, …

to
– Compact Applications (Combinations of Kernels, e.g.,

Embarrassingly Parallel, Coherence, Broadcast, Nearest
Neighbor, Reduction)

to
– Full scientific applications (nuclear simulation, climate

modeling, protein folding, ….)

34

Data collection software

Experimental Packages

Programming problemsExperimental artifacts

Industrial studiesClassroom studies

Advice to vendorsAdvice to mission partners

- Language features utilization- Workflow models

- Productivity models
- Workflow models

Advice to university professors

- Effective programming
methods

- Student workflows

35

Studies Conducted

UCSB
3 studies

USC
4 studies

UCSD
1 study

MIT
3 studies

UMD
6 studies

Mississippi State
2 studies

U Utah
ASCI Alliance

Iowa State
1 study

CalTech
ASCI Alliance

UIUC
ASCI Alliance

U Chicago
ASCI Alliance

Stanford U
ASCI Alliance

36

Clearinghouse Project

Problem: How do I pick the right set of processes for my
environment.

Project Goal: Populate an experience base for acquisition best
practices, defining context and impact attributes allowing
users to understand the effects of applying the processes
based upon the best empirical evidence available

Research Goal: Define a repeatable model-based empirical
evidence vetting process enabling different people to create
profiles consistently and the integration of new evidence

Partners: OSD, UMD, FC-MD, DAU, CSC, …

37

BPCh IT Components

Repository Intelligent
Front-ends

Best Practice
Handling

BPCh IT ComponentsBPCh Process Components BPCh Roles BPCh Role Specific Interfaces

System
Administration

Information Seekers

Information Handlers

Support Team

Information Providers

Take this!

Best Practice Handling
Quantification
& Qualification

Analysis &
Synthesis Validation Packaging &

Dissemination
Identification

Best Practice
Contributions

Submit content
related to Practice

Suggest &
Promote
Practices

BPCh Operations
System Upgrades & Maintenance

Backups & User Management
Initial Development

BPCh Usage
Access

data
Interface with
other resources

Project characterization

Role characterization

Select
Appropriated

Practice
Information

request

Operational Concept

38

Behind the Scenes

Evidence 1

Source
Context
Results

Evidence 3

Source
Context
Results

Evidence 2

Source
Context
Results

Evidence 4

Source
Context
Results

BPCh recommendations based on
evidence from real programs.

• From publications

• From interviews & feedback with users

• From vetted expert guidebooks & standards

Evidence

• Source: How trustable?

• Context: Used by a safety critical program? In a DoD
environment? On a warfighter?

• Results: Did it increase or reduce cost, quality, and
schedule?

39

Behind the Scenes

Evidence 1

Source
Context
Results

Evidence 4

Source
Context
Results

Evidence 2

Source
Context
Results

Evidence 3

Source
Context
Results

Summary
The summary says
where the practice was successful
what it helped and cost
how to get started
Practices are vetted for accuracy
and usefulness

40

The User View

Evidence 1

Source
Context
Results

Evidence 2

Source
Context
Results

Evidence 3

Source
Context
Results

Evidence 4

Source
Context
Results

Summary

Acquisition
manager,

safety critical
program

Help me find a
practice to reduce

schedule.

Who’s used it for
safety critical

programs?

41

Summarizing

• Measurement is fundamental to any engineering science

• User needs must be made explicit (measurable models)

• Organizations have different characteristics, goals, cultures;
stakeholders have different needs

• Process is a variable and needs to be selected and tailored to
solve the problem at hand

• We need to learn from our experiences, build software core
competencies

• Interaction with various industrial, government and academic
organizations is important to understand the problems

• To expand the potential competencies, we must partner

42

Where do we need to go?
Propagating the empirical discipline

Build an empirical research engine for software engineering

• Build testbeds for experimentation and evolution of processes

• Build product models that allow us to make trade-off decisions

• Build decision support systems offering the best empirical advice
for selecting and tailoring the right processes for the problem

• Use empirical study to test and evolve technologies for their
appropriateness in context

	The Role of Empirical Study in Software Engineering
	Setting the Context
	Motivation for Empirical Software Engineering
	Motivation for Empirical Software Engineering
	Motivation for Empirical Software Engineering
	Examples of Useful Empirical Results
	Basic Conceptsfor Empirical Software Engineering
	The Experience Factory Organization A Different Paradigm
	SEL: An Example Experience Factory Structure
	CeBASE Center for Empirically Based Software Engineering
	CeBASE Approach
	CeBASE Three-Tiered Empirical Research Strategy
	CeBASE Basic Research Activities
	Applied ResearchNASA High Dependability Computing Program
	What are the top level research problems?
	System User IssuesHow do I elicit quality requirements?How do I express them in a consistent, compatible way?
	UMD - Unified Model of Dependability
	UMD is a model builder
	UMD assimilates new experience
	UMD: a framework for engineering decisions
	Technology Developer IssuesHow well does my technology work? Where can it be improved?
	Example Technology Evolution
	Using testbeds to transfer technology
	Example Technology and Testbed Evolution
	Example Technology and Testbed Evolution
	System Developer IssuesHow can I understand the stakeholders dependability needs? How can I apply the available techniques
	Applied Research DoE High Productivity Computing Systems
	HPCS Example Questions
	HPCS Research Activities
	HPCS Testbeds
	Studies Conducted
	Clearinghouse Project
	Operational Concept
	Behind the Scenes
	Behind the Scenes
	The User View
	Summarizing
	Where do we need to go? Propagating the empirical discipline

