Preface

SIMPL-T is a member of a family Bf languages that are'designed to be
relatively machine independent and whose compilers are relatively trans-—
portable onto a variety of machines. Tt is a procedure oriented, non-
block structured programming language that was designed to conmform to the
standards of structured programming and modular design. There are three

data types in SIMPL-T: dinteger, string and character.

The first member of the SIMPL family, the typeless language SIMPL-X,
was bootstrapped onto the 1108 in the Fall of 1972. The implementation

of SIMPL-T was completed in January, 1974.

This text is primarily intended as the reference manual for SIMPL-T,.
However since it dis anticipated that it will be used in teaching SIMPL-T,
the material has been organized so that the manual can be used in

the classroom.

We would like to acknowledge the work of Hans Breitenlohner who wrote
the execution time monitor and provided assistance in trying to interface-
with the idiosyncrasies of EXEC 8. Ackndwledgments also go to Mike Kamrad
and Bruce Carmichael for their work on the bootsgtrap and Eleanor B. Waters

and Dawn Shifflett for the typing of the main portion of this note.

This project was supported in part by the Office of Naval Research
under Grant N00014-67-A-0239-0021 (NR-044-431) to the Compuier-Science
Center of the University of Maryland, and in part by the Computer Science

Center of the University of Maryland.

Victor R. Basili
University of Maryland

Albert J. Turner
- Clemson University

Contents

Page

Introduction L L S R .1
. The Basic SIMPL-T Language ° 3
2.1 Program Structure 3
2.1.1 Declarations 3
2.1.2 Segments 5
2.1.3 Scope of Identifiers 7

2.2 Comments and Blanks 7
2.3 Statements 8
2.3.1 Assignment Statement 8
2.3.2 1If Statement 8
2.3.3 While Statement 9
2.3.4 Case Statement 10
2.3.5 Call Statement 11
2.3.6 Example ' 12

2.4 Integer.Expressions 13
2.4.1 Subscripted Array Variables 13
2.4.2 Function Calls 13
2.4.3 Constants 13

2.5 Basic Integer Operators 14
2.5.1 Arithmetic Operators 14
2.5.2 Relational Operators 14
2.5.3 Logical Operators 15
2.5.4 Precedence ' 15
2.5.5 Examples 16

2.6 Identifiers 16
2.7 Basic 1/0 17
2.7.1 READ 17
2.7.2 WRITE 19
2,7.3 Example 20

2.8 Example 21

ii

String Data

w W W W w w
X s R =

.11

3.12
3.13
3.14

Introduction

”Constants

Variables

Declarations

3.4.1 Scalar

3.4,2 Array

Operators

3.5.1 Concatenate

3,5.2 Substring

3.5.3 BRelational Operators
String Expressions

Assignment Statement

Example '

I/0

Example

String Functions

3.11.1 User Defined Functions
3.11.2 Intrinsic Functions
Substring Assignment

String Parameters PR

Example

Additional Language Features

4.1

4.2
4.3
4.4

Escape Mechanisms

4,1.1 FExit Statement

4,1.2 Return Statement

4.1.3 Abort Statement
Parameter Passing by Reference

Recursive Segments

Access Between Separately Compiiéd PfoéramuModulést'i

4.4.1 Entry Points
4.4.2 External Reference _
4.4.3 Nonexecutable Programén

4,4,4 Example 1

iii

Page

. 25

25
25
25

25
25

26 .
.27

27
27
28
28
29
29
30
31
33

- 33

35
37
37
38

40

40
40
42
42
43
44
b
45
45
46

46

5.

4.5

- Some

- 5.1

5.2
5.3

504
5.5

5.6

4,4,5 Example 2

4.4.6 Executing a Program Having Multiple Modules

DEFINE Facility

4.5.1 Macro Definition

4.5.2 Example

4.5.3 Macro Expansion

4.,5.4 Conventions and Restrictions

4.5.5 Options
Special Purpose Language Features

Character Data Type

5.1.1 Introduction

5.1.2 Constants

5.1.3 Declarations

5.1.4 Statements

5.1.5 Operators ‘

5.1.6 Intrinsic Func;ions'and Procedures
5.1.7 I/0 |
5.1.8 Characters as Strings

5.1.9 Summary

Bit Representation for Integer Constants
Bit Operators |

5.3.1 Shift Operators

5.3.2 Bit Logical Operators

5.3.3 Precedence

Partwords

‘Record 1/C

5.5.1 Introduction

5.5.2 READC
5.5.3 WRITEL
File I/0

5.6.1 Introduction

5.6.2 File Declaratiqn_.
5.6.3 READF

5.6.4 WRITEF N
5.6.5 Control Operations _ '
5.6.6 Example B

5.6.7 Conventions .and Restrictionsg

iv

Page
48
48
49°

- 49

49

<50

51
51
53
53 -
53
53
53
54
55
55
57
57
57
58
59
59
59
59
60
61
61
61

62

63
63
63
64
64
65
65
66

?;5.7 ,Multlple Input—stream Files

5.8 Obtaining the Execution Time Options;:ﬁ
5.9 Generating Relocatable Output

5.9.1 Introduction o

5.9.2 OPENOBRJ

5.9.3 DEFEP and DEFXREF
5.9.4 GENOBJ
5,9.5 DEFLC
5.9.6 CLOSEOQORJ

5.9.7 Example

5.9,8 Conventlons and Restrlctlons _

'5.10 Programs That Execute as Processors

,5 11 Symbolic Output
~Using SIMPL-T on the 1106/1108

6.1 Source Input Format
6.2 Debugging Aids
6.2,1 Traces
6.2.2 Subscript Checking
6.2.3 Omitted Case Check
6.2.4 Conditional Text
6.2.5 User Contingency Interrupt
6.3 Messages Generated by SIMPL-T
6.4 Source Listing
6.5 Attribute and Cross-reference Listing
6.6 Keywords and Intrinsic Identifiers
6.7 Other Options
6.8 Program Analysis Facilities
. 6.8.1 Program Statistics
6.8.2 Execution Statistics
6.8,3 Execution Timing
' 6.8.4 Execution Statistics or Timing with Multiple
Modules
6.9 Macro Pre-compile Pass.

6.10 Program Execution Time

Page

.. 66
. 67
67

67
68

. .68

69

70w

71

L 72
74
S

75
75
76
77
77
78
79
79
80
81
81
81
81
82
83
83

84
84

7. Additional Notes on the 1106/1108 Implementation of SIMPL*T

7.1

7.2
7.3
7.4
7.5

Appendix
~ Appendix
.Appendix
.Appendix
| Appendix

Appendix

SIMPL-T Object Code

Interface with Other Languages
Some Comments on Efficiency
Functions with Side Fffects

Arlthmentlc Overflow

I. Executing a SIMPL-T Program on the 1106/1108
IT. Precedence of Operators

iII. ASCII Character Codes

Iv. Formal Spec1f1cat10n of SIMPL—T Syntax

V. Keywords

VI.. Intrinsic Procedures aﬁd_Functiees

vi

Page

85
85
86

87
87
88

90

91

92

98

99

1. ‘Intrqdﬁction.

- This manual describes the implementation bf'the;language‘SIMPL;T

for the Univac 1106/1108 computers using the Exéc 8 operating system.

" SIMPL-T is essentially an extension ofathe“1anguage~SIMPL#X,"whiCh-ia

described in: V. R. Basili,'-"SiMPL¥X,'a'1anguage for writing strue-

' tured programs", Tech. Rept, TR-223, U. of Md. Comp. Sc. Center, Jan.

1973,

SIMPL-T is a procedurée-oriented, non-block-structured programming
language that was designed to conform to. the standards of structured

programmlng and modular de31gn SIMPL-T is 1ntended to be the base

‘language for a family of languages that will 1nc1ude a systems program—

ming language and the graph language GRAAL (W. Rhelnboldt V. Ba5111,
and C. Mesztenyi, "On a pLogrammlng language for graph algorlthms .
BIT 12, 1972). The design and development of the SIMPL famlly of ‘lan-
guages is being done at the University of Maryland Computer Science

Center and Computer Science Department.

In order to avoid the inclusion of much material that would be
superfluous for the anticipated readers, it is assumed that the reader
has some knowledge of a general purpose programming language such as

FORTRAN, BASIC, ALGOL, or PL/I.

The manual is designed so that the basic features are presented
first, and more specialized features are presented later. Chapter 2
contains a description of the basic language that is sufficient to get
a novice SIMPL-T programmer ''on the air". Chapter 2, Chapter 3, and
most, if not all, of Chapter 4 contain the material that would normally

be covered in a programming course (with selected topics from Chapter 5

‘perhaps also being included). Most of the material in Chapter 5 is for

those who are familiar with the language and have special purpose re-

quirements. Chapter 6 contains information about using the SIMPL-T com-

piler, and Chapter 7 contains assorted information about the 1106/1108

Exec 8 implementation.

A language feature that has not yet been explained is sometimes

used in an example in order to provide a more illustrative example.

2

The meaning of such a feature should be clear from its usage to those
who are familiar with another general purpose programﬁing language bﬁt
if not, the feature is always explained soon after such a usage. It
should also be noted that the examples are designed primarily to illu-
strate the SIMPL-T language and thus they may not always illustrate the

best way to solve a particular programming prqblem,

Braces ({ }:) are used to denote optional syntax .and the symbols
< and > are used to enclose the name of a general syntactic entity.

. For. example, the syntax for a call statement can be specified by
:CALL'<identifier> { (<parameter list>)}

Thls means that a call statement con51sts of the word CALL followed

u:by an 1dent1f1er. The 1dent1f1er may optlonally be followed by a para—

meter l1st, enclosed in parentheses. Words such as CALL are called

kezwords{-

2. The Basic SIMPL=-T Language

2.1 Program Structure
The syntax for a SIMPL-T program is illustrated by

{<declaration list>} <segment list> START <identifier>

The <declaration list> defines the variables that may be used anywhere
in the program. The <segment list> 1is a collection of procedures
(subroutines) and functions, and <identifier> names the procedure
with which execution is to begin. (The <segment 1is;> may consist

of only a single procedure.)
The fbllowing éxample illustrates this program structure.
IND XY ~ "} declaration list
PROC PRINTSﬁM(IﬁT A, INT B) o
WRITE (A+B)

PROC MAINPROG

X =3

Y o= 4

CALL PRINTSUM(X,Y)

segmént list

START MAINPROG
(The result of this program is thatl 7 is printed.)

Thus a SIMPL-T program contains a (possibly empty) set of global decla-
rations and a set of procedures and functions. Execution begins with one
of the procedures, and the procedures and functions are called as needed

during execution.

2.1,1 Declarations

The initial declaration list of a.program contains declarations for
all variable identifier names that are global. A global_identifief is an
identifier that is known to all segments of a program. Only global decla-
rations for integer variables and integer arrays are discussed in this

section.

4

2.1.1.1 Integer Declaration

An integer variable may have any integer value between —235 + 1
and 235 -~ 1 , inclusive. An integer variable declaration.ddnsists of
the keyword INT followed by one or more identifier names, separated
by commas. Initialization may also be specified as illustrated by the
following valid declaration list.

INT X
INT CAT, DOG1
INT M=3, N=-1, I~
VIIn the ébove;exampie M and N are initialized to the Vélues .3
and -1 , respectively. This means that these variables will have the
specified values when execution of the program begins.' The value of an
uninitialized variable is initially undefined. (Actually globals will

have value O on the 1106/1108 unless the B MAP option is specified.)

2.1.1.2 JInteger Array Declaration

The only data structure in SIMPL-T is the one-dimensional array.
This is an ordered collection of elements, all of the same data type.
The elements are numbered 0, l,..., n-1 , where n is the number of

elements in the array.

Integer array declarations begin with the keywords INT ARRAY , and
are completed by listing the array identifiers and the number of elements
for each array. The number of elements must be a positive integer, and

- is enclosed in parentheses. For example,
INT ARRAY TOTALS(10)
declares an array of 10 elements: TOTALS(0), TOTALS(1),..., TOTALS.(9) .

An array can also be initialized by specifying a list of values for
the array elements. Initialization begins with the firéf element (number
0) and proceeds until the list is exhausted (or all array elements are
'ekhausted)i_'A repetition factor can be specified by enclosing the factor

in parentheses following the initialization value.:

‘Some examples are

INT ARRAY A(3), BAT(95), VECTOR(20)
CINT ARRAY A1(10), B(5) = (2,3,-1)
INT ARRAY C(11) = (0,1,3(9))

The second declaration specifies that B(0Y , B(L) , and '3(2) are to
be initialized to 2, 3, and -1 , respectively. The third decla-
ration initializes C(0) to 0 , C(1) .to 1, and C(2)-C(10) 'to 3.

2.1.1.3 Declaration List

A declaration list, such as the list of global declarations at the
beginning of a program, consists of one or more declarations. Declara-
tions follow one another with no separator (except blanks). More than
one declaration for the same type can appear in a declaratiom list.

- All identifiers used in a program must be declared.
An example of a declaration list is

INT X, Y
INT I
INT ARRAY INPUTS(100),0UTPUTS (50)

INT SUM
INT ARRAY SUMS(20) = (0(20})

- 2.1.2 Segments

A segment is a procedure or function definition. Segments contain
a list of statements to be executed when the segment is invoked.
2.1.2.1 Procedures

The syntax for a procedure definition is illustrated by -

PROC <identifier> {(<parameter list>)} {<local deciaratipn list>}

<statement list> {RETURN}
where <identifier> is the name of the procedure.
An example of a brocedure definition is

PROC TEST (INT X, INT Y) o .
/* THIS PROC PRINTS THE SUM OF X AND Y */

WRITE (X+Y)

6

A procedure is a subroutine that, when invoked, executes its <statement list>
and returns to the caller. A procedure may access any global identifier
(unless the procedure has a local identifier by the same name) as well as

its local identifiers and parameters.

The items of the <parameter list> , separated by commas, are of the
form . INT <identifier> or INT ARRAY <identifier> . These parameters are

passed to the procedure when it is invoked (called).

Integer parameters are passed by value (unless otherwise specified
as in 4.2). This means that if a procedure changes the value of an
intéger parameter, the new wvalue is effective only to that procedure.

For example, if procedure P is defined by

PROC P(INT X)
X =

and the statements

X:=3
CALL P(X)
WRITE(X)

are executed, then the number printed will be 3 (not 7).

Array parameters, however, are passed by reference. Logically, this
means that the array itself is passed {rather than the value as for integer
parameters). Thus any modification to an array parameter by a procedure
will be a modification to the actual array passed as an argument by the

caller. TFor example, if procedure Q 1is defined by

PROC Q(INT I, INT ARRAY A)
A(I) 1= 7
and the statements

A(2) 1= 3
CALL Q(2, A)
WRITE(A(2))

are executed, then 7 will be printed.

2.1.2,2 Functions
The function definition syntax is illustrated by
INT FUNC <identifier> {(<parameter list>)} {<local declaration list>}

{<statement list>} RETURN (<expression>)

A function is similar to a procedure. The main differences are

1) the value of <expression> 1s returned (as the value of the function
evaluation) to be used in the same manner as the value of a variable
-would be used;

2) Functions may not have side effects, that is, they may mnot change

the values of ‘any nonlocal variables or arrays.

(Note that (2) is assumed but not enforced. Those who insist on writ-

ing functions with side effects should see 7.4 .)

2.1.2.3 Local Declarations

All local variables ‘and arrays must be declared in the local declara-
tion list. Local declarations are similar to global declarations, but
initialization is not allowed. (The values of local variables at entry.

to a segment are undefined.)

2.1.3 Scope of Identifiers

Global identifiers, including segment names, are acce531ble from all
segments unless a segment declares a local with the same name as a global.
Local declaratlons override global declaratlons so that a global identi-

fler is not available to a segment in which that identifier is declared
local. | - '

Local identifiers are only accessible to the segment in which they
‘are declared. Both globals and locals may be passed as parameters. The

value of all locals is undefined at entry to the segment and locals do

not necessarily retain their values between successive calls to the seg-

ment.

2.2 Comments and Blanks

- Blanks may appear anywhere in a SIMPL-T program except within an

8

identifier, symbol, keywofd, or constant. Blanks are significant de-
limiters and may be needed as separators for identifiers or constants.
For example, .

IF X

and
IFX .
are not equivalent.

A comment is any character string enclosed by /* and */ . (See
6.1 for a modification of this: convention.) A comment may appear any-
where that a blank may occur and has no effect on -the execution of a

program. The following illustrates a comment:

/* THIS IS A COMMENT. %/ ..

2.3 Statements

The syntactic entity <statement list> denotes any sequence of
SIMPL-T statements. No separators (other than blanks) are used between

statements.

2.3.1 Assignment Statement

The syntax of the assignment statement is given by
<variable> := <expression> o '
where <variable> is either a simple variable (i.e., an integer identi-
fier) or a subscripted variable. The assignment statement causes the value of
the <expression> to be assigned to the <variable> { Examples of valid

SIMPL-T assignment statements are

X =y
X = Y=Z _ _
A(I):= A(T+1)+A(J-2)*X

2.3.2 If Statement

The IF statement causes conditional execution of a sequence of -

one or more statements. The syntax is

IF <expression>

THEN <statement list>l

. ... {ELSE <statement list>,} END

" At execution; the value of the <expression> determines the action taken.
If the value is nonzero, <statement list>l {8 executed and <statement

list>, (if there is.an else part) is skipped. If the value is zero,

2 .
<gtatement list>2 (if it exists) is executed and <statement 1ist>1 is
not executed. Execution proceeds with the next statement (following

END) after execution of either <statement list>

Example
IF X<3 .AND. ¥Y<X
THEN
 ¥:=X
ELSE
X:=X+1
Y:=¥-1
IF X>Y
THEN
X:=Y
END
END

Note that the ELSE part of the main IF - statement also contains an IF

statement that will be executed only if the .ELSE part is executed.
Example.
IF X THEN Y:=Y¥/X ELSE Y:=Y/2 END

This statement divides Y by X if X 'is nonzero and divides by

2 41f X is zero.

_2.3.3 While Statement

The WHILE statement pfovides-a means of iteration (looping):

WHILE. <expression> DO <statement list> END

" The value of the <expression> determines the action at execution time,
just as for the IF statement. If the value of <expression> is non-
- Zero,'theh <statement list> is executed; otherwise <statement list> is

skipped and execution proceeds with the statement following END . How-

10

ever, if <statement list> is executed, theén execution proceeds with
the WHILE statement again. Thus if <expression> - is nonzero, then

<statement Iist> 1is executed until <expression> becomes zero.

Example. The following statement list sums the odd and even integers

from 1 to 100.

0DD := 0
EVEN := 0
I :=20
WHILE I<100
DO
T := I+1
IF I/2 % 2 = I
THEN /* EVEN INTEGER */
EVEN := EVEN + I
ELSE /* ODD */
ODD := ODD + I
END
END

2.3.4 Case Statement

Exactly one of a group of statement lists may be executed by using

the CASE statement. The syntax is illustrated by’

CASE <expression> OF
\nl\ <statement l_ist>1
_\nz\ . ﬁst_gtement 1lst>2

\n.k\ <statement list>k

{ELSE <statement list>, ,_} END

k+1

where each Dys Moyees,ll is a constant or a negated constant.

If the value of <expression> is- nj', then <statement 1ist>j is
executed and the other statement lists are not executed. If <expression>
does not evaluate to any of the ni's‘ , then the ELSE part (<statement

liSt'>k+l) is executed, if there is an ELSE. part, and none of the state-

11

ment lists is executed if there is no ELSE part. The cases may be-in .
any order, and more than one case designator \ﬂbl=uqube used with

the same statement list, as is illustrated in the following example.

Example |
-+ CASE X*Y+Z OF : . .
i\
o .i““ X,J?,B L
2\ S
IF XY
© THEN
| X =Y
END -
- Y=Yl
\4\ \6\ /* CASES 4 AND 6 COINCIDE */°
X =2
Y =3
ELSE
= 0

X
END

2.3.5 Call Statement
The CALL statement
CALYL, <identifier> {(<argument list>)}
causes the procgdure_naméd . <identifier> io be executed. Each argument
in the argument list may be an_expfessipn or an array, and the arguments
must agree in number and type with the parameters in the procedure defi-
nition for the procedure that is called. Arguments in <argument list>

are separated by commas.

Upon completion of the execution of.the‘procedure,'execution resumes

with the statement following the. CALL statement..
Example. To invoke the procedure DOIT LWitﬁ'arguments ZY and
the array A , the statement S
CALL DOIT (X+Y, A)

is used.

12

2.3;6;'ExamEle-~.
- PROC SORT (INT N, INT ARRAY A)

/* THIS PROCEDURE USES A BUBBLE SORT ALGORITHM TO SORT THE
ELEMENTS OF ARRAY 'A' INTO ASCENDING ORDER. THE VALUE
OF THE PARAMETER 'N' IS THE NUMBER OF ITEMS TO BE SORTED. */

INT SORTED, /* SWITCH TO INDICATE WHETBER FINISEED */
LAST, /% LAST ELEMENT THAT NEEDS TO BE CHECKED */
I, /* FOR GOING THROUGH ARRAY */ _
SAVE /* FOR HOLDING VALUES TEMPORARiLY %/

IF N>1
THEN /* SORT NEFDED #*/
SORTED := 0 /% INDICATE NOT FINISHED */
LAST := N-1 [# START.WITH WHOLE.ARRAY *f

WHILE .NOT. SORTED
DO /* CHECK CURRENT SEQUENCE FOR CORRECTNESS */
SORTED := 1 /% ASSUME FINISHED * '
I :=1 /* INITIALIZE ELEMENT POINTER */

- WHILE I <= LAST
DO /* COMPARE ADJACENT ELEMENTS UP TO 'LAST' */
IF A(I-1) > A(I)
THEN /* OUT OF ORDER */ |
/

SAVE := A(I) /% INTERCHANGE %
CAQT) = A(I-1) /% A(I) AND 3/
CA(I-1) t= SAVE /% A(I-1) */
SORTED := 0 /% MAY NOT BE FINISHED */
- e FAREeE |
I := I+1

END /* LOOP FOR COMPARING ADJACENT ELEMENTS */ -
/* A(LAST),%.., A(N-1) ARE NOW OK */°
CLAST := LAST -1 '
END */ LOOP FOR CHECKING CURRENT SEQUENCE */
END /# IF N>1 %/

/% END PROC '"SORT' */

13 .

2.4 Integer Expressions .. -

“'An;intégerkekpressioﬁLrépreSEnts‘éﬁ integer value. AR integer éx-—
pféssiéﬁ'may be ST e e e o e '
1) a scalar integer variable (either a simple variable or a subscripted
array variablel); . '
2) an integer constant;

3) an integer function call; . ,
4) an integer operation (such as + or -) where each operand may also

be an expression;

5) an integer expression enclosed in parentheses.

'Ej2,4,lh‘8ubscripted Array Variables

“».An-array element .is designated by following the array name with a
subscript, enclosed in parentheses,'whose value designates the number of

the array element to be used. The subscript can be any integer expres-—

sion.
- :For example
.A“f'A(3)
idéSignageéﬂéhe iAth“eleﬁent of érrgy .An; Whiié;l

ACX + ACY))

~designates the element whose number is the value of . X. plus the value of

the array element designated by A(Y) .

2.4.2 Function Calls

A function call has the form
<identifier> {(<argument list>)}
”fwhgre <identifier> is.thg_name of the function. The rules fof_ <argument

1ist> are the same as for the CALL statement.

2.4.3 Constants

An integer constant may be designated by any seQuence of decimal

14

digits representing a valid non-negative integer wvalue. Note that nega-
tive constants may usually be used where desired although such a con-
stant is formally viewed as the unary minus operation on a nonnegative

constant in integer expressions.
For example, the following are valid SIMPL-T integer constants.

3

35927

. ,
123456789

2.5 Basic Integer Operators

The operators described in this section all have integer expressions
as operands and yield an integer result: Any arithmetic overflow that

‘occurs-in a calculation is ignored.

2.5.1 Arithmetic Operators

Addition (+) , subtraction (=) , and multiplication (%) are binary
operators with the usual meaning. The integer divide (/)._operator
yields the integer quotient of its operands. Thus if the result of X/

is Q@ , then X = Q*Y + R , where R is the remainder that was discarded

in the integer divide.

The unary minus (-) operator yields the negative of its operand.
Note that the expression -3 is formally viewed as the unary minus opera-
tion on the constant 3 although it would probably-be logically-(and
equivalently) viewed as the constant "minus three' by the programmer.

There is no unary plus operator in SIMPL-T.

2.5.2 Relational Operators

The relational operators are equal (=) , not equal. (<>) , less than

(<) , less than or equal (<=) , greater than (>) , and greater than or

equal (>=) . The expression %=Y has value 1 if X and Y are'éqﬁal, and

value O otherwise. The remaining relational operators are similarly defined.

Note that the result of a relational operation always has value 1

15

or zero, depending on whether the relation is true or false,.respectivel&.

The relational operators can also be denoted by .EQ. , ;NE. , JLT. ,

.LE. , .GT. , and .GE. ., respectively. o | 7
(A note of caution regarding arithmetic overflow generated by a

relational operatlon is in 7.5.)

2.5.3 Logical Operators

The loglcal 0perators‘ .AND; s '}OR. , and ~ .NOT. are defined by:
X.AND.Y is .1 if both X and Y are”nonéefq;hend.is"o iotﬂerwise
X.0R.Y is 0 4if both X and Y are zero, and is 1 otherwise
.NOT.X is 1 if X is zero and is 0 othervise .
‘As is the caee for felational operatioes; e 1egicai eperation.always yields
the result 1 or 0 . ' ’

Note that the logical operators yield the "hatural” result. For

example, the expression
X<Y .AND. ¥<Z

will have the value 1+ (i.e.; will be- ”true") if Y 4is both greater than
"X and less than Z , and will have the value 0 (i.e., will be "false')

otherwise.

2.5.4 Precedence

The precedence of the basic integer operations, from highest to lowest, is

.NOT. - (unary) , unary
. arithmetic
4 - (binary) . -
s <> < L= k= o : relational L
JAND.
logical
.0R. h T

The order Of‘evaluation”between operators. of equal precedence is left to

right" (except:between unary. operators, which is right to left). .

‘As an example, the expression .

16

-A+3B+C*D

would be evaluated by

(1) negating the value of A

(2) adding the value of B to the result from (1)
(3) multiplying the value of C by the value of D
(4) adding the results from (2) and (3)

Parentheses may be used to alter the normal precedence. Thus

(A+B)*C would cause thz values of A and B to be added and the re-

sult to be multiplied by the wvalue of C .

2.5.5

For

2.6

Examples

The following are examples of valid SIMPL-T expressions.

(L) X+Y/7 %2

(2) X<3 .OR. X>8

(3) X>3 .AND. X+Y<10
(4) X + (X*(Y+1)<500)

X=9 and ¥=12 these expressions have the values

(I 11

(2 1

(3 0

(4) 10
Identifiers

Identifiers (i.e., names} in SIMPL-T may be any string of letters

or digits that begins with a letter. For usage in an identifier, the

symbol $ is considered to be letter. Identifiers are used to denote

variables, arrays, procedures, functions, and other entities in a program.

All identifiers used in a program (except SIMPL-T intrinsic:identifiers,

such as READ) must be declared.

There is no formal restriction on the length of identifiers. How-

ever identifiers may not cross the boundary of a source input record (e.g.,

card), so that there is an actual restriction to the length of an input

17

record (e.g., 80 characters).

Certain reserved words (keywords) m”z_not be used as identifiers
in a SIMPL—T program.. These keywords (such as IF , INT) are listed
in Appendlx V. Due to the special meaning given to these keywords,
rather disastrous results may occur if a keyword is used as an 1dent1f1er
in a SIMPL-T program. This is especially true of keywords ugsed in decla-
rations ‘(such as INT , ARRAY , PROC). The resulting diagnestics gene-
rated by the compiler may not be too helpful for such an error, primarily
because the programmer often overlooks this type of error as a possible

cause of the diagnostics.

Since many keywords are used for more specialized features of the
SIMPL-T language, the list in Appendix V should be consulted before
writing a SIMPL-T program.

2.7 Basic I1/0

2.7.1 READ

READ may be used to read values from job streém inpﬁt (card, tele-
type, etc.) into integer variables. Values to be reéd'are placed on in-
put records (cards, teletype lines, etc.) as decimal'consfants separated
by blanks or commas (or both). Negative values are indicéted by placing
a minus sign before the number to be read. A value may not Cross the

boundary of an input record.
To illustrate the READ statement, the statements

READ(X,Y ,A(T+JT})
 READ(T,J)

and the input

3, -2, 57
10 , 12

would cause the same results as

X :=3
Y = -2
A(T+I) = 5

18 .

Thus the input to be read in is considered to be a stream qf_numbers

rather than a sequence of cards (or lines, etc.). The numbers are read

one by one and numbers are not skipped unless explicit.directionsito do
so are specified. Skipping to the beginning of an input record can be

specified by using the arguments SKIP , SKIPO , SKIPl , SKIPZ ,...,

SKIP9 . (SKIP is the same as SKIPL .) . o

The effect of a skip argument is as follows:

SKIPO - skip to the beginning of the current card (for reread)
SKIP , SKIP1l - skip to the beginning of the next card

etc.

The skip directive-is relative to the. last value read from the input

stream. Thus, for example, successive

READ(X, SKIP)
statements would cause the first value to be read from each card that has

a value on it, regardless of the number of values on a card.
To illustrate further, the statements

~ READ(X, SKIP, Y)
READ(SKIP, Z)
READ(SKIP)
READ(I)

and the input

3, 5, 7
2

0

1, 4

10

would be the same as the assignments

] 1]

Il
H O N W

T S

The READ statement can also be used to read in values for an entire
array. For example, if X is an integer vériable;and A is an integer

array of 10 elements, the statement

19
READ(X, A)
would read the next input item into X , and the following 10 items into
A(0), A(l),..., A(9) . ' o
The 1ntr1n51c functlon EOI may be used to determine the end of the
input. The result of the function EOI is given by -

EOI - (1 if no more items are available for ‘READ

o 0 if one or more items remain to be read

Note that the value of EOI is determined on the basis of wvalues, not
input records (such as cards), remaining to be read. The use of EOI

is illustrated in 2.7.3.

2.7.2 WRITE

‘Values of expressions may be printed by using WRITE . The values
to be printed are considered to be a stream of values that are placed
at tab p031t10ns that provide columns 8 characters in width. A line is

not printed until it is fllled unless a skip or eject argument is used.
The carriage control parameters-that_can be used are

EJECT - skip to the top of the next page .
SKIP0 - start over on the current line (overprint)

SKIP , SKIPlL - print the current line

| SKIP2 - print the current line and double-space
SKIP3 o
: similar to SKIP2
SKIPY |

Each argument of WRITE may be an expression, an array, or a car-
riage control specification. As an example, if X = 3, Y= 2, and

I =10 , the statements

WRITE(X, 2%X + 3%Y)
WRITE(I, I/X, SKIP, Y)
WRITE (SKIP)

would cause

20

3 C 12 10 3
2

to be printed.

To illustrate the use of WRITE w1th an array argument, if A is an

array with 20 elements, the Statement
WRITE(A)
is equivalent (assuming that I --is not used for something else) to

ST =0
WHILE I<20
DO WRITECA(I))
I := I+1 END

2 7 3 Examgle
/* THIS PROGRAM READS IN A SET OF UP TO 100 NUMBERS SORTS
. THEM INTO ASCENDING ORDER AND PRINTS OUT TWO COLUMNS IN
WHICH THE LEFT COLUMN IS THE ORIGINAL SET OF NUMBERS AND'
THE RIGHT COLUMN IS THE SORTED SET, THE PROCEDURE 'SORT'

FROM 2.3.6 IS USED. */

INT N /* NUMBER OF VALUES TO SORT */
INT ARRAY A(100), /% INPUT SET %/

| B(100) /* SORTED SET */
PROC READINPUT o

N =20 _
WHILE .NOT. EOI .AND. N<100 o

DO /* PUT NEXT VALUE INTO 'A' AND 'B' */1

CREAD(A(N))
B(N) := A(N) _
N := N+1 /% COUNT VALUES */

END
PROC PRINT
INT I

I :=0
WHILE I<N
DO /* PRINT LINES OF OUTPUT */
' WRITE (A(I), B(I), SKIP)

I:=1+41 | 21
END

. Proc SORT from 2.3.6

PROC READSORTANDPRINT

CALL READINPUT
' _CALL SORT (N,B)
CALL PRINT

START READSORTANDPRINT

An example of the result of executing this prbgfaﬁ is

3 ~25
-2 . =2
10
=25 ' 10
17 17
2.8 Example

/% THIS PROGRAM READS A SEQUENCE OF NOT MORE THANIIOO NONZERG INTEGERS.
THE INTEGERS MUST BE IN INCREASING ORDER AND MUST BE FOLLOWED BY A
0 (UNLESS 100 INTEGERS ARE TO BE READ) . THE LIST OF VALUES READ
IS PRINTED. ADDITIONAL VALUES ARE THEN READ AND A 'BINARY SEARCH'
IS USED TO DETERMINE IF EACH VALUE 1S A MEMBER OF THE SEQUENCE
READ INITTIALLY. "EACH VALUE IS PRINTED WITH ITS POSITION IN THE
SEQUENCE (0 IF NOT IN THE SEQUENCE) */'

INT FUNC SIGN(INT X)
/* FUNCTION WHOSE VALUE IS: 1 IF X>0
| 0 IF X=0
-1 IF X<0 %/

IF X<0
THEN
RETURN(-1)

22

ELSE
RETURN(X>0)
END

/* END FUNC 'SIGN' #*/

PROC SEARCH
/% MAIN PROCEDURE %/

INT N, /# NUMBER OF VALUES READ */ .
FOUND, /% SWITCH TO INDICATE WHETHER VALUE WAS FOUND */
INDEX, /* POSITION OF VALUE IN SEQUENCE */ '
Lo, /* LOWER BOUND OF INTERVAL FOR SEARCH */
HI, /* UPPER BOUND OF INTERVAL FOR SEARCH #*/
KEY /* VALUE READ TO BE LOOKED FOR */ -

INT ARRAY TABLE(101) /#* SEQUENCE */

N :=0 /% INITIALIZE */
TABLE (0) := 1 /% FIX UP FOR FIRST READ */-

WHILE N<100 .AND. TABLE(N)<>0
DO /# READ SEQUENCE */,
N := M1
READ (TABLE(N))
IF TABLE(X)<>0
THEN |
| WRITE(TABLE(N))
.END . S e
END /* LOOP FOR READING:éEQUENCE %/

IF TABLE(N) =
THEN ,
N := N-1 /% FIX UP FOR COUNTING THE ZERO */
END R
WRITE(SKIP) /* END LINE OF SEQUENCE VALUES #*/

WHILE .NOT. EOI

DO /* READ AND LOOK UP VALUES */
READ (KEY)
WRITE (KEY)

/* INITIALIZE FOR SEARCH */

FOUND := 0

HI := N |
10 =1 /* INITIAL INTERVAL IS WHOLE ARRAY #/

WHILE LO <= HI .AND. .NOT. FOUND
DO /* BINARY SEARCH #*/
INDEX := (LO+HI)/2 /* LOOK AT MIDPOINT OF INTERVAL */
CASE SIGN(TABLE(INDEX)-KEY) OF
\O\ /% TABLE(INDEX)=KEY -~ (FOUND) */
FOUND := 1 _
\1\ /# TABLE(INDEX)>KEY */
HI := INDEX-1 /* TRY LOWER INDICES */
\-1\ /* TABLE (INDEX)<KEY #*/
LO := INDEX+l /* TRY HIGHER INDICES */
END |
END /* LOOP FOR BINARY SEARCH */

IF FOUND
THEN
WRITE (INDEX, SKIP)
ELSE |
WRITE (0, SKIP)
 mND |
END /* LOOP FOR READING AND LOOKING UP VALUES */

~ /* END PROC 'SEARCH' */

. START SEARCH

For this program, the input
2 3 5 8 10 11 15]
2 1 0 8 7 15 18

would produce the output

24

SRS AR 1

"~ 10

H O O N O M~

N~ O 00 ™~

15
18

25
3. String Data -

3.1 Introduction

In this chapter a second data type, string, is discussed. A string
is a (finite) sequence of characters. The numbet.of charahtefa:in the
sequence is called the. length of the Strlng, and the strlng of length
0 is called the null strlng. The characters may be any of the ASCII _
characters (see Appendix ITI). although most of the 1108 peripherals do .

not allow the use of all ASCII characters. .

3.2 Constants

A string constant is denoted by‘eneloaing”the°string in apostrophes.
{Note that computer people usually call apostrophes "quotes'.) Any
apostrophe in the string is indjcated by using two apostrophes. Examples
are '

'THIS is A STRING'
“'THERE TS AN APOSTROPHE ¢''y IN THIS STRING'

The length of the first stting'aheve is 16. "The'léngth of the second is

.41, and printing it would yield

~-THERE IS AN APOSTROPHE (') IN THIS STRING
The null Stringfconstant is”denotedrby: e,

- “A.string.constant may not exceed 256 characters in length..-

'3.3-Variahles

A str1ng varlable has a maximum length a55001ated w1th 1t The“‘
value of a string variable is a strlng, and the maximum length 11m1ts

the length of the string value.

3.4 Declarations

3.4.1 Scalar

A string declaration includes the specification of the maximum length

for the value of the string variable. This specification is.made by en-

26

closing the maximum length (a positive integer constant) in brackets

following the string identifier. The maximum length may not exceed 4095,

Examples are

~ STRING S{5], T[50] ' L
STRING MESSAGE {10} = 'HELLO', RESULT[20]

The first declaration defines strings S with maximum length 5, and

T with maximum length 50. In thé.secbnd'declératioﬁ, the maximum length
of MESSAGE is specified to be 10, and MESSAGE is initialized with the
value 'HELLO' (so that the current length is initially 5).

The value of an uninitialized string variable is undefined.

3.4.2 Array

All elements of a string array must have the same maximum length.
Thus a string array declaration must include the maximum length specifi-

cation as well as the pumber of elements (number of strings) in the array.

String array declarations are illustrated by

STRING ARRAY INPUT [50] (100)
STRING ARRAY MESSAGES [20] (10) = ('MESSAGE 0', 'MESSAGE 1),
SA[13] (25) = ('ABC', 'XYz' (3), 'CAT')

In these declarations, ' the -array INPUT «contains 100 strings. of maximum
length 50 each. MESSAGES (0) is initialized to 'MESSAGE 0' and
'"MESSAGE 1' is the initial value of MESSAGES (1) . Execution of the

statements

I :=0
WHILE I<5
DO
WRITE (SA(I), SKIP)
I := T+1
END

at the beginning of the program would produce the output

27

3.5 Operators

3.5.1 Concatenate
The concatenate operator .CON. generates a string by joining to-

gether its two operand strings end-to-end. As an illustration,

'ABCD ' .CON. 'EFG" = 'ABCD EFG'

3.5.2 ‘Substring
The substring operator generates a strlng by extractlng a substrlng'
from its (strlng) operand. In the form ' ' S '
{Fl, F2]
this operator extracts the substring of length F2 beginning with char-
actér_number Fl of the operand string. (The first character is char-

acter number 1.)

To illustrate the substring operator, consider the following.

"ABCDEF' [3, 2] = '¢D'
'XYZ'[3, 1] = '2°
"ABCD' [1,4] = 'ABCD'

The two fields Fl and F2 of the substring operator may. be any
1nteger expressions. The F2 field may be omitted, in whlch case the

substring from character Fl1 to the end is implied. For example,

'DOGCAT! [4] = 'CAT?T
(Note: The symbols << and >> may also be used for [and], re-

spectively.)

28 If the value of F2 1is nonzero, then the substring defined by ([F1, F2]

must lie within the current bounds of its operand string; otherwise execu-
tion is terminated with an "invalid substring" error. The following are

not valid.

'ABC' [3 ,2]
'ABC' [0, 2]
TABC' [2,-1]

If the value of F2 is zero, then the substring operator is always
valid and returns the null string. Additionally, S[F1] returns the null

string whenever the value of . Fl 1is greater than the dength of 5.

(Note: Assignment to a substring is discussed in 3.12 %)

3.5.3 Relational Operators

The relational operators (=, <>, <, <=, >, >=) may be used with
string operands. The result is either the integer 0 or the integer
1, just as for integer operands, as determined by the ASCII collating -

sequence (see Appendix IIT). Strings of unequal length are never equal.
Some examples illustrating these operators are given below.

TABC' <. 'ABD'.

TABC' < 'ABCD'

_ 'ABC' < 'ABC '
VABA' > 'ABL'
123" < '124"

(TR B

3.6 String Expressions

The string'bperatoré ﬁéy'have string expressions as operands. The
precedence'for ﬁnparenthesized expressions is (highest to lowest)

1) substring

2) concatenate

3) relational operators

(Note that the result of a relational operation with string operands is

of type integer, and hence a relational operation (even with string

29 -
operands) is an integer expression.)
Thus a string expression is.
1) a string constant, string-variablé (simple or subscripted), or
~ string function callj o
2) a substring or concatenate operation, whose operands can be

string expressions;

3) a string expression enclosed in parentheses.

- Examples are given in later sections of this chapter.

3.7 Assignment Statement
The assignment statement‘for strings is similar to the assignment
'statement for integers. 1Its syntax is given by
<string variable> := <string expression>

No automatic conversion between string and integer exists in SIMPL-T.
Thus strings may not be assigned to integer variables and integers may
not be assigned to string variables.

If the string represented by <string expression> has a length that
does mot exceed the maximum length of the variable, then theLGalue of the
‘variable is set to the value of <string expression>. ifathe.value of
- <string expression> is téo long for ° <string variable> ., thep;the value
of <string expression> 1is truncated to the maximum léngthﬁof <string
variable>. before the assignment is made. For example, if S is declared
.by S

STRING S[5]

and the assignment
-8 = "123456'
is made, then S will have the value '12345' , regardless of the value

of S before the assignment.

3.8 Example
This example uses the built-in function LENGTH , that returns the

length of a string value. The following procedure REMOVE removes

30

a given substring from a given string.

PROC REMOVE (STRING SUB, STRING STR)
/* THIS PROC PRINTS THE RESULT OF REMOVING THE .(SUB)STRING
'SUB' FROM THE STRING 'STR'. */ '

INT CHARPTR, FOUND

CHARPTR := 1
FOUND = O | |
WHILE CHARPTR + LENGTH(SUB) <= LENGTH(STR) + 1 .AND. .NOT. FOUID
DO /* CHECK FOR OCCURRENCE OF 'SUB' BEGINNING AT 'CHARPTR' */
IF STR[CHARPTR, LENGTH(SUB)] = SUB |
 THEN /% FOUND #/ | |
FOUND := 1
ELSE
CHARPTR := CHARPTR + 1
END
END /% LOOP */

IF FOUND
THEN /% SUBSTRINC *SUB' IS AT POSITION 'CHARPTR' OF 'STR' #/

WRITE (STR[l, CHARPTR ~1] .CON. STR[CHARPTR + LENGTH(SUB)])
- ELSE /* NO OCCURRENCE OF 'SUB' IN 'STR' */

 WRITE(STR) :

END

/* END PROC 'REMOVE' */

3.9 I/0

READ and WRITE (and EOI) also may be used for strings. The

rules for strings are similar to those for integers.

31

Strings to be read in must ‘be indicated on the input medium just
as a string constant would be indicated in a SIMPL-T program (i.e., en—
closed in apostrophes with any apostrophe in the string being indicated
by two apostrophes). Commas and blanks or both may be used to separate
input items, and strings and integers may be freely intermixed

If the length of a string that is read in is greater than theymeximum
length of the stringlvariable_into whieh it is read, the input string is

truncated to the maximum length of the variable, Thus if § is a string

variable,’

READ(S)

with input
"ABCD'

would be coﬁpletely equivalent to
S := "ABCD'

Just as for assignments, no mixed types are permitted in'a READ .

- Thus, for example, if X 1is an integer variable and the statement

READ (X) .

- 18 executed with
13451

as the next input item, an error termination will occur.

WRITE will cause string express1on values to be printed at prede-
termined tab positions, just as for 1ntegers However string values
are left- justlfied in the columns, rather than rlght Justlfled as for

integer values If a strlng is too long for the current line, it will

be continued on the follow1ng line.

3.10 Ekamgle k
/* THIS PROGRAM READS IN A LIST OF UP TO 99 NAMES AND PRINTS THEM
OUT IN ALPHABETICAL ORDER. THE NAMES MAY NOT BE MORE THAN 50
CHARACTIRS LOYG. %/

32

STRING ARRAY IN[50]1(100) = ('') /* FOR HOLDING THE NAMES ®/
CINT N =0, /* ﬁUMBER OF NAMES */ _ | -
I, . /% FOR GOING THROUGH 'IN' %/
SAVE, /* FOR REMEMBERING A SPOT IN 'INT */
FINISHED = O /* SWITCH */

PROC SORT

WHILE .NOT. EOI
DO /*% READ NAMES INTO 'IN' #/
Ni=N+1
IF N < 100
THEN /* NOT TOO MANY */
READ (IN(N))
END
END
IFN » 99
THEN /* TOO MANY NAMES INPUT */
WRITE ('TOO MANY NAMES ~ ONLY. FIRST 99 -USED', SKIP) .
N := 99 |
END

WHILE .NOT. FINISHED
DO /* PRINT OUT SORTED NAMES */.
SAVE := 0
I :=1

WHILE I <= N | -
DO */ GO THROUGH AND GET FIRST NAME IN ALPHABETICAL ORDER */
._IF IN(T) <>' "AND. (SAVE = 0 .OR. IN(I) < IN(SAVE))

. THEN /% THIS NAME HASNT BEEN PRINTED, AND IT IS THE
FIRST ONE FOUND OR SHOULD COME BEFORE THE CURRENT
CANDIDATE */ | -

SAVE := I /% USE THIS ONE AS THE FIRST ALPHABETICALLY
4 S0 FAR */ |

I:=I+1 /% GOONTO NEXT NAME */

END /* LOOP TO GO THROUGH AND GET FIRST NAME IN ALPHA. ORDER %/

33

IF SAVE <> 0
THEN /* A NAME WAS FOUND */
WRITE (IN(SAVE)., SKIP) - - /% PRINT IT */ |
IN(SAVE) := " - - /% MARK IT AS 'PRINTED' %/ . .
ELSE /* ALL NAMES HAVE BEEN PRINTED */
FINISHED := 1
~ END | |
END /% LOOP TO PRINT OUT NAMES */

START SORT

An- example of the.results-Of'executiﬁg'the program are indicated below.

input: ' o _ Output:

. "HERZOG' . - BUTLER
'MCKISSICK' ~ - COOLEY
TBUTLER' ©+ > ... ~ . . o<, . HERZOG

'"COOLEY' | ~LIEBERSOHN . =
MANSFIELD ' | © . MANSFIELD
'LIEBERSOHN" ' MCKISSICK

' SCHMEISSNER ' - ROSE

TROSE' o ' SCHMEISSNER

- 3.11 String Functions

3.11.1 User Defined Functions.

A string function is a function those value is a string (i.e., the
function "returns" a string). The rules governing the use of string
functions are analogous to the rules for integer functions (2.1.2.2).

The following illustrates the use of string functions.

STRING FUNC ALPHABETIZE(STRING S)
* THIS FUNC REARRANGES THE CHARACTERS OF STRING 'S' INTO ALPHABETICAL
- ORDER. 'S' MAY HAVE A MAXIMUM OF 256 CHARACTERS. */

STRING RESULT[256], /* FUNCTION RESULT #/

' NEXTCHAR[1] /* NEXT CHARACTER IN ALPHABETICAL ORDER */
INT CHARNUM, /% FOR LOOKING THROUGH CHARACTERS IN 's' */

- NEXTNUM =~ /% POSITION OF 'NEXTCHAR' IN 'S' */

34
RESULT:=""
WHILE S<>'!

DO /* EXTRACT NEXT CHAR (IN ALPHABETICAL ORDER) OF 'S' %/
NEXTCHAR := S[1,1] /* START WITH FIRST CHAR */
NEXTNUM:=1 DR '
CHARNUM:=2
WHILE CHARNUM<=LENGTH(S)

DO /* LOOK THROUGH CHARS OF 'S' FOR "SMALLEST' #*/
IF S[CHARNUM,1] < NEXTCHAR
THEN
- NEXTCHAR := S[CHARNUM,1}

i

NEXTNUM: =CHARNUM
END
CHARNUM: =CHARNUM+1
END /* LOOP TO LOOK THROUGH CHARS OF 'S' */
RESULT := RESULT -.CON. NEXTCHAR /* ADD NEXT CHAR TO RESULT #/
8 := REMOVE (S, NEXTNUM)
END /* LOOP TO EXTRACT NEXT CHAR */

RETURN (RESULT) .
/* END FUNC 'ALPHABETIZE' */

STRING FUNC REMOVE(STRING S, INT CHARNUM)
/* FUNC TO REMOVE CHARACTER NUMBER 'CHARNUM' FROM 'S’ /
+~ RETURN (S[1, CHARNUM-1]} .CON. S[CHARNUM+1])

/* END FUNC 'REMOVE' */ Lo

35

3.11.2 Intrinsic Functions

Tn this section some intrinsic (built-in) functioms that facilitate

programming with strings are described.

3.11.2.1 LENGTH

The function LENGTH returns the length of the value of its argument.
The argument may be any string expression, and the result is of type

integer.

Exémgle '
LENGTH ('ABC') = 3
LENGTH ('ABC' .CON. 'DE')} = 5

3.11.2.2 MATCH

The MATCH function is used to find an occurrence of a substring

in a string. The syntax is of the form
“ MATCH' (S1, $2) -

where S1 and SZHImay be any string expressions. MATCH returns the
character number in S1 of the first character of (the first occurrence-
. of) the string S2. If 82 is not a substring of S1 , then MATCH
returns 0 . ' '

As an illustration, suppose that S = "ABCATDOG' and. T = 'AT'
Then

MATCH (S, T) = 4
MATCH (T, S) =0
. MATGH (S, 'A") =1
MATCH (S, 'CAT') = 3
MATCH (S, 'DOGS') = 0O
- MATCH (S, 'CATS') =20

3.11.2.3 INTF

'INTF is used to convert a string of decimal digits (or a minus

: éign followed by decimal digité)'into an integer value. If the string

36

contains a character that is not a digit (other than a leading minus)

then the program is terminated.
“In the following examplé, let S1 = '123" and .82 = '017' .. Then

INTF (52) = 17

INTF (S1 .CON. $2) = 123017

INTF ('-' .CON. §2) = -17
CINTF (112345 [2,3]) = 234

3.11.2.4 STRINGF

STRINGF 1is the inverse of INTF . That is, STRINGF converts the
value of an integer expression to string. As examples, let I = 22" and

J = ~15 . Then

STRINGF (I) = '22°

STRINGF (J) '-15"
STRINGF (I+J) = '7'.

STRINGF (I-I) = '0°

The result of STRINGF is a string with no leading'zeros.' Thus
the length of the string returned by STRINGF 1is the number of signif-
icant digits_in:the_integer value, plus l_if_the value is negative.
3.11.2.5 LETTERS

The function call LETTERS (<string expression>) returns a 1 (in-
teger) if each character in the string is a letter (A-Z) and a 0 other-
wise. The letters may be upper or lower case (or both). '
3.11.2.6 DIGITS

The value of DIGITS (<string expression>) is 1 if each .chatracter

in the string is a digit (0-9) and 0 otherwise.’
3.11.2.7 TRIM
The result of
TRIM (<string expression>)

is the value of <string expression> truncated to remove trailing blanks.

37 -

C 3. 12 Substring Assignment:

The substrlng indicator may also be used on the left 31de of an’

a851gnm@nt statement.:
<string variable> [<first char>, <length>] ;= <string expfession>

The rules for <first char> and <length> are the same as for.the sub-
string operator in string expressions (3.5.2). The second fieldr(, <length>)
may also be omitted, just as for the string expression operator. ’

When the substring indicator is used in this manner, the'substring
specified by [<first char>, <length>] is replaced by the first <length>
characters of the (string) value of <string expression> . The remaining
characters of <string variable> are not changed. If needed, the value
of <string expression> 1s extended on the right”with'Bléhks“so that

its length is not less than <length>
To illustrate, let S1 = 'ABCDE' and S2 = '123456' . Then after

the assignments

ST [2, 3] := 'XYZ'
$2 [2, 2] i= '2°
§2 [5] = THAXX

 the values of S and S2 will be

TAXYZE!
117 4k

581
52

If

Note that the length of the value of <string.variab1e> cannot be

changed by a substring assignment.

3.13 String Parameters

Strings passed as arguments to (user) procedures and functions are
passed by vélue unless otherwise specified as in 4.2 . String.arrays
are passed by'reference. These conventlons are the same as for 1ntegers
and integer arrays, as explained in 2.1.2.1 ., o

The maximum length of a string parameter passed by value is set

to the maximum length of the argument when the call occurs. Note that

38
a étring expression that is not a string variable (such as S.CON.T ,
S[I,J], or 'STRING QONSTANT') has a maximum length equal to the length
of its wvalue. | ' R

All arguments passed to intrinsic functions are by value. That

is, an intrinsic function will not change the value of a parameter.

3.14 ~Example
/% THIS PROGRAM REPLACES ALL SUBSTRINGS BETWEEN e AND.T*/} BY
BLANKS #/

STRING INPUT [80}
INT PTR1, PTR2

'PROC. REMOVECOMMENTS

WHILE .NOT. EOI
DO :
READ (INPUT)
PTIR1 := 1 /* INITIALIZE FOR SEARCH */
WHILE PTR1 <> 0
DO /* REMOVE SUBSTRINGS */
PTR1 := MATCH {(INPUT, '/*")
IF PTR1 <> 0
THEN /% FOQUND BEGINNING */
PTRZ := MATCH (INPUT, '*/7)
IF PTR2 > PTRL + 1
THEN /* FOUND END (AFTER BEGINNING) */
INPUT [PTR1, PTR2 - PTR1 + 2] := '' /% BLANK IT OUT #*/
END
END
~ ' “WRITE (INPUT, SKIP)
END '

/* END PROC 'REMOVECOMMENTS' */
START REMOVECOMMENTS -

For the input

'XXX /* COMMENT 1 %/ YYY /% COMMENT 2 #/' =~
'PTRL := 1 /* INITIALIZE FOR SEARCH */'

"WHILE PTR1 <> O _
' DO /* REMOVE SUBSTRINGS BT

the program would produce the output

XXX YYY
PTRI := 1
... WHILE PTR1 <> 0
DO

39

40

4. Additional Language Features ..

4.1 Escape Mechanisms

4.1.1 Exit Statement

The EXIT statement provides a means of escaping from a WHILE loop.

In its basic form, the statement

EXIT

causes the immediate termination of the (innermost) WHILE ‘statement
containing the EXIT statement. Execution proceeds as if the WHILE

statement has terminated normally.
The use of EXIT 1s illustrated by the following function.
INT FUNC FIND (INT NUMBER, INT ARRAY VALUES, INT SIZE)

/% FUNC TO RETURN THE SUBSCRIPT OF THE ELEMENT OF 'VALUES' HAVING
VALUE 'NUMBER'. IF 'NUMBER' IS NOT IN 'VALUES', THEN 0 IS RETURNED.

THE VALUES TO BE CHECKED ARE IN VALUES(l), “aes VALUES (SIZE). #/
INT I
I =1
WHILE I <= SIZE

DO

IF VALUES(I) = NUMBER
THEN /# FOUND #/
EXIT
ELSE
I :'=1I+1
END
END
Ir I » SIZE
THEN /% NOT FOUND */
I :=0
END
RETURN(T)

/% END FUNC 'FIND' %/

41

An exit of more than one level of nesting can-also be performed by

using an EXIT statement. To do so, the exit statement has the form

EXIT (<designator>)

where <designator> denotes the WHILE statement to be terminated. A

<designator> is an identifier that is specified in the form
\<designator>\ WHILE
to designate the WHILE Iloop to be exited.

Consider the following program segment:!- .

\LooP1\ WHILE I <= N /% LOOP 1 %/
ba

WHILE 1 /% LOOP 2 (WILL NOT TERMINATE WITHOUT AN EXIT).*/
- . DO

-
.

-

IFI+J=K
THEN
EXIT
ELSE
IFI+J>K
THEN
EXIT (LOOP1)
END
END

-
.
s

END /% LOOP 2 %/
I =1+ 2
.. END /X LOOP 1 ¥/
,X__I:=_I. Ry Do

" If the statement“hEXIT':is-éxecutéd, then the next statément to bé executed
would be I :=1 + 2 ({(which is in the WHILE statement designated by o
\LOOP1\). However if the statement _EXIT(LOOPl) is eXchfed, tHé next

statement to be executed would be X := I (the next statement after the

42
'WHILE loop designated by \LooP1\).

A WHILE designator may be an& identifier that has no other meaning

in the segment (procedure or function) in which it is used.

4.1.2 Return Srtatement

The RETURN statement causes a return to the calling procedure or

function. It may be any statement in a segment. 'The form
RETURN

is used for procedures, and the form:
RETURN (<expression>)

is used for functioms.

The function FIND of 4.1.1 may be rewritten to illustrate this

statement:
INT FUNC FIND (INT NUMBER, INT ARRAY VALUES, INT SIZE)
INT 1

I:=1
WHILE I <= SIZE
DO
IF VALUES (I) = NUMBER
THEN /* FOUND %/

RETURN (I)
ELSE

I :'=1I+1
END

END
RETURN (0) /* NOT FOUND #/

/% END FUNC 'FIND' %/

Note that the last statement in a function need not be a RETURN
(<expression>) if the structure of the function's statement list is such

that a return is always made from within the statement list..

4,1.3 Abort Stateﬁent

The statement

43 -

ABORT
causes the -immediate (abnormal) termination of "an ‘entire SIMPL-T program,
regardless of the location of the ABORT ° statement or the depth of segment

call nesting.

4.2 Parameter Passing By Reference

. Procedures may communicate scalar (integer or string) results through
the parameters passed.to it by specifying that a parameter is a reference
parameter. -Logically, -this means that the scalar variable itséif_is.passed
to:the .procedure rather than theizglgg‘qf_fhe‘variable, just as for array.
parameters. Thus a procedure can then .change the value of a variable in -

a CALL argumeﬁt list.

.. .. :- A.procedure declares a scalar parameter to .be a reference parameter
by means of the keyword REF . The following program illustrates the dif-

ference between normal parameter passing (by value) and reference parameters.

INT X

PROC ADD1 (INT X, INT Y)
X =X4+Y

PROC ADD2 (REF INT X, INT Y)
X =X+4+Y

PROC MAIN
=3 o
“CALL ADDL (X, 2). -
'WRITE (X)
-CALL ADD2 (X, 2)
< WRITE (X)

START MAIN
This program would print
. 3)' .j -) 5 -. -

Note that;pqu'variables_(éimple or subscripted) may be passed by

refefence. That is, neither constants nor expressions (that do not consist

44

of .a variable only) may be passed'by,refereﬁce._.(In,particular, a-sub-

string may not be passed by reference.)

Functions may also have reference parameters.

4.3 Recursive Segments

A’Ségment‘tﬁafzcalls itself, either directly or indirectly, must be
declared recursive. This is done by ‘including the keyword REC* before
“the-segment definition. A segmenf that does not call itself ccan also be
declared ‘recursive in order to cause thé ‘dynamic (rather than static) al-
location of locals (thus using nogstorage for the locals of the segment -

until the segment is invoked).

The following recursive function computes the factorial of an integer.

...REC.INT FUNC -FACTORIAL (INT N)

IFN < 2
THEN
RETURN (1) /* 0! =1, 11 =1 %/
ELSE
RETURN (N* FACTORIAL (N-1)) /* NI = N* (N-1)! */
D OO _

/* END FUNC 'FACTORIAL' */

4.4 Access Between Separately Compiled Program Modules

It is often convenient to construct a program in two or more separ-
ately compiled modules rather than as a single compiiation3 The modules
are compiled separately and then combined by the collector (@MAP) for
execution. However, in this type of program construction it is often

- required that not only procedures and functions but also data in ohe
module be accessible from within another module,

Since separate compilations are independent (that is, identifiers
from one compilation are not known in any other cdmpilatibﬁ), speciél
facilities are needed in order to provide the desired capabilities. TIn
order for a SIMPL-T module (module 2) to access a procedure, functlon, or

data from anocther module (module l), two thlngs are required:

45

a) the module (module 1) ‘that contaifis’ the procedure, function; -
or data must make it availeble'tb“cther”nbduleefBY'épécifying
it as an entry point; o L .

b) the module (module 2) that w1shes to access the procedure,
function, or data must spec1fy that 1t 1s an_ external '
reference. : ‘ '

If these requlrements are met, module 2 may use the 1dent1f1er denotlng
the procedure, functlon, or data Just as if the 1dent1f1er were declared

normally 1n module 2,

4.4.1. . Entry P01nts

Segments and data in a SIMPL-T pregram module may .be made accesgsible
to separately complled program modules by declarlng such a segment or datar

item as an entry p01nt. Thls is done by precedlng the usual declaratlon by

the kevword ENTRY f
Examgles '
ENTRY INT I, d'= 2

ENTRY STRING ARRAY ST10](20)
ENTRY REC PROC P(INT X) ..."

Only global identifiers may be entry points. Due to an EXEC 8 re-
strlctlon, .entry p01nt names may not exceed 12 characters in 1ength

Truncation to 12 characters is performed if needed

4.4,2 External References

In oxrder to access an- entry peint of a separately compiled program
module, the identifier to be accessed must be declared an external refer—
ence. The keyword EXT 1is used for this purpose.) '

External declarations for data items are similar tc nermal declara-

tions. The differences are that 1n1t1&llzat10n of externals is mot allowed,
and the size specification for strings and arrays may be omitted (since they

are defined in another module). Examples of external data -declarations are

EXT INT ARRAY VALUES
EXT STRING §, T
EXT STRING ARRAY SA{17](32)

46

External segment declarations must include a specification of the

types of the parameters. Illustrationms are

EXT PROC P(INT STRING)

EXT INT FUNC FIND (Inr, INT ARRAY)

EXT PROC REMOVE (REF INT, STRING),
CINITIALIZE

External declaratlons may be global or local Just as for.entry
points, an external name may not exceed 12 characters and truncation is
used, if needed, to meet this restriction. The START spec1f1cat10u
at the end of a program may name an external procedure as the procedure

to be initially invoked.

4.4.3 Nonexecutable Programs

Only one of a group of separately compiled program modules may
specify a START procedure. The remaining modules are called nonexecu-—
table, and are so designated by omitting the procedure name following
START . (A nonexecutable module must have at least one ENTRY declara-

tion to be of wvalue.)

A nonexecutable module may consist of (entry p01nt) data items only

That 1s, a nonexecutable module need not have any segments.

4.4.4 ExamEle l _
The two modules glven here 1llustrate the use of external references

and entry peints. The comb1ned program,reads in 50 numbers, sorts them

into increasing order, and prints them.

Module l

ENTRY INT ARRAY NUMBERS(SO)
-EXT.PRQC. SORT

PROC MAIN -
" READ- (NUMBERS)
"CALL SORT
WRITE (NUMBERS)

START MAIN

Module 2:
EXT INT ARRAY NUMBERS

_ ENTRY PROC SORT . - . . = .
. INE. I, SAVE, LAST, INTERCHANGED .

" INTERCHANGED := 1
LAST := 49

WHILE INTERCHANGED
DO /* BUBBLE SORT */
I =]
INTERCHANGED := §
WHILE T <= LAST
0
IF NUMBERS(I) < NUMBERS (I-1)
THEN
SAVE := NUMBERS (I-1)
NUMBERS (I-1) := NUMBERS(I)
NUMBERS (I) := SAVE
INTERCHANGED := 1
END B
I =1+ 1
END
LAST := LAST -1
END

/* END PROC SORT */ -«
START

47

“48

4.4.5 Ixample 2

The ability to access data in a separately compiled module is not
absolutely necessary, since data can be accessed through argument lists.
(The capability of data access between modules is needed for practical
considerations, however.) As an illustration, consider the following
modifications to the program in the previous example. Ihe program ob-
tained by combining modules 1A and 2A is equiﬁalent to_fhe_program

consisting of modules 1 and 2 above.

'Mbdule 1A:

INT ARRAY INPUT(50)
EXT PROC SORT (INT ARRAY)

PROC HMAIN

READ (INPUT)
CALL SORT(INPUT)
WRITE (INPUT)

START MAIN

Module 2A: _ .
ENTRY PROC SORT{(INT ARRAY NUMBERS)

INT I, SAVE, LAST, INTERCHANGED
same as module 2 above

4.4.6 Executing a Program Having Multiple Modules ' :

The procedure for executing a SIMPL-T program consisting of sepa-
rately compiled modules is similar to that for other languages. For
example, the progtram consisting of modules 1 and 2 above could he
compiled and executed by

-

@SIMPLT,I PROG1

module 1 source

49

@SIMPLT, I PROG2

* module 2 soyrce

@MAP.
@xqQT

+ data

Additional information can'be found in various EXEC 8 user'documentation.

4,5 DEFINE Facility

A restricted macro capability exists in the compiler. This facility
exists regardless of options specified, Macros are declared in a manner sim-
ilar to that for other SIMPL'declarations,.and are. invoked wheneverxr the macro
" name is uqed as an 1dentif1er ln the program Macro parameters and nested

" macro calls (1nclud1ng recurSLVE calls) are allowed

A brief descrlptlon of thls fac111ty follows

4.5.1 "Macro Definition
- A macro definitipn has the syntak‘
. DEFINE <define 115t> B _

where <define list>. :is a list of .one or more deflnltlons, separated by
. commas. - Each definition has the form -

<identifier> = <string constant>
where <identifier> is a'normal SIMPL identifier, and <string constant>
is a normal SIMPL string constaﬁt'(EHClosed:in apostrophes). ‘Macro para-
meters are denoted in the defining ' <string constant> by &n , where n
'is a digit between 1 and 9, inclusive, that refers to the ‘argument. number.

The &n is replaced by the argument when the macro is lnvoked

_4 5. 2 ExamBle
The following program (written for illustration only) prints the

integers 1-10, modulo 4.

50

DEFINE
INCR = '§&1 = &1+1' ,
ASSIGN = '&1 := &27 ,
FOREVER = 'WHILE 1' ,
MOD = '§1-&1/&2%42"

INT I=0, J

PROC MAIN

FOREVER
DO

IF I >= 10
THEN EXIT
ELSE. =
INCR(I)
ASSIGN(J,MOD(I, 4))
WRITE(J)
CEND
END e
-~ START MAIN

4.5. 3 Macra Expan51on'

Arguments to a macro are separated by commas and the argument llSt

is enclosed in parentheses._ Each argument may be

1

2)

a string constant (encloSed3in'apostrophes), in which case the value

of the string constant is substituted'for the formal parameter in

the defining <string constant> ;-

any string of characters not 1nc1ud1ng a comma or rlght parenthe515,

except that nested parentheses are allowed and a comma may appear be-

"tween nested parentheses. :In this case, the character string minus

leading and trailing blanks is ‘substituted for the formal parameters.

When a macro identifier is found durlng the proce551ng of source text,

.the follow1ng occurs:

1)

3)

A copy is-made of. the macro definition;

The formal parameters: 1n .the -copy of the deflnlng strlng are replaced

~by the actual parameters from the argument list.of the. macro invoca-

tion;

The expanded macro then replaces the macro 1nvocat10n (macro id and

argument list) in the source text, and proce351ng of the source text

resumes w1th the expanded macro.

51

4L5?4_hConventions;énd_Rgstrictipns

Ly

2)

3)

4)

5)

- 6)

7)

8)

9)

10)

11)

SIMPL. comments (/% ,;;-*/D-aré removed from:a <striﬁg:gonétant> PR
that defines a macre. : el

The usual scope rules apply for macro declaratlon. Tﬁié means that
macros may be deflned as locals 1f de51red Note, however, that a
global macro identifier cannot be redefined as a local w1thout flrst
turning off the macro expansion facility {see below) since the occur-
rence of the identifier in the lpcal declaration list would invoke the
global macro. |

A macro invocation occurs whenever a macro identifier is found in the
text. This meaﬁs thaﬁ_a macro cannot be invoked within a string con-
stant or ¢omment,jfor.exampie.:

The argument list fof:a.macro'invbcatiOn is optional. An empty list
() is allowed. .

An argument that is not 2 string constant may not cross an input line
boundary. An arguﬁént list must begin on the same line as the macro
identifier. ' ' '

No more than 9 formal parameters are allowed. Missing arguments are
considered to be null, and arguments corresponding'to nb.formal para-
meter are ignored.

The total length of all macro definitions (concatenated) cannot exceed
4000 characters. .

An expanded macro plus the remainder of the line where the macro is
invoked cannot exceed 400 characters. The length of all arguments
concatenated cannot exceed 400 characters.

If an expanded macro_plué the remainder of the line ﬁill not fit on
one line, the expanded fext is split as needed at the_last blank be-
fore a line boundary. - |
No more than 50 macro invocatlons (including nested 1nvocat10ns) can
occur from a 51ng1e 11ne of source text. '

Note that neither ENTRY nor EXT may be used with DEFINE.

4.5.5 Options

The directives

/+ EXPANDOFF +/ - and /+ EXPANDON +/

52

can be used to disable the expansion facility for any portion of source

text. The expansion is initially ON.. The direc;ives
/+ EXPANDPRINTON +/ and /+ EXPANDPRINTOFF-+/
can be used_tonqbtain‘a_listing of mécrb ekpépéidns.;‘Thé ﬁrint‘facility

is initially OFF.

53

5. Some Special-Purpose Language Features

5.1 .Character Data Type

5.1,1 Introduction
In order to facilitate a more efficient implementation of some string

handling algorithms, SIMPL-T has a third data type: character. ‘A charac-

ter is any ASCII character (see Appendix I11).

The addition of character data does nét facilitate the writing_of
SIMPL-T programs. In fact, just the opposite may be:true: some algdrithms
are more difficult to code using character data than if strings were used.
However some computers, such as the 1106 and 1108, do not have machine
instructions that facilitate the efficient implementation of string operations
such as substring extraction. Thus the character data type exists in SIMPL-X so
that character-oriented algorithms can be implemented more efficiently

(with respect to execution time) on such machines."

In general, the addition of character data to SIMPL-T involves mostly
straightforward extensions of the integer and string handling concepts. Some
of these extensions, and the variations that are needed for character data,

are explained below.

5.1.2 Constants

Character constants are denoted by enclosing the character in quotation

1"
marks (). A character constant may also be denoted by C "<integer constant>'
where <integer constant> specifies the numerical value of the ASCII encoding

of the character.

Examples of character constants are

IIA" C nln rr?n . e -C|13| ‘CI¢TI37‘ '

5.1.3 Declarations

Scalar character declarations are similar to scalar integer declara-

tions. Examples are

.CHAR C, C1 = "X"
ENTRY CHAR C2
EXT CHAR C3

54

Character array declarations are.aiso similar to those for iﬁteger
arrays. One difference is that a string constant can be included in the
initialization list for a character array. The meaning is that the elements
of the array are to be initialized with successive characters of the string.

Examples are:

CHAR ARRAY CA1(10), |
N CA2(20) = ("A", 'CAT', "X")
© ENTRY CHAR ARRAY B(10) o
| EXT CHAR ARRAY CA
In this example, CA2(1). is initialized to "C" , CA2(2) to "A" ,
and CA2(3) to "T'.

5.1.4 Statements

The assignment statement has the form
<character variable> := <character expression>

for character data. Both sides of the assignment statement must be of -

type character.
The case statement can be used in the form

CASE <character expression> OF
‘\Cl\ <statement l:i_.s'.t>l

\c \ <statement list>
n n

{ELSE <statement list> .} END
n+l

where . cl,.-..,cn are character constants. The form of the character case

statement is illustrated by

CASE NEXTCHAR OF
“\"A"\ GALL CASEA
\"B"\\"X"\ CALL CASEBX
\"2"\ CALL WHAT

ELSE CALIL OTHERCASE
END

55

5.1.5_ Operators

The only operators that may have character operands are the relational
(=, <, etc.) operators. Both operands must be of type character, and the
result is the same as it would be for single character strings consisting
of the operand characters.

Thus a character expression can only be a character variable (simple

or subscripted), a character constant, or a character function call.

3.1.6 Intrinsic Functions and Procedures

5.1.6.1 INTVAL
INTVAL (<char expr>)

returns the integer whose value is the binary ASCII encoding of the charac-

ter argument (see Appendix IIT). Examples are

INTVAL ("A") = 65
INTVAL (" ™) = 32
INTVAL (Ma"') = 97

5.1.6.2 CHARVAL
The result of

CHARVAL (<int expr>)
is of type character and is the inverse of INTVAL . Thus, for example,

CHARVAL (65) = "aA"
CHARVAL (32) =" "

The value of the argument must have a value between 0 and 127, inclusive.

5.1.6.3 INTF |
The INTF function also may be applied to character data. As examples,
INTF ("1") = 1 o
INTF ("9") =

The value of a character argument must be one of the characters "(Q" R AL

caey MO,

56

5.1.6.4 STRINGF

STRINGF also may have a character argument although no function
- is required for this conversion (Sée 5.1.8). The result is a striné of
lTength® 1 'consiétiﬂgiof‘the"chafacterf “For' example S
U STRINGF ("A") = AV ' ' e
STRINGF ("3") = '3"'

5-1.615. CHAR.F :
The function CHARF converts a string or integer argument to character.
For string arguments, CHARF (<string expression>) is the first character

of the string. For integer arguments,

CHARF (<int expr>) = CHARF (STRINGF(<int expr>))
Thus, for example,

"CHE'R-FH ('ABC') o irAit :

CHARF (7) = "7"

CHARF (-17) = "-"

5.1.6.6 LETTER | _
LETTER 1is an integer function defined by

LETTER (<char expr>) = LETTERS (STRINGF(<char expr>))

5.1.6.7 DIGIT
Thg_integer function DIGIT _is defined by

DIGIT (<char expr>) = DIGITS (STRINGF(<char expr>))

5.1.6.8 TUNPACK
' UNPACK is an intrinsic procedure that stores the successive characters
of a string into successive elements of a character array. The format is
- {caLn} UNPACK (<string’ expr>, <char array>)
For example, if S = "CAT' and A is a character array, then the statement
UNPACK (S,A)
- would result in A(Q):=-"C", A(l):-= "A", etc.

The string argument 1s extended on the right with blanks or truncated

57

so that its length is the same as the number of elements in the array.
Thus every element of the array is given a value. Note that the string

argument is first and the character array second.

5.1.6.9 PACK

The intrinsic procedure PACK 1is the reverse of UNPACK. The format
is

{CALL} PACK (<char array>, <string variable>)

All characters of the character array are used unless the maximum length
of <string variable> is too small, in which case only the first k
characters of the array are used, where k 1is the maximum length of

<string variable> .

5.1.7 1I/o
READ and WRITE are extended in a straightforward manner for charac-
ter data, except as noted below. Characters to be read are enclosed in

quotation marks just as for character constants in a SIMPL-T program.'

~One differehce inII/O_for character daté_is that a string can Be
read into a character affay. This.works just as if the.string wéra'read
into a string variable and then UNPACKed into the.array. Similarly,'a
WRITE of a character array is the same as doing a PACK and a WRITE of

the resulting string.

5.1.8 Characters as Strings

| The set of characters is considered to be a subset of the set.of 7
strings. Thus a character is also considered to be a string (of length
1) and may be used as a string without explicit copversion (STRINGF) .
Note that the converse is not true: mno string may be.used as a character
without explicit conmversion {CHARF). . '
5.1.9 Summary

| /bué to the épeéial nature of character data, its usage has not been

explained fully. It is e#pected that those who wish to use it will be
advanced enough to extend the integer and string features logically to

character. Other features not mentioned above, such as character functions,

58
character parameters, etc., extend in a straightforward manner (e.g., charac-

ters are passed by value unless declared by reference, but character arrays

are passed by reference).

5.2 Bit Representation for Integer Constants

Integer constants may be specified in binary, octal, or hexadecimal,
as well as decimal. However, these additional representations specify the
"bit pattern for the word in which the integer-is-stered,‘rather than the
value of the integer. Thus a maximum of 36 bits may be specified for the

1106/1108.

A bit representation consists of the letter B, 0 , or H, followed
by the binary, octal, or hexadecimal, respectively, constant enclosed in
quotes. (Embedded blanks are permitted.) TFor example, lnteger:value 23
can also be specified by any of the following:

B'10111' B'010 111°
o'27'
H'17'
similarly, ~23 can be specified as 0'777777777750‘ or’IH'FFFFFFFES*'.
Trailing zeros may conveniently be spec1f1ed by ending the constant in

quotes by the letter z followed by the decimal number of zeros to be

1ncluded For example, '

I

B'11000"
0'75000000"

B! 1123‘
0'75z6"'

A bit representation may occur anywhere in a SIMPL~T program that an
integer constant may occur. A bit representation may not be-used for
READ , however. No blanks may be imbedded in a bit representation for an

integer constant.

STRINGF may be used to convert an 1nteger value to a string whose

characters are the digits of a bit representatlon by using
STRINGF (<int expr>, <base indicator>)

where <base indicator> has value 2, 8, or 16 (10 1is also'permissible
and is the default value.} Leading zeros are not included in a result :

from STRINGF . Similarly, .
 INTF (<string expr>, <base indicator>)

may be used to convert a string of binary, octal, or hex digits to integer.

59

5.3 Bit Operators

5.3.1 8hift Operators:

There are four shift operators in SIMPL-T: left logical shift
(.LL.), left circular shift (.LC.), right logical shift (.RL.), and
right algebraic shift (.RA.). These are binary operators that are used

in the form.

<integer expression> <shift operator> <shift count>

where <sh1ft count> 1s an integer expression whose value is the number

of blts to shift

These operations are similar to the corresponding 1106/1108 hardware _t

instruetions_as_illustrated_below,

1 0'3275z4' .RA. 6 = 0'327522'
0'73210" .RL. 5 = 0'16628"
10'73210" .RA. 5 = 0'776628"

0'77' .LL. 6 = 0'7700"

0'3275z4' .LC. 15 = 0'275000000003'

[

5.3.2 Bit Logical Operators - :
The bit logical operators complement (.C.), and (.A.), or .v.),

and exclusive or (.X.) also function the same as the corresponding 1106/

1108 hardware instructions. Examples are

.C. 0'1234567" = 0'777776543210"

B'110101' .A. B'11001' = B'010001"
B'110101' .V. B'011001' = B'111101"
B'110101' .X. B'011001' = B'101100"

5.3.3. Precedence _

7 Bit complement (C) has the same precedence as the other .unary operators
but the binary bit operators have precedence over all other binary integer

operators. Among the binary bit operators, the precedence (highest first) is

60

.LL. .LC. .RL. .RA, shift

. A.
bit logical .

5.4 Partwords e ‘ o ‘ _ o _ _

The partword operator is similar to the substring operator.' In the
form '

<int expr> [F1,F2]
the partword cperation has an integer‘ﬁélue whose biﬁary speéificatidn
consists of the F2 bits beginning at bit Fl of the value of the éﬁpresQI
sion. Thus the partword operator exttracts F2 bits beginning at bit = F1
and generates an integer value by adding leading zero bits to fill a word. -

Fl and F2 may be any integer expressions. The first bit of a word
is bit number 0 (not 1 as for the first character of a‘string);' Thus

the values of Fl1 and F2 must satisfy all of'thé'following:
0 = FL = 35

F2 = 36

Fl + F2 = 36

A

1A

The F2 field may be omitted, in which case F2Z = 36 —_Fl (the rest of
the word). '

As examples, consider the following:

17 [31,3] =4
0'573201577123" [6,6] = 0'32°
0'573201577123" [18] = 0'577123"

Partwords mﬁy also be specified on_thé left of an assignment:
<integer variable> [F1,F2] := <integer expression®

In this case, F2 bits of the value of the variable, beginning with bit
Fl , are replaced by the rightmost F2" bits of the value of the expression.

61

" The remaining:bits in the wvariable wvalue remain unéhénged.'
For éxample, if integer variable _X'.hés value .0'6327'., then after
X[27,6] = 0'7415'

X would have the value 0'6157' .
5.5 Record I/0
5.5.1 Introduction .

Since I/0 using READ and WRITE is not very flexible, there is

.also record-oriented I/O_in'SIMPLjT. This_allows a prog;am to read input

images into string variébles and write one line of output text from a
string expression. Thus while record I/0 is more primitive than stream
1/0, it gives the user complete flexibility as to the format of input and
output (although'he must scan the inﬁut'iﬁages and build the output images
'himself). ' ' ' - o .

5.5.2 ~READC
The intrinsic procedure READC may be used to read an entire input

record (card, line, etc.) into a string variable. :The syntax of a READC

statement is
{CALL} READC({<skip>,} <readc item>{,<int variable>})

A <skip> for READC is the same as for READ , except that SKIPO
has no meaﬁing'for READC . The effect of a skip sﬁecifiéation is different
for READC , however, since a - READC- operation includes an implicit SKIP .

Thus, for example, successive
READC (SKIPF, 8)
_ statements would read every other card.

A <readc item> may be a. string variable, character array, or string

array. These function as follows: -
1) string variable - The next input record is read into the string

variable. The input image is placed into the string just as it

appears in the input (e.g., the character in the first card celumn

62

becomes the first character in the string, etec.). All of the

trailing blanks are removed The 1nput strlng is truncated if

needed, to the maximum length of the strlng variable.

2) character array - The characters of the inﬁut image are‘placed into
successive elements of the array, beginning with element 0. If
the input image is too long, it is truncated. If it is too short,
it is padded with trailing blanks, so that the entire array is
filled, unless the <int variable> is included.. - :
'3)ZString'arra§ - Successive inbat.reccrds are read“into the (string)
- elements of the array ' There muet?be enoﬁgh inbﬁt records to fill
nthe arraY. B SR R
The optlonal <1nt varlab1e> :lS de51gned for use with a character array.
_If included in a character array read the array will not be padded out with
blank characters. Instead, the integer variable will be set to the number

of characters read.

If used with a string variable, the integer variable is set to the length
of the image read. -Note that this can.also be obtained by using the LENGTH
function after the READC . -For a string array, the integer variable is set

to the length of the last image read.

End of file for record input is determined by the intrinsic function
EOIC , which 1s gsimilar to EOI . The difference is that EOIC asks "Is

_there another input record”", while EOI . asks "Is there another input item?"

READ and READC :(and hence EOQI and ' EOQIC) are not de51gned to”be

intermixed, and a user does so only at his own risk.

5.5.3 WRITEL

The analogue to WRITE for record 6ttﬁut is WRITEL . This intriﬁeic
‘may be used to write out a string onto a.line of output, with .each string
written on a new line. Thus the statement '

. WRITEL(S)

is roughly the same as

63

WRITE{SKIP, S)
The syntax for WRITEL is. .
{CALL} WRITEL(<writel list>)
where = <writel list> is one or more items, separated by commas. . The
1tems that may be used in <writel list> are
1) a skip or eject specification - Note that -~ .SKIPO permits overprinting
with WRITEL , and successive WRITEL (S, SKIP) statements would
print on every other line, N A
2) a string expression - The string is printed cn_the next line, trun-
cated to 132 characters if needed.
3) a character array - The array is PACKed and the resulting string
is printed on the next output line.
4) a string array - The array elements (strings) are printed.on suc-~
cessive output lines.
WRITEL and WRITE are not intended to be intermixed, although the

problems are somewhat lessysevere than for intefmixing READ and READC .
5.6 File I/0

5.6.1 Introduction
External data flles can be used by a SIMPL T program. The files must

be EXEC 8 SDF files if not generated by a SIMPL-T program. Flles
'generated by a SIMPL—T program will be EXEC 8 SDF ASCII files prov1ded only

strings are written out.

Logically, a SIMPL-T file is considered to be a sequence (stream) of
scalar data items. A'previqusly created file can be used provided it is
assigned to fhe run before execution of the SIMPL-T pfograﬁ. if no file
with the proper name is assigned, then the SIMPL-T file routines will assign

a temporary file and free it at the end of the program.

5.6.2 File Declaration o o
Files must be declared. A file declaration contains the keyword FILE

followed by a list of identifiers. The identifiers are the (internal) file

64

names to be used in the standard manner for EXEC 8 files. (Note that the
qualifier is not included and that file name identlflers may not exceed
12 characters in length) '

Files may &4lso be declared as entry points or external references. A
file may not be local unless it is an' external reéference. A file may be used
as. a parameter to a segment..

- Examples of file declaratlons

FILE DATAl, DATA2

ENTRY FILE DATA3

EXT FILE DATA4
5.6.3 READF

Files are read using READF . ' The syntax for this statement is

- {CALL} READF (<file name>; <readf list>)
Each item in <readf list> may be
”1)'an.iuteget,‘etring;ﬁor character variable;_

2) an integer, string, or character array, in which case successive

values are read into successive elements of the array.

The types of the items in the file must be compatible with the types

of the items in the <readf list> . No error checklng is performed.

End of flle may be determined by EOIF , whlch ‘has value l if'all

items have been read and value Q- otherwise.' The syntax for this functlon 15

EOLIF (<f1lename>)

5.6.4 WRITEF
' Items are written into a file using WRITEF . The syntax
{CALL} WRITEF (<filename>, <writef list>) - -
is similar to that for READF . FEach item in the <writef list> may be an
expression of any data type or an array of any data type. WRITEF functions

as a counterpart for READF .

65

5.6. 5 Control Operations _
A file is viewed loglcally as a sequence of items endlng with a special

end-of~file indicator. Two control ope;atlons_are used in creating and_p031—
tioning files.

ENDFILE is used to generate an end-of-file indicator. . The statement
{CALL } ENDFILE (<filename >)

must be used after the last WRITEF statement that is used in genefating

the items in a file.

In order to return to the beginning of a file, REWIND is used. The

statment
{CALL } REWIND (<filename>)

repositions the file at its first item

5.6.6 Example

To illustrate the use of files, the following program reads in a set
of integers, writes them into a file, and then reads them from the file
and prints them. . .

INT NUMBER
FILE DATA
PROC -MAIN

WHILE .NOT. EOL
DO /* READ IN NUMBERS AND CREATE FILE #*/
READ (NUMBER)
' WRITEF (DATA,NUMBER)
S R
ENDFILE (DATA)
REWIND (DATA)

WHILE .NOT. EOIF(DATA)
DO /* READ FROM FILE AND PRINT */
' READF (DATA,NUMBER) '
WRITE (NUMBER)
END

START MAIN

5.6.7 Conventions and Restrictions
As mentioned above, SIMPL-T files are compatible with SDF ASCII
'fileé, provide& only Stringé are used. SIMPL-T can read any SDF flle,
and any program that can read SDF ASCIT files can read SIMPL~T '
files if only string data is read and written by the SIMPLéT'progréms.

The‘sequeﬁcé.of‘file 0perétibﬁs'is'imﬁdftént. " The normal sequence
for creating and then reading a file is illustrated in the example of
2:6,6 . The restrictions are

1) a READF may only follow another READF or a REWIND , udless.

. it is the“initial.opergt@on on an already existing file;
2) a WRITEF may be the first operation on a file or may follow a
REWIND (or another WRITEF);

3) an ENDFILE may be the first operation or may follow a WRITEF.

or a REWIND ;

4) a REWIND may only follow an ENDFILE , a READF , or another

REWIND - : o
For these rules, EOIF is equivalent to READF .

The READF statements that read a file are completely 1ndependent
from the WRITEF statements that create the file. A file is a sequence
of scalar data items so that, for example, the elements of an array may
be written out using WRITEF of an array and then read back in using

READF dinto scalar variables.

5.7 Multiple Input—stream Files

Input stream files may be partitioned by use of the @EOF control
statement (or other equivalent statement). When this statement is éncoun-
tered, the SIMPL-T input routines will cause a 1 to be returned by3 EQI
or EOIC . However this is considered to be a "soft" end-of-file, and

reading may then continue with the next set of data.
There is no way to distinguish between a "soft" and "hard" end-of-file

in a SIMPL-T program. (Any attempt to read after a 'hard" end-of-file causes

the program to be terminated.) However since repeated calls to E0I or

67

ECIC are allowed, a wvariable number of partitions can usually be handled
by making a second end-of-file test. A "hard" end-of-file would cause
successive values of 1 to be returned, while @EOF followed by more

data would cause the second end-of-file test to return the value 0.

This partitioning capability applies only when the SIMPL-T program
is executed via an @XQT control statement. Programs invoked by a pro-

cessor-call control statement (such as the SIMPL-T compiler) cannot use

this facility.

5.8 Obtaining the Execution Time Options
The options specified on the @XQT or processor—call statement that

causes a SIMPL-T program to be executed can be obtained by the program as
it.begins exequtidn as describéd beiow. . . .

The procedure initially invoked (via the START <identifier> specifica-
tion) may have one parameter. The type of this parameter must be string.
If the procedure does have this parameter, then it will initiaily be passed
a string whose characters are the option letters specified on the control

statement that invoked the program execution.
For example 1f a program has the procedure

~PROC MAIN (STRING S).

and the START specification

TSTART ' .MAINII__ | -
..and is executed via the control statement
@XQT,ABX

then the value of the parameter S when the procedure MAIN is initially
called will be 'ABX' . '

5.9 Generating Relocatable Output

5.9.1 Introduction

To support its use as a compiler-writing language, there are statements

68

in SIMPL-T that can be used to gemerate relocatable output. - These very
special-purpose statements are described in this section. General informa-
tion regarding the execution of a SIMPL-T program that uses these state-

ments!and the relocatable element to be generated are included in 5.9.8 .

To create a relocatable element the OPENOBJ , . DEFEP , " DEFXREF ,
GENOBJ , ‘DEFLC , AND CLOSECBJ intrinsic procedures are used. OPENOBJ
and CLOSEOBJ initiate and terminate, respectively, the relocatable
output. DEFEP , DEFXREF , and DEFLC are used to define entry points,
external references, and location counters. GENOBJ i1s used to generate
relocatable text.

The reader is assumed to have some knbﬁledge of the terms "entry point",

"external reference", "location counter", and "relocatable text" as'they

‘apply to EXEC 8 relocatable elements.

5.9.2 OPENORJ
OPENOBJ must be the first relocatable intrinsic procedure used and

may be called only once. The syntax is indicated by
{CALL} OPENOBJ (<locctrs>, <xrefs>)

where <locctrs> is the number of location counters to be used, and <xrefs>

is the maximum number of external references to be used.

5.9.3 DEFEP and DEFXREF

These procedures are used to define entry points and external refer-

ences, respectively, of the relocatable element. An entry point or external

reference may be defined at any time between the OPENOBJ and the CLOSEOBJ .
DEFEP is used as indicated by
DEFEP (<name>, <locctr>, <offset>)

where <name> is a string whose value is the entry point name, and <locctr>,

<offset> gives the location counter and offset of the entry point.
The syntax for DEFXREF is

DEFXREF (<name>, <number>)

69

where <name> is the (string) name of the external reference, and <number>
is the number by which the external reference will be referenced in the

relocatable text.

DEFEP and DEFXREF may be used at any time (between OPENOBJ _and
CLOSEOBJ) during the generation of the relocatable element. The sequence
in which the definitions occur is not important, except that an external

reference must be. defined before it can be used in a GENOBJ . statement.

5.9.4 GENGOBJ

The GENOBJ procedure is the primary generator of the object 'program.
The syntax is given by ' o '

‘GENOBT (<text>, <tle>, <offset> {,<rlc> {,<xref>1})
This generates the data’ <text> .into the relocatable element at location
counter <tlc> , offset <offset> . The argument <text> may be of ‘type
integer, character, or string. Integer and character data generate one
word of relocatable text. (The ASCII 7-bit code, right-justified with
leading zeros, is generated for CHAR data.) A string is generated into
Zero or more'Succeesive”ﬁords; using the 9-bit ASCII.encoding'(ﬁ characters
Per Wo'rd)_ - L L - . o - B ’ I

If the <rlc> argument is 1ncluded (w1thout the <xref>)}, the_
address portion (rightmost 16 bltS) of the 1nteger argument <text> is
relocated with respect to 1ocat10n counter <rlc> . If the ﬁxrefS ‘ergument
is included (i.e., if there aré 5 arguments), re10catlon is with respect to

external reference number <xref> .
For example
GENOBJ (NEXTWORD, CTR, ADDR)
would generate the contents of NEXTWORD zat'the offeet given by ADDR
relative to the location counter whose value is in CTR . Simrlarly,
GENOBJ (INSTRUCTION, 1, IE{,Z) | o |

would generate the contents of INSTRUCTION at offset IC relative to
location counter 1, and the rightmost 16-bits of the word will be relocated

with respect to location counter 2.

70

5.9.5 DEFLC ‘ . o o
DEFLC is used to specify the number of words to be reserved for a .

location counter. The syntax is indicated by
_ DEFLC (<1og_ctr>, <size>)_‘

DEFLC may be used any time between OPENOBJ and CLOSEOBJ . The number
of words to be reserved for a location counter need not be specified before

text is generated for that location counter.

5.9.6. CLOSEOBJ _ . _
The end of the relocatable output is specified by CLOSEOBJ . 1If
arguments are included, they specify the start address of the generated
' program If the argument list is omitted a nonexecutable relocatable

element is produced. The syntax for CLOSEOBJ is

VCLOSEOBJ{(ﬁlog_ctr>, <off$et>)}_

5.9. 7 ExamEle

In thlS example, 1ocat10n counter 1l is used for instructlons and 2

for data Loops are not indlcated but would clearly be used.

INT IC = O, /* INSTRUCTION COUNTER */
XREF = 0, . /* NEXT AVAILABLE EXT REF NUMBER */
INSTRUCTION, /% INSTRUCTION TO BE GENERATED */
XREFNO, ~ /* XREF NUMBER FOR RELOCATION */
TYPE, | /* RELOCATION TYPE */
DC = 0, /* DATA COUNTER */ ,
MAXXREFS, /% MAXIMUM NUMBER OF XREFS */

ENTRYPOINT = 0 /* SWITCH */
STRING NAME [12] /# ENTRY/EXTERNAL NAME */ _
| :_ Determine max number of external refs
OPENOBJ (3, MAXXREFS)
. Find external ref and put into 'NAME'
DEFXREF iNAME, XREF) '
XREF := XREF + 1.

. Save XREF number

+ Set up instruction

71

' CASE TYPE OF
\0\ /* NO RELOCATION */
GENOBJ (INSTRUCTION, 1, IC)
\1\ /* LC 1 RELOCATION */
GENORJ (INSTRUCTION, 1, IC, 1)
\2\ /% LC 2 RELOCATION */ N
| GENOBJ(INSTRUCTION, 1, IC, 2)

43\ /% XREF RELOCATION %/ -
" GENOBJ (INSTRUCTION, 1, IC, 0, XREFNO)
D o L
IF ENTRYPOINT

THEN
DEFEP (NAME, 1, IC)
ENTRYPOINT := 0
END

IC := IC + 1
o Generate data
DEFLC(L, 1€)
DEFLC(2, DC)
CLOSEQBJgsTARTLc, STARTADDR)

5.9.8 -Conventions and Restrictions

Location counters 0-63 may be used. .Even—numbered ;océtion counter
text is placed in the D-bank, and odd-numbered iocation counter text_is
placed in the I-bank. {Location counters 1 (for_instructions) and 2 (for
data) are more or less standard.) If n locétion counters are specified
as being "used" (by OPENOBJ)}, then location counter numbers 0;1;...,n-1

“are allowed. Note that not all of these must actually have text generated

for them. No DEFLC 'is needed for ‘an unused counter.

The external reference numbers begin with zero. . If. n i1s specified
(via OPENOBJ) as the maximum number of external references, then external

reference numbers. 0,1,...,n~1 may be used.

72

External reference and entry point names may not exceed 12 characters

in length. Truncation is performed if needed.

A SIMPL-T program that generates a relocatable element must be exe-

cuted by a processor-call EXEC 8 control statement:
@<processor>{,<options>} {<specl>}{,<spec2>}

The usual default rules apply. The <specl> field identifies the source
input element and <spec2> identifies the relocatable output element.

(Note that the source input records are read'by READC in this caée})

The intrinsics PROPEN and PRCLOSE must be used to set up the processor

.call conventions. These intrinsics are described in section 5.10.

5.10 Programs That Execute as Processors

A SIMPL-T program can be made to execute as an EXEC 8 Processor. Such

a program is invoked by a processor call card
@<name>{, <options>} {<spec 1>H ,<spec 2>}

rather than by @XQT . SIMPL-T programs that execute.as processors have
the standard EXEC 8 source input options performed for them. For egampie,
the input (READ or READC) comes from the <spec 1> element unless the
"I option is specified, in which case it comes from the run stream and is
copied into the <spec 1> element.

A SIMPL~T program can be made to execute as a processor by calling the
intrinsic PROPEN before any I/0 operation is done, and calling PRCLOSE
after fhe completion:of'all I/0 operations., This will establish the re-
quired interfaces for source input as well as for relocatable (5.9) or
.éymbolic (5.11)'dufﬁut to the <sﬁec'2> “file. ' '

5.11 Symbolic Qutput

The intrinsics WRDATA and WREND may be used to write symbolic output

into the <spec 2> element of a processor call card. . The statement
WRDATA (<string>)

writes out a string, and

73

WREND
closes the output.
A program that uses WRDATA and WREND must belexecuted as anprpcéssor

(see_5.10).

74

6. Using SIMPL-T on the 1106/1108

L

6.1 Source Input Format

The normal scan of SIMPL-T program text is the first 80 characters of
each input record (e.g., card columns 1-80). This text is free format and

is essentially viewed as one continuous string of program text.

Keywords are reserved identifiers and may not be used as identifiers

in a SIMPL-T program. Keywords are listed in Appendix V.

Input record (e.g., card, teletype line) boundaries are meaningful
only in that no keyword, identifier, integer or character constamt, OY
symbol may be split across a record boundry. This restriction does not

apply, however, to string constants and comments.

Comments can be nested; that is, a comment can contain other comments.
Thus a comment consists of all text between the characters /* and the
first occurrence of the characters %/ for which all occurrences of /[#
and */ in the text of the comment are themselves comment delimiters.
(Thus, for example, it is always possible to temporarily remove a portion

of a program by enclosing it in comment delimiters.)

Several compiler directives are available for program listing control,
debugging aids, etc. Some of these may be specified by using EXEC 8 con-
trol card options (these are listed in Appendix I) and some may be speci-
fied by using a compiler directive in - the source program text. A compiler
directive is delimited by the characters /+ and +/ , and.may occur any-

where that a comment may occur (except within a comment).

The scan width for input text can be changed at any time by using

¢

the directive
/+ SCANLIMIT {<value>} +/

where <value> is the positive decimal integer number of the last character
to be included as program text on each input record. The new scan limit
becomes effective on the next input record after the one on which the direc-
tive occurs. If <value> is omitted, then 80 1is assumed. (The initial

value is also 80 .) - This feature is included primarily to allow the in-~

75

clusion of information other than program text (e.g., sSequence numbers)

on the input records.

No validity checks are performed on <value> .. Thus, for example,

/+ SCANLIMIT 1 +/

would render the remaining input text records useless.

6.2 Debugging Aids

6.2.1. Traces’

6.2.1.1 Progfam Flow Traces

-Two traces for program flow are avallable a trace of proc/func calls
and a line pumber trace. The call trace prlnts a message whenever a call
to a procedure or functiom is executed and also prints a message when a
return occurs. The nessages include the names of the calling end eelled
segments as well as the line numbers 1nvolved {Only the first 8 charac-
ters of a segment name are prlnted) ” : .

A line trace causes the number of a line to be printed when the etate—
ment on it is executed. The segment names (first 8 characters) are also

printed as the segments are invoked.
The call and line traces can be activated by compiling With.the T
and Y options, respectively. They can also be activated_and_deactivated

by using the compiier directives

/+ CALLTRACEON +/

/+ CALLTRACEOFF +/

/+ LINETRACEON +/

/+ LINETRACEOFF +/
These directives bracket the program statemeﬁts-for,which a trace is to be
eetivated.-'A,call ot line trace wiil-be in effect for all statements between

ON and’ OFF directives. .

76

6.2.1.2 Variable Trace

An eéxecution trace for the value of wvariables: is: also-available, This

trace is activated by the directive
/+ TRACE <id list> +/
and is turned off by
/+ TRACEOFF <id list> +/

The <id list> is a list of identifiers, separated by blanks or commas; these
identifiers must be known by the usual scope rules at the place where the
TRACE or TRACEOQOFF occurs. “ o

The TRACE and TRACEOFF directives bracket the part of the’ program for
which the trace is to be performed. At executlon, the name and value of a
traced varlable is prlnted after execution of an a551gnment statenent in
whlch the var;able was the left 31de, and after executlon of 'a call that
paases the variable as an argument by reference The Tine number of theé
statement is also printed. ' o - sere

An array trace w1ll prlnt values ‘of elements used as scalars whose
Value may be changed and will include the ‘value of ‘the subscrlpt. ‘Arrays
passed as arguments will be signalled by 2 messagée, but no_values will be
"”nrinted}

" Note that only data identifiers may appear in <id list>. Thus an.

array element may not be traced. If <id list> is‘empty in-a TRACEQFF -

directive, all active traces are terminated. .

'6.2.2 Subscript Checking

Subscript checking can be requested.fof an entire pfogram by'using the

C compilation option, and for portioms of a program-by using the directives

/+ SUBSCRIPTON +/
/+ SUBSCRIPTOFF +/

‘The directives function similarly to :those for the. trace options.. When .
subscript checking is activated, the value of any subscript that is out-
side the hounds of the array is printed, along with :line number where

the error occurred.

77

6.2,3 Omitted Case Check

Compiling with the D option causes checking for the occurrence of
‘an unspecified case 'value in a. CASE statement. If the expression value
for a CASE statement does not correspond to any of -the case numbexs (or
characters) and no ELSE part was specified, then a message is printed.
This check can also be activated for portions of a program by using the

directives

/+ CASECHECKON +/
/+ CASECHECKOFF +/

6. 2 &4 Condltlonal Text

In many 1nstances the best Way to debug a program is to 1nclude extra
statements 1n the program that prov1de 1nformation gbout the execution of
a program as it executes. (An example of such a statement is a WRITE
statement that prints the values of certain key variables.) 'Such statements
are often somewhat cumbersome to put into a program at the right places,
oﬁlYJfO'Be”rem6Ved'éfter the bug has been found. The conditional text fea-
ture of the SIMPL-T compiler provides a convenient means for handling such

a situation. .. -

The conditional text facility allows any string of source text to be
either included or ignored as program text by the compiler. Such text is

denoted by
/+ <indicators> <text> +/

where <indicators> is a string of digits and <text> is any SIMPL-T pro-

gram text that would be valid if the delimiters /+ and +/ , and the

<indicators> were removed. For example,

/+ 23 WRITE (X, Y, SKIP) +/

78
is an example of the conditional text
WRITE(X, Y, SKIP)

with indicators 2. and 3 .

The "indicators" 0 - 9 are all initially off. To turn one or more.

indicators on, “the directive:
./+.SET %iﬁdigators> 4}

is used. To turn indicators off,
/+ CLEAR <indicators> +/

is used.

Whenever conditional text is encountered by the compiier, the <text>
is'lncluded in the program 1f and only 1f any of its <indicators>

is on. Note that <text>' need not be a complete statement.:'Fofvekaﬁple,
WRITE ('%=", X /+ 6 ,'¥=", Y +/)

could be used to. easily compile a program to print either the value of X
only, or the values of both X and Y . =

Note that a conditional compiler directive would be specified, for

example, by
/+'7 /+ LINETRACEON +/ +/

6.2.5 User Contingency Interrupt

A contlngency interrupt from teletype (@@X c) .during execution
of a SIMPL-T program will generate a message- that gives the line number
where the interrupt occurredi ‘The user will then-be'glven‘the option of -
resuming or terminating execution.. Note that input that has already .been
entered will be read as a reéponse to the resume query. Also note that
the @@X C dnterrupt cannot be serviced if the program ‘is waiting for inm-
put until after the input has been read. |

1f execution is terminated following a contingency interrupt, all us-
ual end-of-execution functions are performed. Thus, for example, execu-

tion statistics are printed if they were specified at compilation.

79

6.3 Messages Generated by SIMPL-T

Both compile~time and execution-time diagnostic messages attempt to
give the line number where the error eccurred. . The execution time error
messages also include the first 8 characters of the segment name of the

segment that was executing when the error oceurred.

The messages generated by the compiler actually give the line number
at which the error was discovered. (Thus it is possible that the sPacing.
of the text of a program can cause a line number to be given in a diagnostic
message that is one or more lines after that on which the error occurred.)
Simiietly; splitting statements across card boundries can Sometimes make
it difficult for.the exact line number to be given in an execution-time
diagnostic message.

6.4 Source Lieting‘

A source listing maﬁ be requested by ueing the S ontion. If tne
S option is not specified, no listing of the source progran will be
printed (unless a print directive is used) but diagnostic messages will
be given. The N option may be used to suppress the printing of diag-
nostics. S - o ‘ :

Program listings include up to 3 numbers to the left of each line of
source text. The first (leftmost) number is the line number, The second
number (if any) is the statement number for the first.statement that begins
on that line. The third number (if any) is the nesting level number for: the
first statement that begins on that line. The statement number and level
number are omitted if no statement-beglrns:on that 11ne '

Statements are. numbered conqecutlvely throughout a compllatlon, begin-
ning with statement 1. The flrst statement in a procedure or functlon has

nesting level 1, and the level increases by 1 inside a WHILE, . IF or CASE
statement.
Several directives are available to oontfol the printing of a source

listing. The_direotives‘.,

/+ PRINTON + /
/+ PRINTOFF +/

80

may be used to print selected portions of a program. The directive
[+ BIECT +/

will cause the next line to be printed at ‘the top of the next page. ‘Similarly,
/% s.K.I‘P. {<eeentl>}+_): - | |

or
/+ SPACE {<count>} -l.-/.‘--‘ :

will cause <count> blank llnes to be sklpped before printing the next o

line, where <count> is a posltlve de31mal 1nteger With l as_the default.

If a listing control directive begins at the first character of a line
of program text and if the line contains no text other than the directive,
then that line will not be printed. Otherwise, the line will be printed

as usual. For example the line
/+ SPACE 2 +/
will not be printed, but the lines

/+ SPACE +/ X := 3
/+ SPACE 3 +/

will be printed.

6.5 Attribute and Cross-reference Listing -

An attrlbute and cross— reference llStlng may be requested by u51ng

the F optlon or by 1nclud1ng the ‘directive
/+ ATTRIBUTES +/

in the program text. The attribﬁte'iierihg‘inCIudES the characteristics,
(relative) core address or internal number, and line number where defined
for each identifier in the program. The cross-reference listing gives

the line numbers where each identifier was used. If the value of a variable

may be changed, an asterisk follows its. line number.

81

6.6 Keywords and Intr1n31c Identlflers

Keywords (see Appendlx V) may not be used as 1dent1f1ers in a SIMPL—T
program. However, intrinsic. 1dent1f1ers (Appendlx VI) may be redeflned by
the user. An intrinsic identifier is considered to be global Thus if a
program redefines an intrinsic in a global declaration (1nc1ud1ng segment
names) then that intrinsic cannot be used anywhere in the program. A local
redefinition, however, only prohibits. the use of the 1ntr1n81c in the seg-

ment containing the local redefinition.

6.7 OQther Options

The B option can be used to turn off the‘debug.aiae;'éuEh as keeping
" track of line numbers, that ‘are otherwise performed. This would mormally

be used only on "debugged™ "production" programs.
The directives
" /4 RECURSIVEON +/
/+ RECURSIVEOFF +/
may be used to epeeif§ that_all:segﬁents ieea eortion,ofte;erograﬁ are to

be recursive, .whether or not the‘kejword REC is included in the declara-

tions.

The R optlon causes no relocatable output to be generated This is
useful for d01ng syntax chécks and" ‘generating listings when ‘no relocatable
output is needed since it is ‘faster than a full complle. Note that normal
control card rules apply even when the R option is used. .-This means that
a valid relocatable ‘element (<spec’ 2> or default) must be specified even

though it is not’ generated.

6.8 Program Analysis Facilities

- 6.8.1. Program Statistics
' If the directive
' [+ STATISTICS +/

is included anywhere in the program text, the SIMPL-T' compiler will .print

82

statistical information about a program. The statistics include

a) counts of the number of each type of statement (asqlgn—'
_ ment, IF, etc.) used in the program; ' o
_b) caunts of the number of procedures, functions, and’
functlon calls,
c) the average nesting level for statements in the program;
d) ‘the number of tokens generated for the program;

"~ e) the average number of tokens per statement.

{A token is a syntactic entity, such as a keyword, operator, or identifier,

that occurs in a program statement.)

6.8.2 Execution Statistics

A statistical summary of program execution will be printed following

the execution of a SIMPL-T. . program if the directive -
/+ EXECUTIONSTATISTICS +/

is included anywhere in the source text. The following are included in

the statistical summary:

a) counts of the total number of times each type of statement
e (a551gnment, IF, etc.) was executed;
h) 'counts of the number of times certain compound statement
components (THEN parts, WHILE statement lists, etc.)
wwere executed; _ _
- ¢) counts of the number of times executedlfor the first
":gtatement in each statement list; -~
~d) v maximum recursion level for each procedure or function
that was -actually called recursively. (The initial entry
to a procedure is at level 0 . The first recursive call

is at level 1 .)

Execution statistics for a program exeeution'are prioted,'if re-
quested, even if the execution is terminated by a program contingency.
(At the present time this does not include exceeding;the estimated run
time, but this contingency will also be included as soon as EXEC 8

facilities permit.)

83

It should be noted that the use of the execution statistics fea-
ture will significantly indréase the size of most programs, The use of-

this facility with an overlay structure is discussed in 6.8.4.

6.8.3 Execution Timing

Execution timings for each procedure and function are provided if
the directive . -
/+ TIMING +/
is included in the program text, Two timings are given:
“a) CPU ‘time excluding non—-intrinsic calls. "This
"reptresents the time acfually spent in the code
“for a procedure or function, 'plus the time spent: :
in 1ibrary (dintrinsic) calls. '
b) CPU'time including all calls. This représents
" the ‘time from entry at recursion level 0 to

exit at the same level.

_ The tlmes glven are 1n seconds, rounded to 3 places (msec)

Slnce large fluctuations in t1m1ng can occur, dependlng mostly
non system loadlng factors, several runs on the same data should be"
done, preferably when the system is not heav11y 1oaded 1n order to
.obtaln more rellable results. These tlmlngs are 1ntended for use in
.determlnlng program bottlenecks and for most programs are accurate
‘enough for that purpose, Procedures that execute for very short tlmes
(less than l msec.) are more. llkely to incur 1naccurac1es than are
procedures that requ1re more execution time. .

The overhead required for execution timing is quite significant -
if -the number.of precedure and function.calls is high.. Since it is not
unusual for execution times to be several times higher with timing, this
feature should be used only when the timings are worth the extra cost in

‘execution time.

6.8.4 Execution Statistics or Timing with Multiple Modules

Execution statistics may be specified for any of the separately
compiled modules of a program that uses more than one separate compila-

tion. Timing may also be specified for any module desired, except that

84

if used in: any of the modules, it must be SpEleled for the. module con—
taining the START procedure designation in order to properly 1n1t1a1~
ize the timing routines. Only thoge modules specified are monitored for
statistics or timing. _ .

To use the execution statistics or timing facilit§iwith-an over—'
lay structure, location counters -4 "and 6 of the - SIMPL - modules must
be placed in the root segment (by using appropriate collector. (@MAP) .

control statements).

6.9 Macro Pre-compile Pass .

The macro pre-processor described in the University of Maryland Technical
Report TR-297 has been incorporated into the. compiler as on optional pre-
compilation pass. The initial pass creates a source text file which is then
fed to the compiler.

Some relevant information for. the macro pre-processor are:

1) The macro pass is invoked by using the '"M'" option. If this option is
not specified, no pre-compile pass will be performed.
2) If the macro pass 1s done, the <spec 1> field on the processor call

card denotes the macro source flle, and the <spec 2>"f1eld denotes the

relocatable output ' There is no way to create a SIMPL source file or
element by u51ng the macro pre compllatlon pass. ' ' R

3) If the macro pass is done, all llne numbers (source llst1ng and dlag—
nostlcs) w1ll refer to the macro source, rather than the generated SIMPL
source. ' ‘ *

4).”Th s option generates a listing of the SIMPL source only : To list the

macro source, the macro dlrectlve 'OPTION(LIST) must be used

6.10 Program Execution Time

The exécution time (memory time) is printed at program termination. This

can be‘eliminated if desired, by settlng
EXT INT S$TIMEMSG

to zZero.

85

7. Additional_Notes on the llOG/llOS.Implementation of SIMPL-T .

© 7.1 SIMPL-T Object Code

A relocatable element produced by a SIMPL-T compilation has instruc-
tions in the I;Bank under location counter 1 and static data in the'ﬁ"
Bank under location counter 2 . A small dynamic area is initially included
for the allocation of locals for recursive segments and for string work-

space. MCORE is used as needed to obtain additional core.

The SIMPL-T compiler generates re—entrant code,.énd the SIMPL-T 1li-

brary routines are re-entrant.

7.2 - Interface with Other Languages

Programs that use FORTRAN calling conventions can be called from a

SIMPL-T program and may call a SIMPL-T segment. The following rules apply:

1) To call a FORTRAN subroutine or fumction, the subroutine or function

name wust be declared as

EXT OTHER PROC

2) A SIMPL-T segment to be called from a FORTRAN progﬁam must be specified

. as
-OTHER ENTRY PROC
An OTHER segment can also be called from another SIMPL-T segment.

3) A recursive SIMPL-T segment can be called only if the initial execution
began with a SIMPL-T program.

4) A nonrecursive SIMPL-T segment may be called from an execution that was
not initially in a SIMPL-T program, but only if compiled with the B
option. '

5) Only integer or integer array arguments can be passed to an OTHER

" procedure or function.

Arrays passed between SIMPL-T and FORTRAN programs.will'retain the

subscript numbering of the program in which they were declared. Thus if

86

a SIMPL-T array is passed to a PORTRAN program, then element number 0 of

the array would be logically inaccessible in the FORTRAN program. - Similarly,

1f a FORTRAN program passes an array to a SIMPL T ‘program, then element o

of the array may not normally be used in the SIMPL T program.

The :standard SIMPL-T linkage conventions are available .upon request

for those who wish to use. these conventions in -assembly language subroutines.

7.3 Some_Comments_on Efficiency

This section contains some random comments regarding the efficiency

of certain SIMPL-T features.

b

2)

3)

4)

1f <expr>

Recursive procedures and functions incur relatively little additional
overhead. - It may well be reasonable, in fact, to declare nonrecursive

segments that use a large amount of local storage as recursive in order

to. avoid the static allocation of the local storage. A possible ex—

ception here is that local string arrays in a recursive segment requ1re
the initialization of the dope vectors for the elements at entry, and

this could prove costly if a recursive segment is inveked often.

Ihe.passing of a string argument by value (the default) means that the
string must be copied into the called segmeht, whereas an argument
passed by reference is not copied. This is unlikely to be significant

unless segments with value string parameters -are very heavily used.

If the value of a loglcal operatlon can be determlned from the first
operand only, then the second will not be evaluated For example, for

the operation

<expr>, .0OR. <expr>,

1
is nonzero, then <eXpr>, . will not be evaluated. Thus the

1
operands in a sequence of logical operations should be in the order that

would usually determine the result most quickly, if possible.

Hardware partword operations are used when a partword operator specifies

a (constant) half-, quarter—, or sixth-word. .(All SIMPL-I'programs are

Tquarter—word sen51t1ve)

87

7.4 ‘Functions with Side Effects

Functions are assumed to have no side effects. Thus some function
calls may be eliminated in order to optimize the code generated. For ex-

ample, function calls involved in an unevaluated operand of a logical
operation (see 7.3) and successive function calls whose arguments are

unchanged need not be made under the assumption of no side effects.

Those who write functions that have side effects should insure that
the elimination of function calls by an optimization process will not

adversely affect their program.

7.5 Arithmetiec Overflow

Arithmetic overflow that occurs in calculating the results of an
integer operation is ignored. This applies to intermediate, as well as
final, résults. For example, in calculating | ‘

A+ B-C

not only the final value, but also the intermediate value of ‘A + B , must

be in the proper range of integer values or the result will be incorrect.

88

Appendix I - Executing a SIMPL-T Program on the 1106/1108

The following illustrates a run stream sequence for compiling and.

executing a SIMPL-T program.

~@SIMPLT, IS
: T. SIﬂPL—T‘prpgram.
© @XQT .
.. : : .Data fﬁr program

Normal processor source input options and conventions are used.

primary. input options are

I - source input is from the run stream

U - update source element (‘<épec1> ‘field of @SIMPLT card)

and the usual EXEC 8 conventions regarding correction cards apply.

The compiler options are

2 IR - S 7 T I~ o B > B < R o SR - - R S

go even if severe errors are found

turn all debug aids off

check for array subscript ocut of bounds

check for omitted case

generate attribute and cross-reference listing
print object cocde

suppress printing of diagnostics

do not generate a relocatable element

print source listing

activate call trace initially

abort if any diagnosfic occurs

activate line number trace initially

The

Note that the sequence of control cards given above applies only to

the situation in which only one execution is to be done in a run. If ad-

89 .

ditional compilations and executions are performed (for example, as is
normally done from teletype) then the @MAP control statement must be
included before @XQT for all executions after the first. . Similarly,
the <specl> field must_berused_in the @SIMPL stééeménts for progtams

that consisf‘of separately cdmpiled coﬁponents (see 4.4).

90 :

Appendix IT - Precedence of Operators
The SIMPL-T operators afe listed below in order of prédedenée“from '

highest to lowest.

[1 _ part
.. JNOT. - (unary) unary
.RA. .RL. .LL. .LC. : shift
“Ae bit logical
V. X.
/ . .
arithmetic
+ -~ {(binary)
= <> < > <= >= relational
IA-ND‘
logical
.OR.

. CON. . string

Appendix IIT - ASCII Character Codes

Character Octal Code _ Character Octal Code

B é?acé=ﬁ, “ﬁﬁw'40 s S : : ;k . S S 73
! 41 | < 74
wo 42 = 75
o e3 T R R .76
4 - e _ 77
s e 1100
46 | . Az 101-132
47 [133
C .50 \ g \ 134
I S 135
| | | o
4

e M

-

* | 52 136

+ _ - 33 L) A7
, | s az 1172

- 55 ol s

s oy 175

7 ' . 57 R - A o 0176

0-9 . 60-71 . opE. .77

72 '

92

Appendix IV - Formal Specification of SIMPL-T Syntax. -

1. Program e it

<program> ::= {<declaration list>} {<segment list>} start {<identifier>}

2. Declarations

<declaration list>::= {<declaration list>} <declaration>

<declaration> 1= <variable declaration>]

<structure declarati0n>]

<external declaration>

<variable- declaration>::= <integer declaration>|

<String_declaration>[

<char declaration>

<integer declaration>::= {entry} int {<int dec list>}

<int dép list>::= {<iht_dec list>,} <int dec item;”"

<int

dég item>::= <identifier> {=<signed constant>}

<string declaration>::= {entry} string <string dec list>

<string dec list>::= {<string dec list>,} <string dec item>

<string dec item>::= <identifier> [<constant>] {=<string constant>)}

<char declaration>::={entry} char <char dec list>
<char dec list>::= {<char dec list>,} <char dec item>

<char dec item>;:= <identifier> {=<char constant>}

<structure declaration>::= <array declaration>

<array declaration>::= <int array declaration>l

<string array declaration>|

<char array declaration>

array declaration>::= {entry!} int array <int array dec list>

array dec list>::= {<int array dec list>,} <int afray dec item>

array dec item>::= <identifier> (<constant>) {=(<int array init list>)}

array init list>::= {<int array init list>,} <int array init item>

array init item>;:= <signed constant> {(<constant>)}

93

<string array declarat10n>"- {entry} string array <string array dec list>

<string array dec list>::= {<string array dec list>, }'<str1ng-array dec item>
<string array dec item>::= <str1ng spec> (<constant>) {= (<string array init list>}
<string spec>::= <1dent1f1er> [<constant>]

<string array inlt list>:i= {<str1ng array init 1lst> } <string array 1n1t item>

<string array init item>::= <string constant> {(<constant>)}

<char array declaration>::= {entry} char array <char array dec list>

<char array dec list>::= {<char array dec list>,} <char array dec item>
<char array dec item>::= <identifier>(<constant>) {=<char array init list>)}
<char array init list>::;= {<char array init 1ist>;} <char array init 'item>

<char array init item>::= <char constant> {(<constant>)}{ <string array init item>

<external declaration>::= ext {other} proc <external segment list>f

“ext {other} <type> func <external segment list>
ext int <identifier list>} .-

ext string <string spec list>|

ext char <identifier list>]

ext int array <array list>|

ext string array <string array 1ist>’

ext char array <array list>

<external segment list>::= {<external segment list>,} <identifier> {(<type list>)}

<identifier list>::;= {<identifier list>,} <identifier>

<string spec list>::= {<string spec list>,} <identifier> {[<constant>]}
<array list>;:= {<array list>,} <identifier> {(<constant>)}

- <string array list>::=

{<string array list> '} <1dentifier> {[<constant>]}{(<constant>)}

<type>"= int | string | char

<type list>::= {<type list>,} <type list item> _

<type list item>::= {<type call>} <type>.| <type> <type struct>
<type struct>:!= array

<type call>::= ref

3. Program Segments

<Begment list>::= {<segment list>} <segment definition> .

94

<segment definition>::= <proc definition>‘! <fune definition>

' <proc:definition>:f= <proc head1ng> <segment body> {return}
<func definition>::= <func bead1ng>{<segment body>}{return (<expr>)}

<proc head.::'Ln‘gﬁ;::'= ther} {entry} {rec} proc <identifier> {(<parameter 118t>)}

{o
<segment body>:i= {<local declaration list>} <statement list>
<func heading>::= e R _
{other} {entry} {<rec>}<type> func <identifier>{(<parameter list>)}

<parameter list>::= {<parameter list>,} <parameter>

<parameter>::= {<type call>} <type> <identifier> ’ <type> array. <identifier> .

<local declaration list>::= {<local declaration list>,} <local declaration>
€local_declaration>::=.<loca1 variable declaration>]

<local structure declaration> |

<external declaration>

<local variable declaration>::= <type> <identifier list>

<local structure declaration>::= int arraz <array bound 115t>|

strlng array<str1ng array bound llst>|

char array<array bound list>
<array bound list>::= {<array bound list>,} <identifier> (<constant>)

<string array bound list>::=

{<string array bound list>,} <string spec> (<constant>)

4. Statements

<statement list>::= {<statement 1list>} <statement>
<statement>::- <a551gn stmt> I <if stmt> l {\<exit d381gnat0r>\} <wh11e stmt>

<case stmt> | <call stmt> | <exit stmt> | <return stmt>

<assign stmt>::= <extended int variable>::= <expr>l
<extended string wvariable>::= <string exPr>|.

<¢har variable>::= <char expr>

<if stmt>::= if <expr> then <then clause> {else <else clause>}-end
<then clause>::= <statement list> '

<else clause>::= <statement list>

<while stmt>::= while <expr> do <while clause> end

<while clause>::= <statement list>.

<case stmt>::= <integer case stmt> | <char case stmt>) _

<integer case stmt>::= case <expr> of <case list> {§£§5'<else clause>}.ggg

<case list>::= {<case list>,} <case form> o -

<case form>::= <case designator> <sratemenr list> _

<case designator>::= {<case designator>}.\<iqteger>\

<char case stmt>i:= : - n | ,
case <char expr> of <char case list> {else <else clause>} end

<char case list>::= {<char case list>,} <char case form>

<char case form>::=.{<char case designator>} <statement list>

<char case designator>::= {<char case designator>} \<char constant>\

<call stmt>: = call <identif1er> {(<actual parameter llst>)}
<actual parameter list>::= {<actual parameter 1ist> } <actual parameter>

<actual parameter>::= <expr> | <string expr?-L <char expr> [<array 1dentifier>

<exit stmt>::= exit {(<exit designator>)}
<return stmt>::= return {(<expr>)}

<exit designator>::= <identifier>

5. Expressions

<expr>::= {<expr> .OR.} <log1cal product>

<logical product>"= {<logical product> .AND.} <relation> ---

<relation>::= {<rela;iqn>.Srelational.op?} <gimple expr>[
<string expr> <relational op> <string expr>]|
<char expr> <relational op> <cﬁar axpr> .

<simple expr>::= {<simple expr> <add op>} <term>

<term>::= {<term> <mult op>} <bit sum> L

<bit sum>::= {<bit sum> <bit or op>} <bit product>

<bit product?::=-{<bitrproduct> LA,} <shift> =

<shift>::= {<ghift> <shift op>} <factor>:

<factor>::= <unary op> <factor> f <part primary>

<part primary>::= <primary> {<part designator>}

<primary> ::!= <constant>] <variable> ' <function designator> [(<expr>)

‘96

<relational op>ii== | <> | > | < | >= | <=

<add op~>:i:= +] -
 <mult op> = % l /

<bit or op>-4'= V. r ;X;.

<shift op>::= .RA, | .RL. | .LL. | ;LcQ"

<unary op>::= ,NOT. [_.C;.[.f :TI. :)
<part designator>::= [<firsfwbit5 {,<Bif'tbunt>}]
<first b1t>::— <expr> -

<b1t count>: := <expr>

<function designator>::= <identifier> {(<actua1 parameter llSt>)}
<variable>::= <identifier> {(<expr>)} ‘ N
<constant>::= <integer> [<b1nary> [<octal>] <hexadec1mal>
<31gned constant>..— { } <constant>

_ <array 1dent1fier> $i= <1dent1f1er>

 <integer>::= {<1nteger>} <digit>

<digit>::=0 | 1| 2|3 |4 |5]6f7.]8)39

<binary>::= B'<binary form>{<trailing zeros>}'

<binary form>:i= {<binary form>}<binary character>

<binary character>:;= 0 [1

<octal>::= 0'<octal form>{<trailing zeros>}'

<octal form>::= {<octal form>l}<octal character>

<octal character>t:= 0|1 | 2| 3|4 |5]6]7

<hexadecimal>::= H'<hexadecimal form>{<trailing zéros>}'

<hexadecimal form>*'*‘{<hexadecimal”form>}<hex character>

<hex character>::= 0 | 172 | 3 Talslel7]8]9]|
NEE I b|E[F oo ok

<trailing zeros>::= Z<integer>

<identifier>::= {<fdentifiér>}z<1etter>.f-<identifief> <digit>
<letter>::=A | B|c|[D|E|F |G |H|T|a|K]L|N]
N|lofPplqQlris|r|{u|v|w|x|Y]|z]¢

97

<string expr>::= {<string expr>.CON.}<string part primary>

<string part. primary>::= <string primary>{<substring designator>} -

<string primary>::= <string>l<string function designator>](<string expr?)[<char expr>
<substring designator>::= [<first char>{,<char count>}]

<string>::= <string variable>[<stfing constant>

<string variable>::= <identifier>{(<expr>)}

<string constant>::= '<string form>'| "' .

<string form>::= {<string form>}<character>

<first char>::= <expr>

<char count>::= <expr>

<string function designator>::= <function designator>

<char expr> ::= <char constant>|<char variable>|<char function designator>
<char constant>::= "<character>"

<char variable>::= <identifier>{(<expr>)}

<character>::= any single legal character

<char function designator>::= <function designator>

<extended int variable>::= <variable>{<part designator>} .

<extended string variable> ::= <variable>{<substring designator>}

98

Appendix V - Keywords

The following are reserved keywordS-and may not be used as identifiers

in a SIMPL-T program.’

ARRAY DO - " " EXT 2 OF - . - = . RETURN

CALL ELSE FILE. - ‘. OTHER - START
CASE ' END FUNC - : PROC" - STRING
CHAR ENTRY IF " “REC - - - THEN

DEFINE EXIT INT REF 2 WHILE

Appendix VI -~ Intrinsic Procedures and Functions

99

An intrinsic (built-in) procedure or function identifier as well as

an I/0 control parameter identifier (EJECT ,

SKIP , etc.) may be redefined

by the user if desired. Note that if an intrinsic identifier is redefined

by the user, then its intrinsic meaning is lost.

defined by a local declaration is lost only to the segment containing such

a local redefinition, however.

1. Intrinsic Procedures

(An_intrin$i¢ brocedure call need not include the keyword CALL .)

Name
ABORT
CLOSEOBJ
DEFEP
DEFLC

~ DEFXREF
ENDFILE
GENOBJ
OPENOBJ
PACK

PRCLOSE

PROPEN
READ

READC
READF
REWIND
UNFACK

WRDATA.: -
WREND
WRITE

WRITEF
WRITEL

Section
4,1.3
5.9.6

5.9.3
5.9.5
5.9.3

5.6.5
5.9.4

5.9.2

'5.1.6

5.10

5.10

2.7.1
3.9
5.1.7

5.5.2

5.6.3

5.6.5
5.1.6

5.11 -

5.11

2.7.2
3.9
5.1.7

5.6.4

5.5.3

Arguments

none
{<loc ctr>,<offset>}
<pame”>, <loc c¢ctr>, <offset>

<loc ctr>, <size>

‘<name>, <number>
C <file>
- <item>, <lc>, <offset>
- {y<rle>{, <xref>1}

<loc ctrs>, <xrefs>

<char array>, <string>

see Indicated sections
see 5.5.2

<file>, <item list>
<file> |

<string expr>, <char array>

<.gtring>

see indicated sections
<file>, <item list>
see 5.5.3

An intrinsic that is re-

Function

terminate program abnormally

- relocatable output

relocatable output
relocatable output

relocatable cutput

‘generate end-of-file

relocatable .output

relocatable output

'pack char array into string

close processor

open processor

stream input
record ‘input -
file input
repositioﬁ file

unpack chars of string into
array

.symbelic output

close symbolic ocutput

stream output
file output

record output

100

2. 'Integer Functions

Name -~ Section ' Arguments . ; Result
DIGIT 5.1.6 <char expr> .+ indicates whether char is
a digit '
DIGITS 3.11.2 <string expr> indicates whether all chars
. _ of string are digits
EOT 2.7.1 none ' ' " indicates whether all items
have been read
EQIC . 5.5.2 none S indicates whether all records
. _ o i have been read _
EOIF - 5.6.3 <file> : e . indicates whether all file
. ' ' items have been read -
INTF ~ 3.11.2 o |
. 3.2 . . see indicated sections . argument converted to integer
INTVAL - 5.1.6 <char expr> ASCII binary value of char
LENGTH 3.11.2 <string expr> . (current) length of string
LETTER - - 5.1.6 <char expr> ‘indicates whether char is a
. _ -, letter S
"LETTERS 3.11.2 <string expr> . ' indicates whether all chars
are letters :
MATCH 3.11.2 <string expr>.,. '
' <string expr>1
2 position of string2 in
string1
3., String Functions-
Name Section Arguments | Result
STRINGF 3.11.2 ' o
5.1.6 : -
5.2 see Indicated sections argument converted to string

TRIM 3.11.2 ~ <string expr> . string with trailing blanks
. : removed

101

4. Character Functions

Name Section Arguments Result
CHARF 5.1.6 see 3.1.6 argument converted to char-
' ' : acter

CHARVAL 5.1.6 <integer expression> inverse of INTVAL

