. . The SIMPL Family
. of Programming Languages and Compilers *

by
" Victor R. Basili

Abstract

The SIMPL family-is a set of structured programming languages and

compilers under development at the University of Maryland. The term

» "family" implies that the languages contain some basic common features,
- such as a common subset of data types and control structures. Each of
the languages in the SIMPL family is built as an extension to a base
language. The compiler for the base language is written in the base
1anguage'itse1f, and the compiler for each new language is an extension
to the base compiler.

*This research was supported in part by the Office of Naval Research,
Mathematics Branch, under Grant NQOOl4-67—Af0239—0021 (NR-044-431).

50 V.R. Basili

I. Introduction

The purpose of this paper is to discuss an effective approach for
designing and implementing a family of programming 1anglzeges as that
approach has been used in developing the SIMPL family of structured
programming languages and compilers at the University of Maryland.
The term "family" here represents a set of languages which contain some
* basic common features, such as a common subset of data types, control
structures, etc. Present members of the SIMPL family family consist of
‘the base typeless compiler-writing language SIMPL- X [1], the typed
(mteger, string and character), transportable compller-wrltlng language
SIMPL-T [2], the mathematically—oriented'language SIMPL-R [3], and a
systems implementation language foi‘ the‘PDP—ll, SIMPL—XI‘ [4]. There are
severel other -languages currently under development, including SIMPL-D,
a language that provides the user with a facility for defining new data
structures, and SIMPL-G, a graph algorithmic language which is the redesign
of GRAAL [5], a programming language for use in the solution of graph
problems primarily arising in applications. 'I‘hefe are also several
1anguages that have been proposed as additions to the fam11y, such as
SIMPL-RD, Wthh is meant to be a transportable numerical appllcatlons
language for very large data problems, SIMPL—S, a. general systems language ,
a language for use in the development of the IPACS system [6] for .payttern
recognitien_ problems, and a language for use in artificial intelligence
problems.

The rest of this paper is divided into four sections. The next

section contains a motivation for the family of programming languages

V.R. Basili 51

approach. Section three presents the description of the core language
and compiler features of the family, and Section four discusses the

members of the family.

II. Motivation

The general approach to solving a problem arising from a particular

application area has been to write a solution for the problem using the

~ terminology pertinent to that application area. In this way the problem

solver is using the natural language of the problem area to work out a

'solution to his particular problem. This concept of a natural language

has long been used by problem solvers in all disciplines. In mathematics,
for example, there are a variety of languages available. _The.algebraist,

in particular, uses specialized primitives, such as set-theoretic operations,

' etc , for expressing the relevant theorems and proofs that go to make up

the problems and solutions of the area.

For problem areas whose solutions are algorithmic in nature, the algo-

'r1thm is usually represented u51ng the appropriate terminology, in this

case ba51c data elements, operations, control and data structures etc.,
assoc1ated with the area. If this problem requires a computation for
whlch a computer is used, the algorithm is then encoded into some general-
purpose programming language, and this encoded algorithm is then executed
on the computer. If this language'is not designed for algorithms in the
problem area, and the transformation from the "solution" algorithm to the
""execution' algorithm is great, then problems arise. ‘Tb start with the

development of the '"execution" algorithm requires an extra effort which

52 V.R. Basili

might even duplicate the original "'solution' algorithm effort. There may
be little relation between the two algorithms, and the programming language
may actually disguise the underlying algorithm. This encoding may thus
intrbduce,érrors and will certainly make the algorithm difficult to read.
The resuits might even be worse if the problem solver bypasses the ''solu-
tion' algorithm and works out only the execution algorithm in order to
save time; The programming language is not of aid in the '"'creative stage'
of developing the algorithm, and some ﬁore-insightful solutions to the
problem may be lost.

There has been a growing emphasis on déveloping problem area oriented
programmingvlénguages. There has béen an'ever—increasing number of high-
level languages that involve the solutions of set-theoretic prbblems [71,
~combinatorial problems [8], artificial intelligence-based problems [9,10],
graph algorithm problems [4,11]. The eXiStencé of a particular application -
area oriented programming language provides the solution to the above
problems. If it contains the proper primitives, it can be an aid in the
problem solving. It can produce highly readable algorithms since they
canvbe expressed in the pertinent terminology of the problem area, genera-
ting a good, formally defined reference language for the érea.

There are, however, several drawbacks to this approach to problem
solving. First, the development of the design of a new programming ian—
guage and the corresponding implementation of its compiler are fraught with

- many problems, especially if thellanguage either contains constructs novel
to language development or combines constructs that have not necessarily

appeared together before. Also, it is not always obvious what operators

V.R. Basili 53

and data structures best express the problem solution for any given appli-
cation area. Secqndly, this approach can cause a proliferation of lan-
guages and compilers whose interéection is empty.

~ One possible approach that minimizes some of these drawbacks is the
development of a family df programming languages and compilers. The basic
~idea behind ihe family is that all languages in the family contain a core
design which consists of a minimal set of common language features. These
features define the base language for.which all other languages in the
family ére extensions. This also guarantees a common base design for the
compilers. It does require that the family design be extremely modular
and permit eésy access to subsets of the‘language and individual segments
of the compiler. | ' |

. The major benefits to this approach are first that several application
area languages can be developed wifh'a'single‘base structure, minimizing
both the proliferation of different languages and the corresponding compiler
development effort. Secondly, since many of the constructs for various
application areas either overlap directly or are similar in design; the
benefits derived from one research effort are either directly usable or of
valuable help in the development of other research efforts. Thirdly, the
basic extendable design lends itself quité easily to implementing_different
operators and'déta structures with minimal effort. In this way the specific
set of primitives for the specialized language may be experimented with in an
attempt to find those primitiveé that best express the solutions to problems
presented by the application area. Fourth, the processes of language design

and compiler implementation have been broken down into small well-defined

54 V.R. Basili

steps. This makes each procéss easier. to accomplish.

It should be noted that this family approach is in contrast to the
design of a single language and compiler that would encompass the needs
of.a‘whole range of application areas similar to the approach taken'by a
langUage.like PL/l. |

‘The second major problem is the proliferation of compiler development
efforts. ASince the set of languages forms a family, there are several
approaches that may be taken which minimize the compiler developmént
effort._v

One approach is to develop an extensible language [12] and build the
family of 1anguages out of this extensible base language. The discussion
of extensible languages can be broken into two parts. One is the set of
languages with a powerful data definitional facility as defined in
SIMULA 67 [13], or as recommended by Liskov and Zilles [14] or as is being
proposed in SIMPL-D. Here the new language is actually a system built out
of the base language by incorporating new data types and data structures
into the language. No new compiler is built. This type of extensién may
covér a large_variety of '"new languages'" and there is a minimal of effort
involved. On the other hand, the execution of programs ih this "new
1anguagé" would probably not be as efficient as it would be if the new
data types and structures were built into the compiler directly; the-types
- of extensions are limited, i.e., one cannot extend the syntax or set of
control structures, for examp1e5‘and the base language must be fairly

powerful and possibly more general than is necessary for the new application.

V.R. Basili 55

The second and more general type of extensibility is characterized
by languages such as ELF [15] and IMP [16]. Here the user may define new
syntactic and control struétures and a new compiler can be generated.

This added extensibility, however, requires more effort and knowledge (of
such thihgs as syntactic énd semantic structure) than the previous type of
extensibility. The major problem hére is that the base language and com-

' biler are.usually large and powerful and tend to make the new language -
more powerful and its compiler less efficient and larger than what was
needed fbr their design. The initial process of designing the base lan-
guage and building its compiler is also a very major effort. |

Another épproach to developing a family of languages is the transla-
tor-writing system approach [17]. For all practical pufpoSes; a TWS is
vusuall& limited to generating compilers for what in effort amounts to a
family of languages as defined here (igﬁdring‘syntax) or else it becomes
too inefficient. In many ways a TWS is a more flexible approach than the
extensible language approach since it allows the user more freedom with
the language design so the design can be tailored more precisely to the
particular application area and not contain any unneeded language con-
structs. It generates a separate compiler which can be smaller and hence
more efficient. Depending, however, on the particﬁlar WS, it is‘uéually
more difficult for the user to develop his compiler and the ability to
incorporate new data structures or types is quite limited.

Another approach, the one discussed’here, is to start with a base
language and a base compiler, building each new language in the family as

an extension to the base 1anguage and each new compiler in the family as

56 V.R. Basili

an extension to the base compiler. This approach is similar to that
suggested in [18].

The major benefits involved here are that each new language has its
own eompiler. The appropriate kind of error analysis can be built into
it. If the baee language is simple enough, the user gets no more overhead
in his new language than is necessary for the particular application.

‘The compiler need contain no extra extensibility support features. Since
it is hand-coded, the compiler can be more efficient than a TWS generated
compiler énd the code generated can be more efficient. There is a greater
~amount of freedom in the language design within the limits of the family.
Lastly, if each new language is implemented in a stepwise fashion, the
implementation is made easier, and there is always some basic ianguage ‘
and compiler to work with.

On the other hand, it does require more effort and knowledge than any
of the other approaches to get a compiler up and running. How much effort,
however, is the crucial point. Our experience with the SIMPL family seems
to demonstrate that this approach can be accomplished with less effort
than might be expected if the base language and compiler are properly
defined.

vThe basic idea behind this core approach is the bootstrapping of each
of the languages and compilers in the family. The essence of this bootstrap
'process is now described. Let SIMPL-A and SIMPL-B represent any two lan-
guages in the family such that SIMPL—B is to be an extension’of SIMPL-A.

- The new language SIMPL-B is then defined as:

V.R. Basili 57

SIMPL-B = SIMPL-A U {new features}

so that SIMPL-A is just a subset of‘SIMPL-B. The SIMPL-B compiler is then
built out of the SIMPL-A compiler (which is assumed to be written in
SIMPL-A) using a bootstrapping technique which tries to minimize the
amount of old code changed versus the amount of new code added. We will
~ distinguish between two different types of extemsions to the‘SIMPL-A
compiler--those which are modifications to the code as it exists in the
SIMPL-A compiler and those which involve the writing of new independent
| modules necessary to suﬁport the.new features of the extended language.
In general, attempts were made both in the original compiler design and
in the style in which the extensions were done td force the majority of
the work to be done in the form of writing independent modules or modi-
fying code, where necessary, in as small and as well-defined a number of
existing modules as possible.

The bootstrap -process may have two goals: to build a SIMPL-B compiler
written in SIMPL-A or written in SIMPL-B. The steps for both of these
'goals are represented in Figufe 1--the first two steps yielding a compiler
fbr SIMPL-B written in SIMPL-A, steps 3 to 5 taking that compiler and
generating a compiler written in SIMPL-B. '

Before discussing thé actual bootsfrap prdcess, a brief explanation of

the notation in Figure 1 will be given.
P
L

denotes the source version of program P written in language L and

58 V.R. Basili

P
L

denotes the executable form of P/L» for some machine. C(L) répresents
- the compiler for language L ; P/L mod X represents the modification or
updating of a program P/L by some set of fixes or rewrites X to

P/L written in L ; X U Y represents the union of programs X and Y
into one system; and X - Y represents the running of< program X through
-program Y .

The general procedure ‘then consists of first updating the SIMPL—A}
co'mpile: to accept the SIMPL-B language. This process usually consists of
writing a set of new program segments to handle the new features of B
‘and then modifying the old compiler so that it recognizes these new features -
by poésibly adding some extra cases to a case statement, some words to a
table, and/or some flags to a descriptor. Step 2 involves the running of
this new SIMPL-B compiler written in SIMPL-A through the ‘SIMPL—A compiler
| producing an executable SIMPL-B compiler. The process stops here if the
goal was a compiler for SIMPL-B written in SIMPL-A.

| If, howeVei', the goal was a compiler for SIMPL-B written in SIMPL-B,
Step 3 calls for a rewrite of the SIMPL-B ¢ompiler in SIMPL-B. This rewrite
involves taking those new features of SIMPL-B which would make the compiler
work more effectively, eaSier to read, write or extend, more transportable
or efficient .and using them to rewrite the appropriate modules of the com-
piler. Step 4 calls for running the new ¢onq)ilér through the old one
producing an executable SIMPL-B compiler written in SIMPL-B. Step 5 calls

for the running of the new compiler through itself which would generate a

(C(?MEI:AA) nod {

C(SIMPL-B)

SIMPL-A

C(SIMPL-B)
SIMPL-A

C(SIMPL-B)
STMPL-B

C(SIMPL-B)
L_E_snwp - -

V.R, Basili

B-fix B-routines
STWL-A SIWPLA
C(SIMPL-A C(SIMPL-B)
TMPL-A STMPL-A
B-rewrite _ C(SIMPL-B)
SIWL-E - SIWLE
C(SIMPL-B C(SIMPL-B)
TMPL-A

SIMPL-B

C(SIMPL-B)
IMPL-B

C(SIMPL-B)
~SIMPL-

FiEre 1

The bootstrapping of a compiler for SIMPL-B
from a compiler for SIMPL-A

59

_ C(SIMPL-B)

SIMPL-A

better version of the compiler if the rewrites from Step 3 were of any

benefit in the compiling of SIMPL-B programs.

It is not always of any value to have a SIMPL-B compiler written in

SIMPL-B,

Two places where it might be of benefit are if writing the SIMPL-B

compiler in SIMPL-A required the use of some assembly code to access machine

features not otherwise accessible (e.g., writing the SIMPL-R compiler in

60 V.R. Basili

*

SIMPL-T requires some assembly code to access the floating point hard-
ware) or there are features in SIMPL-B which enhance the compiler writing
(e.g., writing the SIMPL-T'compiler in SIMPL-T permits the use of strings).
It is worth noting that Steps 1 and 2 and Steps 3 to 5 may be per-
formed iteratively, making‘small numbers of modifications at a time to help
with the ease gf_writing future modifications. The drawback to this itera-
tive.proceés is that reproducing the generation of the SIMPL-B compiler:
from the SIMPL-A compiler becomes a more complex step. This complexity can
be a seribus drawback in transporting the family of languages onto another
“machine. |

III. Core of fhe Languages and Compilers'

There are certain'aspects of all fhe 1énguages and éompilérs in thev
SIMPL family that are consistent. This section discusses these common fea-
tures and their motivation. It contains'essentially the definition of the
first member of the family SIMPL-X and the second member of the family SIMPL-T.
(An example SIMPL-X and SIMPL-T program may be found in the Appendix.)

The major motivation behind the design of the language SIMPL-X Was
that it was to. be used as the base language for the family of SIMPL lan-
guages. Therefore the goals set for this language were fivefold. It
should be as simple as possible since the features of the'language,would
be common to all the members of the family. It should be designed within
~ some generalized framework so that it can be easily extended. Like all
languages it should be well-definéd and consistent in the specification of
~ its syntax and semantics. It should contain facilities for writing com-
pilers since its compiler and that of its extensions would be written in

itself. Lastly, it should be reasonably . transportable so that programs

V.R. Basili 61

written in it and its extensions, including their compilers, can be moved

to a variety of machines with minimal effort.

The three major design criteria for the compiler are its extensibility,

its'transportability, and its ability to produce relatively good object

code. Extensibility is important in order to be able to build new compilers

out of the present one for the various extensions of the languages. The

'design needs to be transportable so that all the languages and their com-

'pilers could be moved onto a variety of machines. Since the compilers for

-each member of the family are either self-compilers or written in the base

language, the compilers need to generate fairly good object code.

To
1)

2)

3)

4)

5)
6)

7)
8)

these ends, the salient 1anguage‘features of SIMPL-X are

Every program consists of a sequence of procedures which can access
a set of global variables, parameters, or local variables. ’

The statements are the assignment, if-then-else, while, case, call,
exit and return statements. There are compound statements in the
language, but there is no block structure. :

There is easy commmication between separately compiled programs by
means of external references and entry points. '

There is an integer-type variable. Associated with this variable is
an extensive set of operations which include arithmetic, relational,
logical, shift, bit and partword operations.

There is a one-dimensional array data structure.

Procedures and functions may be recursive. Only scalars and struc-
tures may be passed as parameters. Scalars are passed by value or

‘reference and structures are passed by reference.

There is a simple‘set of read and write stream I/0 commands.

The syntax and semantics of the language are relatively simple, con-

sistent, and uncluttered.

B2 V.R. Basili

An overriding philosophy behind the design of the entire family was
to keep the languages as simple as possible, thus the motivation for the
name. The idea was to begin with a minimal, skeletal design and add the
features for each new language at later stages in the development, only
after these features couldvbe studied, modeled, tested out, discussed with
members of the commmity (in this case the members of the Computer Science
Department'of the University of Maryland), and deemed appropriate for the
particular application the language was to address. |

In keeping with this philosophy, it was decided that the syntax and
semantics of the languages should be as uncluttered and consistent as-
possible. Synfactically this took the guise of eliminating syntactic re-
dundancy and using consistent formafs for similar types of features.
Semantically, an attempt was made at minimizing the number of default
options, forbidding special cases and keeping a consistent philosophy about
the interpretation of similar laxlguage features.

Only the integer data type was included in the base language, SIMPL-X.
In order to make the language powerful enough to write its compiler, how-
ever, an extensive set Qf operators were piaced in the language. These
included ariﬂxmetic (+, = % /), relational (=, #, =, <, :,_->), 1ogica1v
(;a_ni, or, not), bit (bitand, bitér, bitexclusive or bitcoinplement),_ shift -
(left and right) ,‘ and partword operators. |

The only data structure in the base language is the one-dimensional
array. |

Because this was the core design for the family, an attempt was made

to keep the number of language features to the bare minimum without limiting

V.R. Basili 63

the power of the language. Several common language features were either
eliminated from consideration or simplified. There is no block structure
at this base level although there are compound statements. The language
is procedure oriented and a progfam is composed of a set of segments
(procedures or functions) which may access any of a set of globals, locals
Or parameters. All segments must be declared globally in a program, i.e.,
' ~a procedure or function may not Be declared within another procedure or
function. However, any segment orvdata item may be labeled as an entry
point and any program may contain references to externally declared seg-
ments and data. The calling conventions are also minimal with only-sca—
lars (by value or reference) and structures (by reference) pasSable as
parameters; segments may not be péssed as parameters. All these base
restrictions make the runtime environment simple from the user's and
‘compiler's pointkof view.

" The requirement that each of these languages and their compilers
would be extended also contributed to the motivation for simplicity. Each -
of the compilers would require modifications and partial rewrites in order
fo Create a new compiler for the next language on the tree. Therefore
everything must be done in the désign to support the writing of correct
and readable code and to allow for modlfylng parts of the compiler without
affecting other parts. To this end, SIMPL-X was designed for writing
programs that confbrm to the standards of structured programming and mod-
ular design. Thus, the statement structure consists of a minimal set of
standard structured control statements. There are no goto's in the lan-

guage but there are controlled exits from loops.

64 V.R. Basili

To help insure the ease of extension to the language, general opera-
tional semantic models of the base language were defined in VDL [19] and
HGL [20]. A basic scheme for language design was broken into seven ex-
tensible categories: a set of data types, a set of operations on those
types, a set of data structures, a set of control structures and consis-
tent, modular and well-defined syntax, semantics and translation scheme.
An’attempt ﬁas made to define clean, efficient interfaces between each of
the categories and the subelements within them. For example, several
global deéisions, such as the enforcement of strong typing, were made.
The base language features were then designed within this overall struc-
ture. This pefmitted a kind of top-down view of the semantics of the
- languages even though the family was built in a bottom—up‘way;'

Because of the need to write compilers in the language, several special'
features were included, such as the‘ability to read and write files and
a set of high-level primitives for generating object code. These, together
with the features given earlier, make the language quite effective in
writing compilers. |

Another important motivation was to make the languages and their
compilers as transportable as possible. It was felt that the ability to
writé transportable software and move the family of languages onto_other
machines was well worth whatever effort was expended in its behalf. The
 standard conflicts between efficiency and machine independence arose,
however, and a variety of decisioﬁs were made in order to achieve a rea-
~ sonable balance. Since SIMPL-X is typeless (only integer'daté type), the

language is word-size dependent. This problem becomes especially acute

V.R. Basili 65

when text manipulation applications are involved, such as the writing of
a compiler, and the various computers store a different mumber of charac-
ters per word. This problem can be minimized if character strings are
introduced into the language. There are also several operators, such as
the bit, partword, and shift operators, which are highly word-size depen-
dent and therefore not machine independent. These operators were put in
for efficiency,-and their bad effect can be minimized if they are sparingly
“and carefully used.

It was primarily the problems of transportability that led to the
design of the first extension to SIMPL-X, SIMPL-T, and allowed us a first
test of the eXtensibility of the base language and compiler.

The salient language features of SIMPL-T are '

1) A1l the features of SIMPL-X.

2) String and character data types; Strings are of variable length
with a declared maximum. The range of characters is the full set »
of ASCII characters. : ’

3) A set of string operators which include concatenation, the sub-
string operator, an operator to find an occurrence of a substring
of a string, and the relational operators defined on the lexico-
graphical ordering.

4) There is a character case statement.

- 5) Strong typing is imposed and there are intrinsic functions that
convert between data types.

6) For each.data'type, the only data structures are arrays.
| 7) There is the facility for interfacing with other languages.
The inclusion of strings and characters data types in SIMPL-T permits
the writing of transportable text manipulation programs. Thus, transport-

able software can be written in SIMPL-T, though it need not be.

66 V.R. Basili

As stated earlier, the core compiler design is motivated by the goals
of extensibility, transportability and generating efficient code. It
consists of three separate passes and a set of symbol table routines.
Pass 1 is basically a high-powered scanner which reads source text,
outputs a token file and bﬁilds the symbol table. The symbol table is
always referenced through a set of symbol table routines. Pass 2 is the
parser. It handles a reduced grammar since the declarations were already
processed by Pass 1. The parser is syntax-directed, and it outputs a file
of high—lével quadruples (quads). The third pass is the code genérator

which processes the quad file and outputs an object module.

OED W

Source
text —3 PASS1

Symbol Table
Routines
Ii , object module

Symbol
Tables

v‘The extensibility Qf the compiler is achieved primarily through the
modular and Structured design of the compiler which minimizes the problems
of modification by requiring that changes be made in a small and well-defined
number of places; In particular, the scanner is essentially modularvenough
that‘most‘extensions can easily be made by adding new cases or modifying old
cases of the relevant case stateménts. New keywords or operators can simply
be added to the appropriate tables and new tokens can be generated. Symbol

table descriptors have several emptY'bits that can be used as needed for

V.R. Basili 67

the extensions.

The parser is syntax-directed and can handle a variety of different
parsing schemes in a hierarchical fashion. The grammar can be parti-
tioned into subgrammars in which the start symbol of one subgrammar is a
terminal symbol in one of more of the others. In the compiler for SIMPL-X
there are two major such modules. ri‘he top module uses a sort.of SLR(1)
'tharactefistic state diagram, encoded as a case statement, which parses
everything down to the statement lével, excluding such things as expressions
-and argdnent lists. A second module uses an operatof precedence scheme to |
parse expressions. In the top module expressions are essentially handled
asi terminal éymbols which effect a class on the expression handler. There .
is also a separate modulei for argument lists.

The quads output by the parser are high level and yet general enough |
to permit the addition of several new control structures without introducing
new quads and thus without effecting the code generator at all.

For example, the quads generated for a while statement of the form:

‘ while <expi'es$ion> do <statementlist> end |
take the fqrm:
while
quads for the <expression>
whiletest ' '
quads for the <statement lists
endwhile
Now assume that we wish to extend the language tc include a for statement of
the fozirn: |

for <var> := <expr>; to <expr>, by <expr>g do <statement list> end

Then the compiler may be extended by including the following changes. The -

68 V.R. Basili

scanner needs to accept the _ﬁg}‘_ symbol as a reserved word. This is accom-
plished by adding for to the symbol table as a reserved word. The parser
must be made to recognize the for symbol and take a new action. This
involves adding a new set of independent states to the characteristic state
diagram which in practice émomlts to adding a set of cases to the relevant
case statemenf in order to generate the appropriate set of quads, which in
this case might define the semantics of the for statement as follows:

quads for <expr>

quads for <expr>

quads for <exXpr>7

quad for <var> := <eXpr>4

while

quads for the expression <vars = <expr>z
whiletest

quads for <statement list>

* quad for <vars := <var> + <expr>,
endwhile

% % X %

The marked quads distinguish those that must be generated in addition to
the standard while statement quads. These use only standard quad operators
already défined. In this case the code generator need not be touched.

It should be noted that this particular form of extension to the lan-
guage does not necessarily take.advantage- of the better code that can be
génerated for a for statement. To do that, new for quads can be defined
ahd a fix can be made to the code generator to process the for statement
more efficiently. » | |

Suppose on the other hand, a new data type is being added to the lan-
guage. This lower-level extension would require the addition of some new
quads and various modifications to the code generator. A look at the cost

of adding a new data type is given in the next section when the addition

of reals (SIMPL-R) to SIMPL-T is discussed.

V.R. Basili 69

The goal of transportability for the compiler is also supported by

its modular and structureéd design. To transport the compiler onto a new
machine essentially requires the ‘rewritting of the code generator along
w1th the appropriate set of system library routines. The quads are very high
level and machine independent and therefore transcend the specific idio-
syncracies of any particular instruction set. Thus, if one neglects for
the momeﬁt the problem of word size,‘everything up to code generation is at
least theoretically machine independent. -In fact, the basic top-down design»
~for the existing code generator is modular enough that for a large mumber
of machine architectures, many of the code generation routines may be used
and only the appropriate set of actual instruction generatlon and reglster
allocation routines need be rewritten for the new machlne

- The main problem with transportability arises when it comes to word
size. This problem can be minimized‘by USing‘variable length character
strings to represent textual data, letting all bit strings of information
-be packaged into ﬁultiplesbof some ''transportable' word size (16 bits in
this case) and using machine dependent operators sparingly and carefully.
The last two techniques were used in the SIMPL-X compiler; all three were
uséd in the SIMPL-T compiler. It is the SIMPL-T compiler which achieves
the high level Qf transportability required by the systém, and is,being '
used as the base language which is presently being transported onto a
CDC>6600 and an IBM 360. The SIMPL-X compiler is less transportable when
being moved onto a machine which stores a different number of characters
per word. There would be similar types of problems to transporting FORTRAN

programs which do text manipulation. However, it is worth noting that the

70 V.R. Basili

SIMPL-X compiler was transported to a PDP-10 (which has the same word size
as the UNIVAC 1108) even though the resulting compiler was rather unortho-
dox since it used UNIVAC 1108 character encoding for its own internal charac-
ter definition. |

The éonq)iler for SIMPL-X was written in SIMPL-X. In order to get this
first compiler in the family running, an initial bootstrap process was
dévised which involved the writing of a SIMPL-X-to-FORTRAN translator in
SNOBOL4. This pa_rticular bootstrap process is outlined in Figure 2, where
T(L1 to L,) denotes a program to translate from language L, to language
L2 . The SIMPL-X compiler written in SIMPL-X was then run through this
translator producing a SIMPL-X compiler wﬁtten in FORTRAN. The SIMPL-X
. compiler written in SIMPL-X is then run through the execﬁta'blé'form of
SIMPL-X compiler written in FORTRAN producing an executable SIMPL-X compiler
written in SIMPL-X. The motivation for this particular form of bootstrap as

well as further details of its implementation and use can be found in [21].‘

1 C(SIMPL-X) _ |T(SIMPL-X to FORTRAN) | _ C(SIMPL-X)
) TSIMPL-X SNOBOLA “FORTRAN
2) C(SIMPL-) | | C(FORTRAN) | _ | C(SIMPL-X)
"FORIRAN ? “FORTRAN
- C(SIMPL-X) C(SIMPL-X _ | C(SIMPL-X
3 Smerx - “CoRmo | - X

The Initial Bootstrap

Figure 2

V.R. Basili 71

The SIMPL-T compiler was bootstrapped from SIMPL-X using the basic
process outlined in Figure 1. Although the basic overall SIMPL-X compiler
design was kept the same, some redesign was done at lower levels of the |
design so that this new compiler would benefit from the experiencé we
gained in writing the trénsportable, extendable compiler for SIMPL-X.
Because of fhis partial redesign effort, the SIMPL-T compiler is not a
- good example of the effort involved in bootstrapping a new compiler. A
better view of this process might be gained from analyzing the extension
- of SIMPL—T to SIMPL-R which is discussed in the next section.

Because SIMPL-T and the SIMPL-T compiler would be the transportable
base 1anguagé and compiler for the family, the SIMPL-X-to-FORTRAN translator .
was modified tozislMPL-T—to-FORTRAN franslator. This Suppliéd a transporfable
bootstrap for the family of languages.

The goal of producing relatively good object code is accomplishable on
two levels--through an optimizer and through.an efficient code generator.

The separation of passes two and three of the compiler and the high-level ’
nature of the quads permit the inclusion of a separate, transportable code
optimization pass on the quads._ Since the code generator is not transport-
‘able, the &evelopment_of a generator for efficient code depends on the
pafticular implementation. The code generator for the UNIVAC 1108 is
organized in a.top-down manner which permits a large amount of optimization

of code and does generate fairly efficient code itself.

72 V.R. Basili

IV. Members of the SIMPL Family

Each new language in the family is designed as an extension to the base
languages, SIMPL-X or SIMPL-T. The compiler for each new member of the fam-
ily is an extension to the compiler of another member of the family. The
tree structure representation of the family is given in Figure 3. Essen-
tially the robt of each subtree is a subset of the languages representing
nodes on that subtree. Thus, SIMPL-T is an extension to SIMPL-X; SIMPL-R

and SIMPL-D are extensions to SIMPL-T, etc. ‘
SIMPL-G GRAAL) | Pattern Recognition Language
SIMPL-RD AT language SIMPL-S
STNPL-R SIMPL.-'D‘ |
SIMPL-XI ~ SIMPL-T
SIMPL-X
SIMPL Family
Figure 3

We will now give a brief overview of: the languages and compilers in the
family other than SIMPL-X and SIMPL-T. | |
SIMPL-R |

SIMPL-R was developed in order to handle standard mathematical-type
problems» of the type handled. by FORTR_AN.. It is essentially an extension to
SIMPL-T which includes the real data type. Along with real constants and

V.R. Basili 73

variables it incorporates several new operators into the language including
the real arithmetic operators (+, -, *, /, **), the relationals on reals,
and some special operators such as absolute value, sign, etc.

~ The strong typing of SIMPL-T was carried into SIMPL-R but intégers were
considered to be a subset of the reals and an integer coerces to real when
‘in a binary operation with a real operand. Av complete library of special
'ftmctions', sin, cos, etc., was also included. Reals like all other data
types may be stored in typed arrays. ,

Thé SIMPL-R compiler was bootstrapped from SIMPL-T using Steps 1 and 2 |
for the} process defined in Figure 1. This yielded a SIMPL-R compiler written
in SIMPL-T. Some detail of the modifications required and the time involved
in vcompleting the process will nowv be given because it 1s felt that thev
results are interesting.

Basically, the changes made to the SIMPL-T compiler can be summarized
as follows:

The symbol table was modified (mod) by adding to it several new key-
words and intrinsic names and some new flags were set in existing fields.

A new hash procedure for real constants was added to the set of symbol
table routihes V. _

| Pass 1 was modified by including the recognition of special dof opera-
fors, such as ABS ‘for absolute value, and the exponential operaﬁor *® ;
the modification of the constant scanner to recognize real constants; and an
assortment of special cases. Most of the modifications involved a fix (mod)

and the addition (U) of some new routines to handle the new case.

74 V.R. Basili

Pass 2 modifications involved mainly the expression parser although
some modification had to be made to the procedure call parser because
of coercion of integer to real.

Pass 3 contains eight separately compiled modules and changes had to
be made in fbuf. In one it amounted to the changing of a flag. In another
it required allocating core for reals, which involved almost duplicating an
already existing'routine. In yet another it involved a fix to some utility
routines to cover reals. The only majof modification was in the actual
code genefator for expressions which involved modifying the old +, -, *, /
- procs to handle the joint operations of integer and real and adding new
procs for the hew operators. ‘ | |

The actual construction of the SIMPL-R compiler was perfofmed by some-
one who was not in anyway involved in the SIMPL family project. until that |
point. He worked between half and fu11-time on the project for three months
and at the end of that time had a working SIMPL-R compiler written in
SIMPL-T (plus about 150 lines of assembly code which was used for turning
string representations of real constants into real constants, doing constant
fblding, etc., since SIMPL-T has no facilities for handling reals). The
fix-up of the symbol table and Pass 1 took about six weeks. This included
the time required to become familiar with the language and the compiler.
There was no documentation for the compiler other than a well-commented
- listing of the compiler itself. The modification of Pass 2 took about two
weeks and Pass 3 and the library fook about five weeks. It is worth noting
that the implementor was a good programmer but was not very well-versed

with the 1108 system or assembly code which also slowed him down.

V.R. Basili 75

It is not clear whether all extensions will go this well. Certainly
the similarity between real and integer data types was of some advantage.
However, it is felt that the ease with which the implementor was able to
step into the project and find the right places to make the changeé and
add'the.routines support the view that a Compiler can be designed to be
easily extended.
SIMPL-XT

The motivation for SIMPL-XI was to develop a high-level language that

~would do efficient systems programming on the PDP-11. Since it was decided‘
that an escape to assembly language or calls to assembly language routines
should be diécouraged, éxtensions‘ﬁere,mAde to SIMPL-X which enabled the
programmer to have access to the full capabilities of the hafdware of the
- machine. Extended facilities for managing the hardware include the ability
to address real memory, control I/O devices, process interrupts, issue
'superviSOr call instructions, alter the state vector of thebmachine and

control the virtual memory. _
} The SIMPL-XI compiler runs on the UNIVAC 1106 and 1108 computérs. The
development of the SIMPL-XI compiler from the SIMPL-X compiler proceeded as
fbllows. Pass 3 (the code generator) of the SIMPL-X compiler was rewritten
to produce a chss-compiler that executés on the UNIVACvmachines_and pro-
duces code for the PDP-11. This generated a SIMPL-X cross-compiler for the
PDP-11. Then this SIMPL-X cross-compiler was modified as described in Fi-
gure 1, Steps 1 and Z, to generéte a SIMPL-XI cross-compiler written in

SIMPL-X.

76 V.R. Basili

This cross-compiler was not bootstrapped to the PDP-11 because the
machinevonly had 8K of memory. However, further development of the PDP-11
system includes another 16K of memory and a disk which should allow enough
storage to bootstrap SIMPL-XI onto the PDP-11. The present plan is to
redevelop:SIMPL-XI as an eXtension to SIMPL-T and the SIMPL-T compiler to
take advantage of the string and charécter processing as well as the more
transportable and extendable features of the SIMPL-T compiler.

This completes the list of languagés which are presently fully
defined aﬁd whose compilers are currently working. We will now discuss

briefly those languages which are currently under development or in the
planning stageé. |
- SIMPL-D

All the presently defined and implemented languages in the family are
thus far limited with respect to dafa structures, supporting only arrays.
Because most of the languages that are to be defined will require more
data structuring facilities, SIMPL-D is being designed and implemented
both as a test language and as a.coi; design for the data structuring
facilities that will be placed in the other languages. The present design
includes the (1) definition of records, which are defined as data struc-
tures whose subeiements are any of the data types, arrays, or other records;
(2) the inclusion of a data definitional facility so that new data struc-
~ tures, their accessing mechanisms and operators may be defined by the user;.
(3) some storage allocation and>déallocation primitives; and (4) some

restricted form of pointer variables.

V.R. Basili 77

These data structuring facilities will either be used explicitly in
several of the succeeding languages or expanded to meet their particular
needs and probably used in the building of their compilers.

The compiler for SIMPL-D is being built as an extension to the SIMPL-T
compiler. |
SIMPL-RD

The motivation for SIMPL-RD is to develop a transportable 1anguage
for dealing with large-scale numerlcal applications problems that support

. the relatlvely machine-independent compactification of data storage. The
language would essentially combine all the features of SIMPL-R and SIMPL-D
and the compller would basically be the union of the compllers for SIMPL-R -
and SIMPL-D.

SIMPL-G _

SIMPL-G will be a graph algofithmic'langﬁage for describing and imple-
menting graph algorithms of the type primarily arising in applications. It
will be the redesign of the GRAAL language By redefining it as an extensioni
to SIMPL-RD and adding several new features not available in the pfesent
definition of GRAAL [4]. The language will be built on a set-theoretic ,
model of gréph theory which allows for considerable flexibility in the
seléction of the storage representation for different graph structures. A
hlgh-level design of the set and graph aspects of GRAAL as they will appear
in SIMPL- G may be found in [22]

SIMPL-S
SIMPL-S is being proposed as an extension to SIMPL-D to serve as a

high-level systems programming language. As with SIMPL-XI, its goals will

78 V.R. Basili

be to encourage the use of a high-level language for systems programming

by giving the user access to the capabilities of the hardware in a machine-
independent manner. The data structure definitional facility at the lower
level will be used to help define efficient, machine-dependent data struc-
tures beneath the high-level algorithms. It will include the expansion

of several of‘the‘ facilities in SIMPL-D, including such features as an
address opérator which returns the address of a variable and an indirection
operator.

The designs of the artificial intelligence language and pattern recog-

‘nition language have not yet been proposed.- However, they will probably be
defined as extensions to SIMPL-D and SIMPL—RD, respectively.

~ In addition to the languages themselves, supporting software is
being designed and implemented to facilitate the transportability, extend-
ability, efficiency, and effectiveness of the SIMPL family.

A macro preprocessor has been defined and implemented [23]. - The major
benefits of this preprocessor are that it aids in the development of
machine-independent compilers and programs and allows for experimentation
with operators and structurés before they are actually implemented in the
language. The macro preprocessor permits simple string substitution,
compile time variables, macro definitions with several parameters, ‘and
compile time assignment, "if', "while'", and ''call" statements. The macro

‘ prepfoceSs‘or is written in SIMPL-X; it is being rewritten in SIMPL-T.
A machine-independent optimiier [24] has been written in SIMPL-X

~ which handles many of the rudimentary optimizations on the intermediate

V.R. Basili 79

code (quadruples). A new, more ambitious, machine-independent optimizer
is being planned that will handle the optimization of procedure calls and
global variables.

As mgntioned earlier, two béotstraps were written. The original
bootstrap for SIMPL-X was used to get the base compiler running on the
UNIVAC 1108. A second transportable SIMPL-T bootsfrap has been written
and is being used to transport SIMPL-T onto a CDC 6600 and an IBM 360..

An automatic documentor-indentor is being implemented similar to the
.one suggésted in.[25]. The idea is to use the phrase structure of a pro-
gram tovdefihe the structure of a formal documentation for that program.
This syntax directed documentor would greatly enhance the ease of docu-

mentation and undérstanding of programs written in SIMPL—T.

- V. Conclusion
The primary goals for the SIMPL family were that the languages
shquld be simple, well-defined, easy to extend, transportable, and capable
of writing compilers. The goals for the compilers were that they be ex-
tendable, transportable, and génerate relatively efficient code. It is
difficult to quantify our success or failure in achieving these goals.
‘Some comments regarding the project are worth making.
Anyone knowing any programmlng language can be taught SIMPL in one or
two hours.
A good deal of time was spent modeling the various features using
operational semantic models_[19;20]. It is felt that this mbdeling was of

great benefit invcontribﬁting to the simplicity and consistency of the

80 V.R. Basili

semantic design. It provided a top-down view of the semantic design of the
family that made the bottom-up construction easier since there was a good
general framework laid out for the extensions. However, certain aspects

of the syntactic design have been much more difficult to organize in this
way, and there>is some fear of problems in this area, such as not reserving
the proper symbols for use in later extensions, etc.

Both SIMPL-X and SIMPL-T have been used quite widely in all aspects of
the computer science cﬁrriculum at the University of Maryland at College
. Park. This includes its adoptiqn in introductory courses on programming to
undergraduate and graduate courses on programming languages, data struc-
tures, compilef writing, systems, certifiéation of programs, and semantic
~ modeling. It is also being used in.the curriculum at the University of
Maryland at Catonsville. Responses from students on questionnéires have
been quite favorable. |

SIMPL-T is being used by the Defense Systems Division, Software Engineer-
ing Program Transference Group at Sperry Rand as the language for building
their translator system.

Extensions to languages in the family have been straightforward due :
to the simplicity and consistency of the basic design. The evidence concern-
ing extensions to the compiler both for SIMPL-R and what appears to be in-
volved for SIMPL;D is quite reassuring.

The'goal of transportability of the languages and the compilers is
still to be tested. The only SIMPL compiler currently generating code for
another machine is the SIMPL-XI cross-compiler, but this is not a real test

of transportability. Efforts, however, are underway to transport SIMPL-T

V.R. Basili 81

onto an IBM 360 and a CDC 6600.

With respect to the generation of efficient code, several large
programs which were written in FORTRAN V for the UNIVAC 1108 and con-
sidered to execute quite efficiéntly were hand-translated into SIMPL-R.
When both sets of progréms were run on some randomly-generéted sets of
data, the ﬁﬁbptimized SIMPL-R programs actually executed about ten per-

- cent faster than the optimized FORTRAN V programs.

One test of the reliability of fhe software was demonstrated by a
bug cohtest thét was organized for the SIMPL-T compiler. In order to
facilitiate the debugging of the compiler, the compiler was released early |
and prizes were awarded for bugs fbund{ Only a handful of bugs were found.

There are several people whé were involved in thé‘SIMPL family proje;t
whose work has not already been acknowledged. Albert J. Turner, who did
- all of the programming of the compilers‘for SIMPL-X and SIMPL-T and was

involved in most of the design efforts; John McHugh, who extended the
SIMPL-T compiler to SIMPL- R; J. Michael Kamrad and A. Bruce Carmichael,
who programmed the SIMPL-X and SIMPL-T bootstraps, respectively; Hans
lBreltenlohner who wrote the execution time monitor and provided assistance
-in trying to 1nterface to the 1108; and C. W. Barth who is programmlng the

automatlc 1ndentor documentor.

82 V.R. Basili

Appendix
Example: SIMPL-X Program

PROC SORT (INT N, INT ARRAY A)

/*\THIS PROCEDURE USES A BUBBLE SORT ALGORITHM TO SORT THE
ELEMENTS OF ARRAY 'A' INTO ASCENDING ORDER. THE VALUE

OF THE PARAMETER 'N' IS THE NUMBER OF ITEMS TO BE SORTED.

INT SORTED, /% SWITCH TO INDICATE WHETHER FINISHED */
LAST, /* LAST ELEMENT THAT NEEDS TO BE CHECKED */
I, /* FOR GOING THROUGH ARRAY */
SAVE /* FOR»HOLDING_VALUES TEMPORARILY */

IF N>1
THEN /* SORT NLFDED */
SORTED := 0 /* INDICATE NOT FINISHED #/
LAST := N-1 /* START WITH WHOLE ARRAY */

WHILE .NOT. SORTED
DO /* CHECK CURRENT SEQUENCE FOR CORRECTNESS */
SORTED := 1 /* ASSUME FINISHED */ _
I:=1 /* INITIALIZE ELEMENT POINTER */

WHILE I <= LAST
DO /* COMPARE ADJACENT ELEMENTS UP TO 'LAST' */
IF A(I-1) > A(T)
THEN /#* OUT OF ORDER */

SAVE := A(I) /% INTERCHANGE */
CA(I) = A(I-1) /% A(I) AND */
A(I-1) := SAVE /% A(I-1) %/
SORTED := 0 /* MAY NOT BE FINISHED */
END
I := I+1.

END /* LOOP FOR COMPARING ADJACENT ELEMENTS */
/* A(LAST),..., A(N-1) ARE NOW OK */
LAST := LAST -1 ”
END %/ LOOP FOR CHECKING CURRENT SEQUENCE */
END /* IF N>1 */

~/* END PROC 'SORT' #*/

*/

V.R. Basili

Example: SIMPL-T Program

/* THIS PROGRAM REPLACES ALL SUBSTRINGS BETWEEN '/*#' AND '%/' BY
BLANKS */ '

STRING INPUT [80]
INT PTR1, PTR2

PROC REMOVECOMMENTS

WHILE .NOT. EOT
DO
'READ (INPUT)
PTRL := 1 /* INITIALIZE FOR SEARCH */
WHILE PTR1 <> 0
DO /* REMOVE SUBSTRINGS */
PTR1 := MATCH (INPUT, '/*')
IF PIR1 <> O
THEN /* FOUND BEGINNING */
PTR2 := MATCH (INPUT, '*/')
IF PTR2 > PTR1 + 1
THEN /* FOUND END (AFTER BEGINNING) %/

INPUT [PTR1, PTR2 - PTR1 + 2] := '' /* BLANK IT OUT */

END
END
END
WRITE (INPUT, SKIP)
END |

/* END PROC 'REMOVECOMMENTS' */

START REMOVECOMMENTS

83

84 V.R. Basili

References

1. Basili, V. R., SIMPL-X, A language for writing structured programs,
University of Maryland, Computer Science Center, Technical Report
TR-223 (1973), 43 pages.

2. Basili, V. R., and Turner, A. J., SIMPL-T, A structured programming
language, University of Maryland, Computer Science Center, Computer
Note CN-14 (1974), 91 pages.

3. Hamlet, R. G., and Zelkowitz, M. V., SIMPL systems programming in a

~ minicomputer, submitted to IEEE COMPCON '74, Washington, D.C.

4. Rheinboldt, W. C., Basili, V. R., and Mesztenyi, C. K., On a program-
ming language for graph algorithms, BIT 12, 1972, 220-241.

5. McHugh, J., and Basili, V. R., SIMPL-R and its application to large
sparse matrix problems, University of Maryland, Computer Science Center,
Technical Report TR-310 (to appear). '

6. Kanal, Laveen, Interaétive pattern analysis and classification systems:
A survey and commentary, Proceedings, IEEE, Oct. 1972.

7. Schwartz, J., On Programming: An interim report on the SETL project,
New York University, Courant Institute of Mathematical Sciences (1973).

8. Wells, M. B., Elements of Combinatorial Computing, Pergamon Press,
Oxford (1970).

9. Feldman, J. A., et al., Recent developments in SAIL - An ALGOL-based
language for artificial intelligence, Proceedings FJCC, AFIPS Press,
Montvale, N. J., 1193-1202 _(1972).

10. ‘Sussman, G. J., et al., MICRO-PLANNER reference manual, MIT Artificial

- Intelligence Laboratory, Memo No. 57.1 (April 1970).

11. Crespi-Reghizzi, S., and Morpurgo, R., A language for treating graphs,
Comm. ACM, 319-323 (May 1970). _ _

12. Schuman, Stephan (ed.), Proceedings of the International Symposium on
Extensible Languages, SIGPLAN Notes (Dec. 1971).

13. Dahl, O., Myhrhang, B., and Nygaard, K., The SIMILA 67 common base
language, Norwegian Computing Center, Oslo, Publication S-22 (1970).

. 14. Liskov, B., and Zilles, S., Prograrmhing with abstract data types,

Proceedings of a Symposium on Very High Level Languages, SIGPLAN Notices
9, 4 (April 1974).

15,

16.

17.

V.R. Basili 85

Cheatham, T., et al., On the basis for ELF - An extensible language

facility, Proceedings FJCC 33, 2, AFIPS Press, Montvale, N. J. (1968).

Irons, E. T., Experience with an extensible language, CACM, 31-39,
(Jan. 1970). ‘

Feldman, J. A., and Gries, D., Translator writing systems, CACM

~ (Feb. 1968).

18.

19.

. 20,

21.

22,

23,

24,

25.

Scowan, R. C., An application of extensible compilers, Proceedings,
International Symposium on Extensible Languages, SIGPLAN Notices
(Dec. 1971).

Lucas, P., et al., Method and notation for the formal definition of
programming languages, IBM Laboratory, Viemna, TR 25.087 (1968).

Basili, V. R., and Turner, A. J., A hierarchical machine model for
the semantics of programming languages, Proceedings, Symposium on
High Level Language Computer Architecture, ACM (November 1973).

Basiii,v V. R., and Turner, A. J., A transportable extendable compiler,
University of Maryland, Computer Science Center, Technical Report

TR-269 (1973); Software - Practice and Experience, Vol. 5, 269-278 (1975).

Basili, V. R., Sets and Graphs in GRAAL, Proceedings of the ACM, Novenm-
ber 1974, pp. 289-296. »

Verson, J. A., and Noonan, R. E., A high level macro processor, Univer-
sity of Maryland, Computer Science Center, Technical Report TR-297
(1974). ‘

Zelkowitz, M. V., and Bail, W. G., Optimization of structured programs,
Software Practices’ § Experiences 4, 1 (Jan.-March 1974).

Mills, H., Syntax directed documentation for PL/360, CACM 13, 4
(April 1970). '

sonderdaruss aus

Applied Computer Science 1:
Pape, Graphensprachen und
Algorithmen auf Graphen.

Carl Hanser Verlag Minchen Wien

1976

