Chapter 8:
Data Collection, Validation and
Analysis

= @ i w

Victor R. Basili

Department of Computer Science
University of Maryland
College Park, MD 20742

L @ o~

=

Introduction

One of the major problems with doing measurement of the software
development process and the product is the ability to collect reliabie data
that can be used to understand and evaluate the development process
and product and the various modeis and metrics. The data collection
process consists of several phases — establishing the environment in
which the project is being developed, the actual data collection process
itself, the validation of the collection process and the data, and, finally,
the careful analysis and interpretation of that data with respect to
specific models and metrics. We will discuss each of these phases.

3 23 & 3

-

Establishing the Environment

Before we begin collecting data, we must understand the various factors
that affect software development. Data collection should begin with
listing those factors one hopes to control, measure, and understand, In
this way, we may characterize the environment, understand what we are
studying, and be able to isolate the effects. One possible approach is to
create categories of factors.

A partial list of factors is given below, categorized by their association
with the problem, the people, the process, the product, the resources,
and the tools. Some factors may fit in more than one category, but are
listed only once.

People Factors

AR S ¢ T« T NV e Y/ B R« ¢ =

-

These include all the individuals involved in the software development
process, inciuding managers, analysts, designers, programmers, and
librarians. People related factors that can affect the development

144 SOFTWARE METRICS: AN ANALYSIS AND EVALUATION

process include: number of people involved, level of expertise of the
individual members, organization of the group, previous experience with
the problem, previous experience with the methodology, previous
experience with working with other members of the group, ability o
communicate, morale of the individuals, and capability of each
individual.

Problem Factors

The problem is the application or task for which a software system is
being developed. Problem related factors include: type of problem
{(mathematical, database manipulation, etc.), relative newness to state-of-
the-art requirements, magnitude of the problem, susceptibility to change,
new start or modification of an existing system, final product required
(e.g., object code, source, documentation, etc.), state of the problem
definition {e.g., rough requirements vs. formal specification), importance
of the problem, and constraints placed on the solution,

Pracess Factors

The process consists of the particular methodologies, techniques, and
standards used in each arga of the software development. Process
factors include: programming languages, process design language,
specification language, use of librarian, walk-throughs, test plan, code
reading, top down design, top down development (stubs), iterative
enhancement, chief programmer team, Nassi-Shneiderman charts, HIPO
charts, data flow diagrams, reporting mechanisms, structured
programming, and milestones.

Product Factors

The product of a software development effort is the software system
itself. Product factors inciude: deliverables, size in lines of code, words
of memory, stc., efficiency tests, real-time requirements, correctness,
portability, structure of control, in-line documentation, structure of data,
number of modules, size of modules, connectivity of modules, target
machine architecture, and overlay sizes.

Resource Factors

The resources are the nonhuman elements allocated and expanded to
accompfish the software development. Besource factors include: target

@

{y

DATA COLLECTION, VALIDATION AND ANALYSIS 145

N
e machine system, development machine system, development software,
h deadlines, budget, response timas, and turnaround times. (Note there:is
s a relationship between resource and product factors in that the
0 resources define a set of limits within which the product must perform.
h Sometimes these external constraints can be a dominating force on,:‘q}e_
product and sometimes they are only a minor factor, e.g., it is easy to get
the product to perform well within the set of constraints.} B
Tool Factors
: The tools, although also a resource factor, are listed separg;ely
- because of the important impact they have on development. Tools '?ire
e, the various supportive automated aids used during the various phases_' of
the development process. Tool factors include: requirements analyzers,
m system design analyzers, source code analyzers {e.g., FACES), database
ce systems, PDL processors, automatic ~ flowcharters, autom'a_téd
development libraries, implementation languages, analysis facilities,
testing tools, and maintenance {ools.
Collecting the Data
'PS: Once it is clear what the environmental factors are, it is important that
i o what data is needed be carefully considered. The data needed should be
?dé driven by the basic models and metrics that will be used and studied.
e However, since this may not always be known beforehand, especially in d
>PO research environment, we must aiso include a second level set of data
red that involves what we may want to know, model, or.measure. Data
collected in this boftom-up manner can be used to refine and modify the
existing models and metrics and be used to help characterize our
. environment,
© The actual collection process can take four basic formats: reporting
tem . forms, interviews, automatic collection using the computer system, and
rds . automated data analysis routines. The reporting forms are usually filled
355, ~out by the various members of the development team from senior
ata, management to clerical support. The benefit of participants’ filling out
rget the forms is that they can usually give detailed insights into what is really
happening on the project and provide great detail in the data. Questions
on a form can be much more specific than the kind of information one
can collect automatically. On the other hand, automated data collection
dto has the advantage of being more accurate since it is not as subject to

rget

146 SOFTWARE METRICS: AN ANALYSIS AND EVALUATION

human errors. It can also be done without the participants’ being aware
of what specific activities and factors are being studied.

Form development is an art all by itself. First one needs to know what
data is needed. This must be modified by what data the participants
- would be willing and able to answer accurately. One large factor here is
sampling rate, that is, how often can the forms be filled out so that tho
participant is willing to do it and still remembers what it is you want 1o
know. It is important that a certain amount of redundancy be built into
the data collection process so that reliability checks can be made across
the data forms.

Before forms are filled out, the participants should be given a training
course in filling out the forms. They should be supplied with a glossary of
terms, instructions on filling out the forms, and some sample filled ou!
forms. It would also be helpful if the training session covered some of
the models the data collectors had in mind so that the participants had a
better idea of the kind of information that was wanted. One
representative set of forms [1] may look as follows:

A General Project Summary

This form would be used to classify the project and will be used in
conjunction with the other reporting forms to measure the estimated
versus actual development progress. It should be filled out by the project
manager at the beginning of the project, at each major milestone, and at
the end. The final report should accurately describe the system
development life cycle.

A Programmer/Analyst Survey

This form would classify the background of the personnel on each
project. It should be filled out once at the start of the project by all
personnel.

A Component Summary

This form would be used to keep track of the components of a system.
A component is a piece of the system identified by name or common
function (e.g., an entry in a tree chart or baseline diagram for the system
at any point in time, or a shared section of data such as a common
clock). With the information on this form combined with the information

ch
all

am.
0n
lem

not
tion

DATA COLLECTION, VALIDATION AND ANALYSIS 147

on the Component Status Report, the structure and status of the system
and its development can pe monitored. This torm is filled out for each
component at any point in time when a major modification is made. It
should be filled out by the person responsible for that component.

A Component Status Report

This form would be used o keep track of the development of each
component in the system. The form is turned in at the end of each week
and lists the number of hours spent on each component. This form is
filled out by persons working on the project.

A Resource Summary

This form keeps track of the project costs on a weekly basis. 1tis filled
out by the project manager every week of the project duration. It should
correlate closely with the component status report.

A Change Report Form

The change report form is filled out every time the system changes
because of change or error in design, code, specifications, of
requirements. The form identifies the error, its cause and other facets of
the project that are affected.

Computer Program Run Analysis

This form is used to monitor the computer activities used in the project.
An entry is made every time the computer is used by the person initiating

the run.

Interviews are used o validate the accuracy of the forms and to
supplement the information contained on them in areas where: it is
impossible 0 expect reasonably accurate information in a form format.
In the first case, spat check interviews are conducted with individuals
filing out the forms 10 check that they have given correct information as
interpreted by an independent observer. This would inciude agreement
apout such things as the cause of an error or at what point in the
development process the error was caused of detecied.

In the second case, interviews can be held to gather information in
“depth on several management decisions, e.g., why a particular personnel
organization was chosen, or why a particular set of people was picked.

|
!
|
|

148 SOFTWARE METRICS: AN ANALYSIS AND EVALUATION INTAC

These are the kinds of questions that often require discussion rather
than a simple answer on a form. '

The easiest and most accurate way to gather information is through an.
automated system. Throughout the history of the project, more and more
emphasis should be placed on the automatic coliection of data as we
become more aware what data we want to collect, i.e., what data is the
most valuable and what data we can or need to get, etc. More effort is
required in the development or procurement of automatic collection
tools.

The most basic information gathering device is the program
development library. The librarian can automaticalty record data and
alleviate the clerical burden for the manager and the programmers.
Copies of the current state of affairs of the development library can be
periodically archived to preserve the history of the developing product.

A second technique for gathering data automatically is to analyze the
product itself, gathering information about its structure by using a
program analyzer system. What data is gathered depends upon the
particular product metrics.

The above data collected on the project should be stored in a
computerized database, Data analysis routines can be written to collect
derived data from raw data in the database.

The data collection process is clearly iterative. The more we fearn, the :
better informed we are about what other data we need and how better to -

collect it.

Data Validation
After archiving, the next stage is to apply validation technigques to the
encoded data. The first step in the validation process is a review of the
forms as they were handed in by someone connected with the data
collection process to make sure that all the forms have been handed in
and that the appropriate fields have been filled out. The next step is to
enter the data into the database through a program that checks the
validity of the data format and rejects data which is outside of the'
appropriate ranges. For example, this program can assure that all dates
are legal dales and that system component names and programmer
names are valid for the project. The program does this by using a
prestored list of component names and programmer names.

DATA COLLECTION, VALIDATION AND ANALYSIS 149

JATION
rather Ideally, all data in the database should be reviewed by individuals who
‘know what the data should ook like. Clearly, this is expensive and not
h always possible. However, several projects should be reviewed for errors
gh an - . .
more in detail and counts of the number of errors and types of errors kept so

that error bounds can be calculated for the unchecked data. This allows
data to be interpreted with the appropriate care.

Another type of validity check is to examine the consistency of the
database by examining redundant data. This can be done by comparing
similar data from different' sources-to assure the data is reasonably
accurate. For example, if effort data is collected at the budget level
(resource summary data) and at the individual programmer level
(component status data), there should be a reasonable correlation

S as we
is the
fort is
:ction

gram
1 and
- mers.

. an be batween the two total efforts. Another approach is to use cluster
: ict. - analysis to look for patterns of behavior that are indicative of errors in
filling out the forms. For example, if ali the change report forms filled out

e the by a particular programmer fall into-one cluster, it may. imply that there is

ng a

: bias in the data based upon the pdrticular programmer.
1 the : ' '

It is clear that data collection is asserious problem, especially in the
collection of data on large programming projects across many
environments where one set of forms may not be enough to capture what
is happening in each of the environments. Unfortunately, if we are to
compare projects, we do need common data and we need to know how
valid that data is in each case so as not to draw improper conclusions.

in a
- lect

1, the
ter to :
Data Analysis and Result Reporting

‘After the environment has been established, the appropriate data
collected and validated, the process of data analysis can begin. The first
step entails fitting the data to the specific models and metrics and the

) the

if the interpretation of the results. If the data supports the model, then it

data forces our understanding of the software development process and
. adin product. if the data does not support the model, then we must further

is to alyze the model and its application to the data and the data collection

nvironment. It is possible that the data collection environment did not

i the
' the sfy some of the assumptions of the model, explicit or otherwise. We
lates n use this data to refine or refute the model or to gain new insights into

ou software development environment. In any case, the application of
g model to the data often generates more questions than it answers
-and sets the stage for new analysis and new data to be collected.

mer -
1g a

150 SOFTWARE METRICS: AN ANALYSIS AND EVALUATH

The data analysis process can be motivated by the different needs: for
understanding. When linked with various models and metrics, the data.
analysis can be used to evaluate the software development process an
product, to help with software development, and to monitor the stablllt'
and quality of an existing product. The process of coliecting and
analyzing data varies with each area of interest.

Better understanding of the software development process and the
software development product is a critical need. Metrics can help in tha
understanding by allowing us to compare different products and differe
development environments and providing us with insights regarding thel
characteristics. Too often we think of all software as the same. Metlrics
can be used to delineate the various software products anc
environments.

Many metrics have as a major goal the evaluation of the quality of the
process or product in a quality assurance environment. Thus a |l en repor
score on a metric like the number of errors, indicaies somethini rs.as the
desirable about the guality of the process while a high score on the sam o
metric indicates something quite undesirable about the product. Her:
daia can be analyzed after the project is over.

A second use of metrics would be as a tool for development. In this
case, the metric can act as feedback to the developer, letting hirm know.
how the development is progressing. It can be used to predict where th
project is going by estimating future size or cost, or it may tell him hig:
current design is too complicated and unstructured. Metrics should =
certainly be used across the entire life cycle and as early as possible t Silts: of an
facilitate estimation as well as evaluation. MHere data must be anaiyzed in’ nds, not jt
real time and reports generated in a form easily understandable by th ess itself.
software developer. : Thereis ag

A third use of metrics is to monitor the stability and quality of the" - work mu
product through maintenance and enhancement; that is, we can : developed wt
periodically recalculate a set of metrics to see if the product has change development I
character in some way. It can provide a much needed feedback dunngf there is a sing
the maintenance period. If we find over a period of time that more and process. Mo
more control decisions have entered the system, then something may. analysis and | .
have to be done to counteract this change in character, : we must be re '

This last use of metrics is relativistic, requiring only a simple pama!{: 16 Ol't our res
ordering to indicate what is changed. A relative measure is clearly easier- obtained to st
to validate than an absolute measure. The first two uses of metrics —the. wn.l_l gain the ¢

jures could

N . DATA COLLECTION, VALIDATION AND ANALYSIS 151

for
ita
nd
lity
ind

evaluation of the process and product and the tool of development—are
predominantly absolute metrics; that is, there is no basis of comparison
within the same project. You may only compare their values with the
values of the metrics on other projects. The drawback to an absolute
metric is that we need some normalization and calibration factor to tell us
what is good and what is bad. The data analysis environment here is

the somewhere between the two discussed above.

hat
ent
1eir
rics
and

Data collected from any project must be interpreted with great care.
One must know the nature of the project and its development
environment. To use any mode! or metric, one must fully understand its
assumptions as well as its strengths and weaknesses in order to interpret
the results for the particular environment. One must generalize to other
environments very cautiously and with great reserve. One unmeasured

the factor may account for a complete change in effect.

'PW When reporting data, one should report the raw data, the various
g factors as they are understood, and, in the case of experiments, any
ame statistical results independent of interpretation. it is important in

tere eporting results to define the terms used as precisely as possible. There

‘is a large communication problem due to imprecise units of
" measurement. For example, if size is reported in lines of source code,
the measure is dependent upon the language used, whether or not

this

oW

2 the _ comments are counted and the commenting convention, and whether or
a his " not only executable statements are counted. The difference in the
ould - figures could be of the order of two or three to one. Wheneaver the

_results of an analysis are reported, it is important to publish error
- bounds, not just in the fit to the model, but in the actual data collection
process itself.

There is a great deal of work to be done in the data collection process.
More work must be done in defining terms. A variety of models must be
developed which provide us with different viewpoints of the software
development process, and we must not fall into the trap of assuming that
there is a single overall model of software and the software development
process. Most important, because of the nature of experimentational
analysis and the many factors that contribute to software development,
we must be ready to duplicate the studies and experiments of others and
‘report our results in the open literature. ltis only when a wealth of data is
-obtained to support a particular hypotheses that the software community
will gain the confidence to believe in it.

e to
edin ;
y the

if the

can
inged
Juring :
g and
j may:

152 SOFTWARE METRICS: AN ANALYSIS AND EVALUATION -

References

[1] Victor R. Basili, Marvin V. Zelkowitz, Frank E. McGarry, Robert
W. Reiter, Walter F. Truszkowski, David L. Weiss.
The software engineering laboratory.
Technical Report TR-535, May 1977, University of Maryland,
Computer Science Center, College Park, Maryland 20742,

Questiions Asked at the Conference

Lorraine Duvall, HT Research

We're under contract to the Rome Air Development Center to establish
what is called a data and analysis center for software (DACS). One of
our tasks is to establish a software experience data base with the kind of
field data that Bill Curtis discussed. Now we do have in our data base the
data from the NASA Software Engineering Laboratory, and the faiture
interval data from John Musa’s reliability work at Bell Laboratories. In
the last couple of months we have had a really aggressive dats
acquisition program, and from a preliminary look at what kind of data is
really available out there, we could be swamped in six months. Now, the
kinds of data we are dealing with now have been collected as part of a
programming support environment. We have got some conversion data
that has been collected through the Navy. Now my question is, not only
to you but to any of the other members of the panel, if this kind of data
base is available where you may have reports that discuss the collection
of the data and the raw data itself, is this good enough to actually help
you in your research efforts, or do you need more information to really
make this data usable to you?

Vic Basili

What | would need to know if | were to use that data is whether | really
understood what the numbers represented, how good the data was, and
what the error bounds were. That is the only way | would feel secure in
making use of the data. The data we have coilected in the Software
Engineering Laboratory | understand well since | was involved in its
collection. | know what data is accurate, | know what data is missing,
and | know what data is not very reliable. This way, when | test a model
or metric or make a prediction, | understand how to interpret the data;
that is, whether it is the mode! or the data which is in error.

D EVALUATION DATA COLLECTION, VALIDATION AND ANALYSIS 153

t would be very hesitant to use someone else's data unless | had a real
feeling for the coliection and validation process as well as error bounds,

arry, Robert and 1 would expect that someone else would be concerned about using

data collected in the Software Engineering Laboratory at NASA, since
Maryland, they did not have enough feeling on the accuracy bounds. We are trying
nd 20742. to validate the data, but as yet there is not enough Information on error

bounds available. In fact, 1 have a challenge for you. One thing that
DAGCS could do is not just collect the data, but perform error analysis.
For example, they could do redundancy analysis or cluster analysis to
find error patterns in the data. This way, when you report the results you

or to establish” could also report about the consistency and error range of the data base.

ACS). One of
ith the kind of
‘data base the
nd the failure
boratories. In’
gressive datd
kind of data’is:
1ths. Now, the
ad as part of 4
onversion data
ion is, not only
is kind of data:
; the collection
o actually help.
nation to really

Jean Sammet

Let me also respond to that. | believe that one of the standard problems
in attempting to use heterogeneous data bases and data that has come
from several sources is that the same information may be encoded in
.- very. different ways. The definition of terms, as Vic mentioned, is not
. consistent and the kind of data that is collected is irregular. Arg you at
' DACS attempting to do anything to unify that? Are you, for example,
" trying to set up standards for consistency in data collection? |,
. personally, think that's a contribution that your project could make.

Lorraine Duvail

About two years ago we atiempted to define a generic data base, trying
to model the software development process, and realized that this was
no easy task. The approach we're taking now is to work very closely with
the IEEE group to define terms. We're tooking to the IEEE task group for
data collection terminology. However, we do have some data now and
we can’t wait for three years before we make it into one beautiful data
base. So we're approaching it from two different directions. | think that
definition of a generic data base for software experience data is really an
teresting project and if anybody has the money, we'd really love to do

whether | really
» data was, and
d fee! secure in
n the Software
involved in..its

erv Muller

s a statistician, one loves to see data, but | really feel it is-a question of

hat society can afford versus what are the needs of society, and 1 really
k that you ought to know why you want to have the data. In one

ense, you want data for descriptive purposes, because this is how you

154 SOFTWARE METRICS: AN ANALYSIS AND EVALUATION OLLE

get insight, and evolve, but | don't really believe that that's why we w. t-as you
metrics. | believe that we want it because we want to predict futurg: osed tc
events. In answer to the guestion of what kind of data you need, | thi aasons fg
there's some kind of priority ranking based on what the importan - '_eming
questions are that you're trying to find improved, prediction methods . :
don’t know what the priorities are, but | would think that some part of th n Sam
money should be spent on trying to figure out where the real issues are: : i

Amn

] sider a
Vic Basili . (
| agree one hundred percent with what you just said. | have t nount of
understand why | am collecting the data. Although another valid purpos jalect and
of data collection is to understand how we do business, we must still star CAL-lik
with a model, not with data. What is it | want, what is it | want to be able w, if | wr
to understand, or predict, or whatever? : _certair

Wayne Bennett, National Bureau of Standards

Analogous to the efforts that | see here is the computer performang t .cleme
evaluation effort that's been going on for a long time. What they'v tract, |
learned, it seems to me, is that they've collected an inordinate amount gl w whett
data: test data was providing them with data, accounting logs were
providing them with data, and they’ve finally come to the conclusion tha ne Be
they don't know what they’re collecting the data for. They've realized ly.questior
that without a purpose as a touchstone, that there is no reason to throw ‘ nd. result.

out this and keep that. The computer performance evaluation users .cost of
group is now in its sixteenth year and they've just now begun addressi at-they te
these questions. - that the

At the risk of sounding ignorant, | cannot understand, short of ifs ilting to a

impact on programming, what our interest in l[anguages is. | can see, a potheses,
usual, industry and academia passing like ships in the night. There’s'a s-past th
guestion that still remains and ! think it is something that could be: teresting «
explained to those of us that aren't as familiar with some of the reaso at the diff
for data collecting. | would think that cost, either in computér nee you ¢
performance evaluation or-in software metrics, is the bottom line. If doesn’t mak
have a measure of anything and | can't relate it ultimately to cost, pump i believe that
into some simple model that managers will understand, why am | getti at possibil

that measure? i Horces first.

it could be that the most useful thing that the academic environment
could do would be to help decide what those touchstones should be and
formally define them. | guess the question that 'm asking is do you see

'ALUATIO DATA COLLECTION, VALIDATION AND ANALYSIS 155

we want. that as your role? Do you see that as part of what you’re trying to do as
ct future. pposed to simply collecting data? Do you actually want to put forth the
d, asons for data collecting? | would ask this also of Ms. Sammet
mportan oncerning her first slide on high tevel language metrics.
rthods.
art of th ean Sammet
les are fell, 'm not about to repeat the whole talk which I'm sure you would
' onsider a blessing. But let me give you one exampie of the cost
ement. One of the things we don’t know how to do is measure the
have mount of deviation of one language from another. We use the term
purpos lect and we use the term ALGOL-like language or PL/I-like language,
still stal SCAL-like language, but we don’t know what those things mean.
» be abl ow, if | write a contract with somebody to produce me a language that
as certain characteristics, it would be nice to be able to measure
thether the terms of that contract had been fulfilled. In order to do that |
ay need certain measurements with regard to the languages. That's a
rmance: ost element which doesn’t relate to programming but relates to the
. they've. ontract, | asked to have some product created for me and I'd like to
nount: how whether or not it really has been.
gs wer -
sion th yne Bennett)
realize fy.question is whether or not it's not really important to ask what is the
to throw. result. If the gentteman in the back (Capers Jones) is correct and
n users’ e cost of documentation requirements and specification are so large
dressi hat they tend to swamp the choice of language question, then it could
: e that there is an initial limit on what kinds of questions we're even
it of i dlling to ask about choice of languages. Those are the kinds of
| see. ypotheses, it seems to me, that should be tested first. And after one
here s past those, if indeed you get past those, then you can ask the more
ould ‘be teresting questions about classification of languages. if it turns out
reaso o hat the difference is a one percent difference in the end in the cost,
smpute ce you count in this man’s documentation cost, it could be that it
ne. pesn’t make a lick of difference and it's not worth looking into. 1 dor't
pump elieve that that's wholly true; however, it seems to me that because of
| gettir jat possibility one has to start to look at it from the top, at the driving

rces first.

SOFTWARE METRICS: AN ANALYSIS AND EVALUATION: :

Vic Basili

Let me answer that question by coming back to data collection. Data =
collection has to be driven by the models or the metrics 'm interested in,
and clearly cost is going to be one of them. It may be the prime one in
the end. I can talk about cost by looking at cost models so that | will be
able to predict future costs. But Pm also interested in studying other
factors, such as complexity metrics. It may be important to understand :
whether it is going to be hard to develop software metrics. 1 believe or ; ;
hypothesize that there’s a direct correiation between complexity -
measures and the cost of maintenance. The more complex the program
is going to be the more expensive it's going to be to maintain. So, my

end goal is to minimize my costs. You’re probably right, the goal of
everything is cost. :

Jean Sammetl
The problem is the one of cost and we ought to solve it and delineate

what the issues are before we tackle anything else. Fortunately or

unfortunately, the world is very unhomogeneous and therefore you have
to poke at bits and pieces of some of thesé problems-and then hope that

at some point one can synthesize. Let me give you an illustration of

something { wouldn't want to happen again. One of the rationaies for the
development of ADA was that there were on the order of two thousand
different languages being used in the Department of Defense. Now,
don’'t know where that number came from, but by my standards it's sheer
nonsense. | think what was happening was that every different assembly
language was being counted, every compiler was being counted, and
every time anybody twiddled a bit anywhere was being counted as one of
the numbers that went into this two thousand count. | submit that if we
knew what a language was, if we knew how to measure how many of
them we had, we would be a lot better off. | would alsoc suspect that when
large industrial organizations, regardless of whether their applications
were business oriented or scientifically oriented, go to their management
and say they are using three languages, or thirty-three, it would be better
if they could all agree on what it meant when they counted to three or to
thirty- three. That’s again a cost factor.

Certail

nders

N ~DATA COLLECTION, VALIDATION AND ANALYSIS 157

Marvin Denicoff, Office of Naval Research

ita - -Certainly the last two questions were really the same question, and
in, ~underscored the obvious, namely; we need an a priori specification of
in “-purpose, of objectives, of profound versus trivial issues, et cetera. If's
be - 'not enough, obviously, to simply collect data. | made a note, because,
er . unless we know what data to collect, what level of precision, from whom
nd we're collecting the data, for whom we're collecting the data, for what
or purpose, for how long, for what decision models, unless all of those
tity things are specified a priori, we tend to get into trouble — and if you've
am been involved in data collection programs for areas other than software,
my you know how much trouble you can get into. However, a word of
of --caution, and that's really the purpose of my comment; namely, if we knew

a hell of a lot about all of these elements I've talked about, i we could

pre-specify all of these parameters, we'd be in great shape. However, my

argument is that we know nothing, almost nothing, and that there is a hell

of a lot of insights that come out of overcoflecting. Looking at the data

per se sometimes yields profound insights into how we do this a priori

e specification out there in the future. So | say at the beginning, in the
hat inception period of this data collection program, | would argue that to
: of gain the advantage of those surprises we ought to err in the direction of

overcollection,

Alan Perlis

A question was asked bhefore about why we are collecting this data about
nguages it documentation is such an important part of our work. |
wonder why nobody has gotten up and said, "isn’t there something
wrong with computing if saying what a line of code does is s0 much more
gxtensive an effort than the writing of the code itself?" For whom are we
x}vriting the documentation? And why are we writing it? it's actually an
nsurance policy that we use to reduce the cost of catastrophe, The
assumption is always made that a large number of the people involved in
ftware are in management and not in code production. And one of the
taasons for that too, possibly, is the language tools we use. That is, it's
wto not obvious at all that the amount of documentation in a piece of code is
dependent of the way we program and the languages we use.

158 SOFTWARE METRICS: AN ANALYSIS AND EVALUATION

Capers Jones, ITT

I'm assistant director of programming measurements for ITT, and my job
is to measure program quality, productivity, and other attributes for all
programs put out by the corporation, some thousands of them. F've been
in measurement for a tong time. Let me give you a quick dump of how
you ought to go about it

First, overcollection of data is very common when people get set to
measure software. The way you avoid that, or at least minimize i, is to
start by trying to come up with the format of the output reporis to be
presented to the managers or the programmers, the people you want to
convince that you've got valid information. Then you work backwards
from the output format to the data base and the input requirements. If
you do it the other way, if you set out trying to specify the input of the
data base fist, you almost always overcollect, and you also have another
problem. You cccasionally ieave out important variables that you should
collect. 1BM's federal systems division did that. They set up a data
collection effort that was so massive that after the first wave of inputting
data individual managers stopped doing it because it was too time-
consuming and too bothersome. You've got to have some simplification.
But the purpose of all this is to make things better, not just to record data
and do academic research forever. Generally speaking, what you want
to make betier are costs, quality, and schedules. So you aim your data
collection system to feed back the information on those three significant
varigbles. And the only thing that seems constant across all sizes and
kinds of programs in this very diverse industry is the fact that defect
removal costs more than anything else. One of the reasons why
language selection is important, even though the direct cost of coding is
small, like three percent on a big system, is that the choice of language
can minimize defect removal later and defect removal is a very large cost,
from thirty to thirty-five to forty percent of development.

Second, the paperwork costs are extremely significant for medium to
large systems. They're hardly significant at all for small programs.
Another point about paperwork is that the range in the paperwork
domain is astonishing, and seems to be due to individua! human
variances. For example, the smallest logic spec | ever saw was two
pages per thousand lines of code and the biggest — and it was assembler
that was the target language — the biggest was sixty-eight, which was a
variance of thirty-four to one with no relationship to complexity or the

DA

lar
co
me
we

Cor

0
imj

UATION: DATA COLLECTION, VALIDATION AND ANALYSIS 159

language. And paperwork is a controflable variable, and most

companies do it too much. As Doctor Perlis suggested, it's to convince

management that we really know what we're doing rather than because

we really need it. So in the big system, while cutting down on paperwork

of how actually is cost-effective and doesn’t diminish the coding speed or the
- coding efficiency, it is a variable that gets out of control.

my job
; for all=

t set o Measurement isn’t a very tricky, difficult intellectual area, but if you try

it, is to and think practically, then you onfy want to measure things that you can
' mprove.

want to
skwards
ents. It
it of the
another
1 should

