The Experience Factory and
Its Relationship to Other
Quality Approaches

VICTOR R. BASILI

Institute for Advanced Computer Studies
and

Department of Computer Science
University of Maryland

College Park, Maﬁg[gnd

Abstract

This chapter describes the principles behind a specific set of integrated software
quality improvement approaches which include the Quality Improvement Paradigm,
an evolutionary and experimental improvement framework based on the scientific
method and tailored for the software business, the Goal/Question/Metric Paradigm, a
paradigm for establishing project and corporate goals and a mechanism for measuring
against those goals, and the Experience Factory Organization, an organizational ap-
proach for building software competencies and supplying them to projects on demand.
It then compares these approaches to a set of approaches used in other businesses, such
as the Plan—Do—Check—Act, Total Quality Management, Lean Enterprise Systems, and
the Capability Maturity Model.

1. Introduction« o o it e e e e e e e e e e e e e e e e e 66
Experience Factory/Quality Improvement Paradigm 67

2.1 The Experience Factory Organization.« 7

2.2 Examples of Packaged Experienceinthe SEL 73

23 INSUMMAETY & v v v v e e e e e e e e e e e e e e e e e e e 74

3. A Comparison with Other Improvement Paradigms 75
3.1 Plan-Do-Check-ActCycle (PDCA)« o v v v v 75

3.2 Total Quality Management (TQM) 76

3.3 SEI Capability Maturity Model (CMM)« oo 77

3.4 Lean Enterprise Management o0 78

3.5 Comparing the Approacheso 78

4. Conclusion. L e e e e e e e e 81
References. o v v v i v it e e e e e e e e e e e e e 82
65 Copyright © 1995 by Academic Press, Inc.

ADVANCES IN COMPUTERS, VOL. 41 All rights of reproduction in any form reserved.

66 VICTOR R. BASILI

1. Introduction

The concepts of quality improvement have permeated many businesses. It is clear
that the nineties will be the quality era for software and there is a growing need to
develop or adapt quality improvement approaches to the software business. Thus
we must understand software as an artifact and software development as a business.

Any successful business requires a combination of technical and managerial
solutions. It requires that we understand the processes and products of the busi-
ness, i.e., that we know the business. It requires that we define our business
needs and the means to achieve them, i.e., we must define our process and product
qualities. We need to define closed loop processes so that we can feed back
information for project control. We need to evaluate every aspect of the business,
so we must analyze our successes and failures. We must learn from our experi-
ences, i.e., each project should provide information that allows us to do business
better the next time. We must build competencies in our areas of business by
packaging our successful experiences for reuse and then we must reuse our
successful experiences or our competencies as the way we do business.

Since the business we are dealing with is software, we must understand the
nature of software and software development. Some of the most basw premises
assumed in this work are that:

The software discipline is evolutionary and experimental; it is a laboratory
science. Thus we must experiment with techniques to see how and when they
really work, to understand their limits, and to understand how to improve them.

Software is development not production. We do not produce the same things
over and over but rather each product is different from the last. Thus, unlike in
production environments, we do not have lots of data points to provide us with
reasonably accurate models for statistical quality control.

The technologies of the discipline are human based. It does not matter how
high we raise the level of discourse or the virtual machine, the development of
solutions is still based on individual creativity and human ability will always
create variations in the studies.

There is a lack of models that allow us to reason about the process and the
product. This is an artifact of several of the above observations. Since we have
been unable to build reliable, mathematically tractable models, we have tended
not to build any. And those that we have, we do not always understand in context.

All software is not the same; process is a variable, goals are variable, content
varies, etc. We have often made the simplifying assumption that software is
software is software. But this is no more true that hardware is hardware is
hardware. Building a satellite and a toaster are not the same thing, any more
than building a microcode for a toaster and the flight dynamic software for the
satellite are the same thing.

Packaged, reusable, experiences require additional resources in the form of
organization, processes, people, etc. The requirement that we build packages of

THE EXPERIENCE FACTORY 67

reusable experiences implies that we must learn by analyzing and synthesizing
our experiences. These activities are not a byproduct of software development,
they require their own set of processes and resources.

2. Experience Factory/Quality Improvement Paradigm

The Experience Factory/Quality Improvement Paradigm (EF/QIP) (Basili,
1985, 1989; Basili and Rombach, 1987, 1988) aims at addressing the issues of
quality: improvement in the software business by providing a mechanism for
continuous improvement through the experimentation, packaging, and reuse of
experiences based on a business’s needs. The approach has been evolving since
1976 based on lessons learned in the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) Software Engineering Labora-
tory (SEL) (Basili et al, 1992).

The basis for the approach is the QIP, which consists of six fundamental steps:

Characterize the current project and its environment with respect to models
and metrics.

Set the quantifiable goals for successful project performance and improvement.

Choose the appropriate process model and supporting methods and tools for
this project.

Execute the processes, construct the products, collect and validate the prescribed
data, and analyze it to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save
it in an experience base to be reused on future projects.

Although it is difficult to describe the QIP in great detail here, we will provide
a little more insight into the preceding six steps here.

Characterizing the Project and Environment. Based on a set of
models of what we know about our business we need to classify the current
project with respect to a variety of characteristics, distinguish the relevant project
environment for the current project, and find the class of projects with similar
characteristics and goals. This provides a context for goal definition, reusable
experiences and objects, process selection, evaluation and comparison, and predic-
tion. There are a large variety of project characteristics and environmental factors
that need to be modeled and baselined. They include various people factors,
such as the number of people, level of expertise, group organization, problem
experience, process experience; problem factors, such as the application domain,
newness to state of the art, susceptibility to change, problem constraints, etc.;

68 VICTOR R. BASILI

process factors, such as the life cycle model, methods, techniques, tools, program-
ming language, and other notations; product factors, such as deliverables, system
size, required qualities, e.g., reliability, portability, etc.; and resource factors, such
as target and development machines, calendar time, budget, existing software, etc.

Goal Setting and Measurement. We need to establish goals for the
processes and products. These goals should be measurable, driven by models of
the business. There are a variety of mechanisms for defining measurable goals:
Quality Function Deployment Approach (QFD) (Kogure and Akao, 1983), the
Goal/Question/Metric Paradigm (GQM) (Weiss and Basili, 1985), and Software
Quality Metrics Approach (SQM) (McCall et al., 1977).

We have used the GQM as the mechanism for defining, tracking, and evaluatlng
the set of operational goals, using measurement. These goals may be defined for
any object, for a variety of reasons, with respect to various models of quality,
from various points of view, relative to a particular environment. For example,
goals should be defined from a variety of points of view: user, customer, project
manager, corporation, etc.

A goal is defined by filling in a set of values for the various parameters in
the template. Template parameters included purpose (what object and why),
perspective (what aspect and who), and the environmental characteristics (where).

Purpose:
Analyze some
(objects: process, products, other experience models)
for the purpose of
(why: characterization, evaluation, prediction, motivation, improvement)

Perspective:

With respect to
(focus: cost, correctness, defect removal, changes, reliability, user friendli-
ness, . . .) ’

from the point of view of

(who: user, customer, manager, developer, corporation, . . _.)
Environment:
In the following context

(problem factors, people factors, resource factors process factors, . . .).
Example:

Analyze the (system testing method) for the purpose of (evaluation) with respect
to a model of (defect removal effectiveness) from the point of view of the
(developer) in the following context: the standard NASA/GSFC environment,

THE EXPERIENCE FACTORY 69

i.e., process model (SEL version of the waterfall model, . . .), application (ground
support software for satellites), machine (running on a DEC 780 under VMS), etc.

The goals are defined in an operational, tractable way by refining them into
a set of quantifiable questions that are used to extract the appropriate information
from the models of the object of interest and the focus. The questions and models
define the metrics and the metrics, in turn, specify the data that needs to be
collected. The models provide a framework for interpretation.

Thus, the GQM is used to (1) specify the goals for the organization and the
projects, (2) trace those goals to the data that are intended to define these goals
operationally, and (3) provide a framework for interpreting the data to understand
and evaluate the achievement of the goals, (4) and support the development of
data models based on experience. -

Choosing the Execution Model. We need to be able to choose a generic
process model appropriate to the specific context, environment, project character-
istics, and goals established for the project at hand, as well as any goals established
for the organization, e.g., experimentation with various processes or other experi-
ence objects. This implies we need to understand under what conditions various
processes are effective. All processes must be defined to be measurable and
defined in terms of ‘the goals they must satisfy. The concept of defining goals
for processes will be made clearer in later chapters.

Once we have chosen a particular process model, we must tailor it to the
project and choose the specific integrated set of sub-processes, such as methods
and techniques, appropriate for the project. In practice, the selection of processes
is iterative with the redefinition of goals and even some environmental and project
characteristics. It is important that the execution model resulting from these first
three steps be integrated in terms of its context, goals, and processes. The real
goal is to have a set of processes that will help the developer satisfy the goals
set for the project in the given environment. This may sometimes require that
we manipulate all three sets of variables to ensure this consistency.

Executing the Processes. The development process must support the
access and reuse packaged experience of all kinds. On the other hand, it needs
to be supported by various types of analyses, some done in close to real time
for feedback for corrective action. To support this analysis, data needs to be
collected from the project. But this data collection must be integrated into the
processes—it must not be an add on, e.g., defect classification forms part of
configuration control mechanism. Processes must be defined to be measurable
to begin with, e.g., design inspections-can be defined so that we keep track of
the various activities, the effort expended in those activities, such as peer reading,
and the effects of those activities, such as the number and types of defects found.
This allows us to measure such things as domain understanding (how well the
process performer understands the object of study and the application domain)
and assures that the processes are well defined and can evolve.

70 VICTOR R. BASILI

Support activities, such as data validation, education and training in the models,
and metrics and data forms are also important. Automated support necessary to
support mechanical tasks and deal with the large amounts of data and information
needed for analysis. It should be noted, however, that most of the data cannot
be automatically collected. This is because the more interesting and insightful
data tends to require human response.

The kinds of data collected include: resource data such as, effort by act1v1ty,
phase, type of personnel, computer time, and calendar time; change and defect
data, such as changes and defects by various classification schemes, process data
such as process definition, process conformance, and domain understanding;
product data such as product characteristics, both logical, e.g., application domain,
function, and physical, e.g., size, structure, and use and context information, e.g.,
who will be using the product and how will they be using it so we can bu11d
operational profiles. :

Analyzing the Data. Based on the goals, we interpret the data that has been
collected. We can use this data to characterize and understand, so we can answer
questions like ‘“What project characteristics effect the choice of processes, methods
and techniques?’’ and ‘‘Which phase is typically the greatest source of errors?”’
We can use the data to evaluate and analyze to answer questions like ‘“What is the
statement coverage of the acceptance test plan?’’ and ¢ ‘Does the Cleanroom Process
reduce the rework effort?’’ We can use the data to predict and control to answer
questions like ‘‘Given a set of project characteristics, what is the expected cost and
reliability, based upon our history?’’ and “‘Given the specific characteristics of all
the modules in the system, which modules are most likely to have defects so I can
concentrate the reading or testing effort on them?’* We can use the data to motivate
and improve so we can answer questions such as ‘‘For what classes of errors is
a particular technique most effective?’”’ and ‘‘What are the best .combination of
approaches to use for a project with a continually evolving set of requirements based
on our organization’s experience?’’

Packaging the Models. We need to define and refine models of all forms
of experiences, e.g., resource models and baselines, change and defect baselines
and models, product models and baselines, process definitions and models, method
and technique evaluations, products and product parts, quality models, and lessons
learned. These can appear in a variety of forms, €.g., we can have mathematical
models, informal relationships, histograms, algorithms, and procedures, based
on our experience with their application in similar projects, so they may be
reused in future projects. Packaging also includes training, deployment, and
institutionalization.

The six steps of the QIP can be combined in various ways to provide different
views into the activities. First note that there are two feedback loops, a project
feedback loop that takes place in the execution phase and an organizational
feedback loop that takes place after a project is completed. The organizational

THE EXPERIENCE FACTORY 71

learning loop changes the organization’s understanding of the world by the
packaging of what was learned from the last project and as part of the characteriza-
tion and baselining of the environment for the new project. It should be noted
that there are numerous other loops visible at lower levels of instantiation, but
these high-level loops are the most important from an organizational structure
point of view.

One high-level organizational view of the paradigm is that we must understand
(characterize), assess (set goals, choose processes, execute processes, analyze
data), and package (package experience). Another view is to plan for a project
(characterize, set goals, choose processes), develop it (execute processes), and
then learn from the experience (execute processes, analyze data).

2.1 The Experience Factory Organization

To support the Improvement Paradigm, an organizational structure called the
Experience Factory Organization (EFO) was developed. It recognizes the fact
that improving the software process and product requires the continual accumula-
tion of evaluated experiences (learning), in a form that can be effectively under-
stood and modified (experience models), stored in a repository of integrated
experience models (experience base), that can be accessed or modified to meet
the needs of the current project (reuse).

Systematic learning requires support for recording, off-line generalizing, tailor-
ing, formalizing, and synthesizing of experience. The off-line requirement is
based on the fact that reuse requires separate resources to create reusable objects.
Packaging and modeling useful experience requires a variety of models and formal
notations that are tailorable, extendible, understandable, flexible, and accessible.

An effective experience base must contain accessible and integrated set of
models that capture the local experiences. Systematic reuse requires support for
using existing experience and on-line generalizing or tailoring or candidate expe-
rience.

This combination of ingredients requires an organizational structure that sup-
ports: a software evolution model that supports reuse, processes for learning,
packaging, and storing experience, and the integration of these two functions. It
requires separate logical or physical organizations with different focuses and
priorities, process models, expertise requirements.

We divide the functions into a Project Organization whose focus/priority is
product delivery, supported by packaged reusable experiences, and an Experience
Factory whose focus is to support project developments by analyzing and synthe-
sizing all kinds of experience, acting as a repository for such experience, and
supplying that experience to various projects on demand.

The Experience Factory packages experience by building informal, formal or
schematized, and productized models and measures of various software processes,
products, and other forms of knowledge via people, documents, and automated
support.

72 VICTOR R. BASILI

The Experience Factory deals with reuse of all kinds of knowledge and experi-
ence. But what makes us think we can be successful with reuse this time, when
we have not been so successful in the past. Part of the reason is that we are not
talking about reuse of only code in isolation but about reuse of all kinds of
experience and of the context for that experience. The Experience Factory recog-
nizes and provides support for the fact that experience requires the appropriate
context definition for to be reusable and it needs to be identified and analyzed
for its reuse potential. It recognizes that experience cannot always be reused as
is, that it needs to be tailored and packaged to make it easy to reuse. In the past,
reuse of experience has been too informal, and has not been supported by the
organization. It has to be fully incorporated into the development or maintenance
process models. Another major issue is that a project’s focus is delivery, not
reuse, i.e., reuse cannot be a by-product of software development. It requires a
separate organization to support the packaging and reuse of local experience.

The Experience Factory really represents a paradigm shift from current software
development thinking. It separates the types of activities that need to be performed
by assigning them to different organizations, recognizing that they truly represent
different processes and focuses. Project personnel are primarily responsible for
the planning and development activities—the Project Organization (Fig. 1) and
a separate organization, the Experience Factory (Fig. 2) is primarily responsible
for the learning and technology transfer activities. In the Project Organization,
we are problem solving. The processes we perform to solve a problem consist

EXPERIENCE
PROJECT ORGANIZATION FACTORY
Characterize project/environment characteristics -
Set Goals tailorable goals, processes, tools
products, resource models, defect
Choose Process models, ... from similar projects

Execution Plans

data, lessons learned, ...

Y

Execute Process

project analysis, process modification,|...

Fic. 1. The Project Organization.

THE EXPERIENCE FACTORY 73

PROJECT
ORGANIZATION EXPERIENCE FACTORY
products] data,
lessons Igamed,
models, J. Analyze Package

(Analysis) < Generalize

direct project feedback |

Experience

produgts, lessons learned, models, ... Base ~l Tallor I
project charpcteristics
1 Project |a 4 Formalize I

models, Haselines, Support
tools, corjsulting, ... (Synthesis)

Fic. 2. The Experience Factory.

of the decomposition of a problem into simpler ones, instantiation of higher-
level solutions into lower-level detail, the design and implementation of various
solution processes, and activities such as validation and verification. In the Experi-
ence Factory, we are understanding solutions and packaging experience for reuse.
The processes we perform are the unification of different solutions and redefinition
of the problem, generalization and formalization of solutions in order to abstract
them and make them easy to access and modify, an analysis synthesis process
enabling us to understand and abstract, and various experimentation activities so
we can learn. These sets of activities are totally different.

2.2 Examples of Packaged Experience in the SEL

The SEL has been in existence since 1976 and is a consortium of three
organizations: NASA/GSFC, the University of Maryland, and Computer Sciences
Corporation (McGarry, 1985; Basili er al, 1992). Its goals have been to (1)
understand the software process in a particular environment, (2) determine the
impact of available technologies, and (3) infuse identified/refined methods back
into the development process. The approach has been to identify technologies
with potential, apply and extract detailed data in a production environment (experi-
ments), and measure the impact (cost, reliability, quality, etc.).

Over the years we have learned a great deal and have packaged all kinds of
experience. We have built resource models and baselines, e.g., local cost models,
resource allocation models; change and defect models and baselines, e.g., defect
prediction models; types of defects expected for the application, product models,
and baselines, e.g., actual vs. expected product size, library access; over time, pro-

74 VICTOR R. BASILI

cess definitions and models, e.g., process models for Cleanroom, Ada waterfall
model; method and technique models and evaluations, e.g., best method for finding
interface faults; products and product models, e.g., Ada generics for simulation of

 satellite orbits; a variety of quality models, e.g., reliability models, defect slippage
models, ease of change models; and a library of lessons learned, e.g., risks associ-
ated with an Ada development (Basili et al., 1992; Basili and Green, 1994),

We have used a variety of forms for packaged experience. There are equations
defining the relationship between variables, e.g., effort = 1.48*KSLOC?®, number
of runs = 108 + 150*KSLOCT; histograms or pie charts of raw or analyzed data,
e.g., classes of faults: 30% data, 24% interface, 16% control, 15% initialization,
15% computation; graphs defining ranges of ‘‘normal,”’ e.g., graphs of size
growth over time with confidence levels; specific lessons learned associated with
project types, phases, activities, e.g., reading by stepwise abstraction is most
effective for finding interface faults; or in the form of risks or recommendations,
e.g., definition of a unit for unit test in Ada needs to be carefully defined; and
models or algorithms specifying the processes, methods, or techniques, e.g., an
SADT diagram defining design inspections with the reading technique being a
variable on the focus and reader perspective.

Note that these packaged experiences are representative of software develop-
ment in the Flight Dynamics Division at NASA/GSFC. They take into account
the local characteristics and are tailored to that environment. Another organization
might have different models or even different variables for their models and
therefore could not simply use these models. This inability to just use someone
else’s models is a result of all software not being the same. '

These models are used on new projects to help management control development
(Valett, 1987) and provide the organization with a basis for improvement based on
experimentation with new methods. It is an example of the EF/QIP in practice.

2.3 In Summary

How does the EF/QIP approach work in practice? You begin by getting a
commitment. You then define the organizational structure and the associated
processes. This means collecting data to establish baselines, e.g., defects and
resources, that are process and product independent, and then measuring your
strengths and weaknesses to provide a business focus and goals for improvement,
and establishing product quality baselines. Using this information about your
business, you select and experiment with methods and techniques to improve
your processes based on your product quality needs and you then evaluate your
improvement based on existing resource and defect baselines. You can define
and tailor better and more measurable processes, based on the experience and
knowledge gained within your own environment. You must measure for process
conformance and domain understanding to make sure that your results are valid.

¥ KSLOC is thousands of source lines of code.

THE EXPERIENCE FACTORY 75

In this way, you begin to understand the relationship between some process
characteristics and product qualities and are able to manipulate some processes
to achieve those product characteristics. As you change your processes you
will establish new baselines and learn where the next place for improvement
might be. v

The SEL experience is that the cost of the Experience Factory activities amounts
to about 11% of the total software expenditures. The majority of this cost (approxi-
mately 7%) has gone into analysis rather than data collection and archiving,
However, the overall benefits have been measurable. Defect rates have decreased
from an average of about 4.5 per KLOC to about 1 per KLOC. Cost per system
has shrunk from an average of about 490 staff months to about 210 staff months
and the amount of reuse has jumped from an average of about 20% to about
79%. Thus, the cost of running an Experience Factory has more than paid for
itself in the lowering of the cost to develop new systems, meanwhile achieving
an improvement in the quality of those systems.

3. A Comparison with Other Improvement Paradigms

Aside from the Experience Factory/Quality Improvement Paradigm, there have
been a variety of organizational frameworks proposed to improve quality for
various businesses. The ones discussed here include:

Plan—Do—Check-Act is a QIP based on a feedback cycle for optimizing a
single process model or production line. Total Quality Management represents
a management approach to long-term success through customer satisfaction based
on the participation of all members of an organization. The SEI Capability
Maturity Model is a staged process improvement based on assessment with regard
to a set of key process areas until you reach level 5 which represents continuous
process improvement. Lean (software) Development represents a principle sup-
porting the concentration of the production on ‘‘value-added’’ activities and the
elimination or reduction of ‘‘not-value-added’’ activities. In what follows, we
will try to define these concepts in a little more detail to distinguish and compare
them. We will focus only on the major drivers of each approach.

3.1 Plan-Do-Check-Act Cycle (PDCA)

The approach is based on work by Shewart (1931) and was made popular by
Deming (1986). The goal of this approach is to optimize and improve a single
process model/production line. It uses such techniques as feedback loops and
statistical quality control to experiment with methods for improvement and build
predictive models of the product.

PLAN ____, DO_____, CHECK —__ o ACT ____

78 VICTOR R. BASILI

Revise strategy (generate action plans and prioritize KPAs)
For each KPA:
Establish process action teams
Implement tactical plan, define processes, plan and execute pilot(s), plan
and execute
Institutionalize
Document and analyze lessons
Revise organizational approach

3.4 Lean Enterprise Management

The approach is based on a philosophy that has been used to improve factory
output. Womack et al. (1990), have written a book on the application of lean enter-
prises in the automotive industry. The goal is to build software using the minimal
set of activities needed, eliminating nonessential steps, i.e., tailoring the process to
the product needs. The approach uses such concepts as technology management,
human-centered management, decentralized organization, quality management,
supplier and customer integration, and internationalization/regionalization.

Given the characteristics for product V, select the appropriate mix of sub-
processes pi, qj, rk . . . to satisfy the goals for V, yielding a minimal tailored
process PV which is composed of pi, gj, rk . . .

Process (PV) — Product (V)

3.5 Comparing the Approaches

As stated above, the Quality Improvement Paradigm has evolved over 17 years
based on lessons learned in the SEL (Basili, 1985, 1989; Basili and Rombach,
1987, 1988; Basili er al.,, 1992). Its goal is to build a continually improving
organization based upon its evolving goals and an assessment of its status relative
to those goals. The approach uses internal assessment against the organizations
own goals and status (rather than process areas) and such techniques as GQM,
model building, and qualitative/quantitative analysis to improve the product
through the process.

Characterize—Set Goals—Choose Process—Execute—Analyze—Package

T {Project I

Corporate loop
loop

If Processes (Py, Qy, Rz, . . .)— Products (X, Y, Z, . . .) and we want to
build V, then based on an understanding of the relationship between Py, Qy, R,

THE EXPERIENCE FACTORY 79

...and X, Y, Z . . . and goals for V we select the appropriate mix of processes
pi, gj, rk . . . to satisfy the goals for V, yielding a tailored

Process (PV) — Product (V)

The EF/QIP is similar to the PDCA in that they are both based on the scientific
method. They are both evolutionary paradigms, based on feedback loops from
product to process. The process is improved via experiments; process modifica-
tions are tried and evaluated and that is how learning takes place.

The major differences are due to the fact that the PDCA paradigm is based
on production, i.e., it attempts to optimize a single process model/production
line, whereas the QIP is aimed at development. In development, we rarely replicate
the same thing twice. In production, we can collect a sufficient set of data based
upon continual repetition of the same process to develop quantitative models of
the process that will allow us to evaluate and predict quite accurately the effects
of the single process model. We can use - statistical quality control approaches
with small tolerances. This is difficult for development, i.e., we must learn form
one process about another, so our models are less rigorous and more abstract.
Development processes are also more human based. This again effects the build-
ing, use, and accuracy of the types of models we can build. So although develop-
ment models may be based on experimentation, the building of baselines and
statistical sampling, the error estimates are typically high.

The EF/QIP approach is compatible with TQM in that it can cover goals that
are customer satisfaction driven and it is based on the philosophy that quality is
everyone’s job. That is, everyone is part of the technology infusion process. Some-
one can be on the project team on one project and on the experimenting team on
another. All the project personnel play the major role in the feedback mechanism.,
If they are not using the technology right it can be because they don’t understand
it, e.g., it wasn’t taught right, it doesn’t fit or interface with other project activities,
it needs to be tailored, or it simply doesn’t work. You need the user to tell you how
to change it. The EF/QIP philosophy is that no method is ‘‘packaged’’ that hasn’t
been tried (applied, analyzed, tailored). The fact that it is based upon evolution,
measurement, and experimentation is'consistent with TQM.

The differences between EF/QIP and TQM are based on the fact that the
QIP offers specific steps and model types and is defined specifically for the
software domain. :

The EF/QIP approach is most similar to the concepts of Lean Enterprise
Management in that they are both based upon the scientific method/PDCA philos-
ophy. They both use feedback loops from product to process and learn from
experiments. More specifically, they are both based upon the ideas of tailoring
a set of processes to meet particular problem/product under development. The
goal is to generate an optimum set of processes, based upon models of the

80 VICTOR R. BASILI

business and our experience about the relationship between process characteristics
and product characteristics.

The major differences are once again based upon the fact that LEM was
developed for production rather than development and so model building is based
on continual repetition of the same process. Thus, one can gather sufficient data
to develop accurate models for statistical quality: control. Since the EF/QIP is
based on development and the processes are human based, we must learn from
the application of one set of processes in a particular environment about another
set of processes in different environment. So the model building is more difficult,
the models are less accurate, and we have to be cautious in the application of
the models. This learning across projects or products also requires two major
feedback loops, rather than one. In production, one is sufficient because the
process being changed on the product line is the same one that is being packaged
for all other products. In the EF/QIP, the project feedback loop is used to help
fix the process for the particular project under development and it is with the
corporate feedback loop that we must learn by analysis and syntheses across
different product developments.

The EF/QIP organization is different from the SEI CMM approach, in that the
latter is really more an assessment approach rather than an improvement approach.

In the EF/QIP approach, you pull yourself up from the top rather than pushing
up from the bottom. At step 1 you start with a level 5 style organization even
though you do not yet have level 5 process capabilities. That is, you are driven
by an understanding of your business, your product and process problems, your
business goals, your experience with methods, etc. You learn from your business,
not from an external model of process. You make process improvements based
upon an understanding of the relationship between process and product in your
organization. Technology infusion is motivated by the local problems, so people
are more. willing to try something new.

But what does a level 5 organization really mean? It is an orgamzatlon that
can manipulate process to achieve various product characteristics. This requires
that we have a process and an organizational structure to help us: understand
our processes and products, measure and model the project and the organization,
define and tailor process and product'qualities explicitly, understand the relation-
ship between process and product qualities, feed back information for project
control, experiment with methods and techniques, evaluate our successes and
failures, learn from our experiences, package successful experiences, and reuse
successful experiences. This is compatible with the EF/QIP organization.

QIP is not incompatible with the SEI CMM model in that you can still use
key process assessments to evaluate where you stand (along with your internal
goals, needs, etc.). However, using the EF/QIP, the chances are that you will
move up the maturity scale faster. You will -have more experience early on

THE EXPERIENCE FACTORY 81

operating within an improvement organization structure, and you can demonstrate
product improvement benefits early.

4. Conclusion

Important characteristics of the EF/QIP process indicate the fact that it is
iterative; you should converge over time so don’t be overly concerned with
perfecting any step on the first pass. However, the better your initial guess at
the baselines the quicker you will converge.

No method is ‘‘packaged’’ that hasn’t been tried (applied, analyzed, tailored).
Everyone is part of the technology infusion process. Someone can be on the
project team on one project and on the experimenting team on another. Project
personnel play the major role in the feedback mechanism. We need to learn from
them about the effective use of technology. If they are not using the technology
right it can be because they don’t understand it or it wasn’t taught right, it doesn’t
fit/interface with other project activities, it needs to be tailored, or it doesn’t
work and you need the user to tell you how to change it. Technology infusion
is motivated by the local problems, so people are more willing to try something
new. In addition, it is important to evaluate process conformance and domain
understanding or you have very little basis for understanding and assessment.

The integration of the Improvement Paradigm, the Goal/Question/Metric Para-
digm, and the EFO provides a framework for software engineering development,
maintenance, and research. It takes advantage of the experimental nature of
software engineering. Based upon our experience in the SEL and other organiza-
tions, it helps us understand how software is built and where the problems are,
define and formalize effective models of process and product, evaluate the process
and the product in the right context, predict and control process and product
qualities, package and reuse successful experiences, and feed back experience
to current and future projects. It can be applied today and evolve with technology.

The approach provides a framework for defining quality operationally relative
to the project and the organization, justification for selecting and tailoring the
appropriate methods and tools for the project and the organization, a mechanism
for evaluating the quality of the process and the product relative to the specific
project goals, and a mechanism for improving the organization’s ability to develop
quality systems productively. The approach is being adopted by several organiza-
tions to varying degrees, such as Motorola and HP, but it is not a simple solution
and it requires long-term commitment by top-level management.

In summary, the QIP approach provides for a separation of concerns and
focus in differentiating between problem solving and experience modeling and
packaging. It offers a support for learning and reuse and a means of formalizing
and integrating management and development technologies. It allows for the
generation of a tangible corporate asset: an experience base of software competen-
cies. It offers a Lean Enterprise Management approach compatible with TQM

82 VICTOR R. BASILI

while providing a level 5 CMM organizational structure. It links focused research
with development. Best of all you can start small, evolve and expand, €.g., focus
on a homogeneous set of projects or a particular set of packages and build from
there. So any company can begin new and evolve.

REFERENCES

Basili, V. R. (1985). Quantitative evaluation of software engineering methodology. In *‘Proceedings
of the 1st Pan Pacific Computer Conference, Melbourne, Australia’’ (also available as Technical
Report TR-1519, Department of Computer Science, University of Maryland, College Park, 1985).

Basili, V. R. (1989). Software development: A paradigm for the future. In ‘‘Proceedings of the 13th
Annual International Computer Software and Applications Conference (COMPSAC), Keynote
Address, Orlando, FL.”’

Basili, V. R., and Green, S. (1994). Software process evolution at the SEL. IEEE Software Mag,
July, pp. 58-66.

Basili, V. R, and Rombach, H. D. (1987). Tailoring the software process to project goals and
environments. In ‘‘Proceedings of the 9th International Conference on Software Engineering,
Monterey, CA,”’ pp. 345-357.

Basili, V. R., and Rombach, H. D. (1988). The TAME Project: Towards improvement-oriented
software environments. IEEE Trans. Software Eng. SE-14(6), 758—-773.

Basili, V. R., Caldiera, G., McGarry, F., Pajerski, R., Page, G., and Waligora, S. (1992). The softwa:e
engineering laboratory—an operational software experience factory In “‘Proceedings of the Interna-
tional Conference on Software Engineering,”” pp. 370-381.

Crosby, P. B.(1980). Quality is Free: The art of making quality certain, New American Library, New York.

Deming, W. E. (1986). “‘Out of the Crisis.”” MIT Center for Advanced Engineering Study, MIT
Press, Cambridge MA.

Feigenbaum, A. V. (1991). ‘“Total Quality Control,”’ 40th Anniv. Ed. McGraw-Hill, New York.

Humphrey, W. 8. (1989). ‘‘Managing the Software Process,”” SEI Ser. Software- Eng. Addison-
Wesley, Reading, MA.

Kogure M., and Akao, Y. (1983). Quality function deployment and CWQC in Japan. Qual, Prog,
October, pp. 25-29.

Likert,R. (1967). ‘“The Human Organization: Its Management and Value.”” McGraw-Hill, New York.

McCall, J. A, Richards, P. K., and Walters, G. F. (1977). “‘Factors in Software Quality,”” RADC TR-77-369.

McGarry, F. E. (1985). ‘‘Recent SEL Studies,’” Proc. 10th Annu. Software Eng. Workshop. NASA
Goddard Space Flight Center, Greenbelt, MD.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. Capability Maturity Model for Software,
Version 1.1, Technical Report SEI-93-TR-024.

Radice, R., Harding, A. J., Munnis, P. E., and Phillips, R W. (1985). A programming process study
IBM Syst. J. 24(2).

Shewhart, W. A. (1931). ‘““Economic Control of Quality of Manufactured Product.”” Van Nostrand,
New York.

Software Engineering Institute (1933). ‘‘Capability Maturity Model,”” CMU/SEI-93-TR-25 Version
1.1. Carnegie-Mellon University, Pittsburgh, PA.

Valett, J. D. (1987). The dynamic management information tool (OYNAMITE): Analy51softhepr0totype

requirements and operational scenarios. M.Sc. Thesis, University of Maryland, College Park.
Weiss, D. M., and Basili, V. R. (1985). Evaluating software development by analysis of changes: Some
data from the software engineering laboratory. IEEE Trans. Software Eng. SE-11(2), 157-168.
Womack, J. P., Jones, D. T., and Roos, D. (1990). ‘“The Machine that Changed the World: Based
on the Massachusetts Institue of Technology 5-Million Dollar 5-Year Study on the Future of the
Automobile.”” Rawson Associates, New York.

