390

lterative Enhancement:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1, NO. 4, DECEMBER 1975

A Practical Technique

for Software Development

VICTOR R. BASILI anp ALBERT J. TURNER

Abstract—This paper recommends the “iterative enhancement”
technique as a practical means of using a top-down, stepwise re-
" finement approach to software development. This technique begins
with a simple initial implementation of a properly chosen (skeletal)
subproject which is followed by the gradual enhancement of succes-
sive implementations in order to build the full implementation. The
development and quantitative analysis of a production compiler for
the language SIMPL-T is used to demonstrate that the application
of iterative enhancement to software development is practical and
efficient, encourages the generation of an easily modifiable product,
and facilitates reliability.

Index Terms—Iterative enhancement, SIMPL, software analysis,
software development, software evaluation measures, top-down
design.

INTRODUCTION

SEVERAL techniques have been suggested as aids for
producing reliable software that can be easily updated
to meet changing needs [1]-[4]. These include the uge
of a top-down modular design, a careful design before
coding, modular. well-structured components, and a
minimal number of implementors. Although it is generally
agreed that the basic guideline is the use of a top-down
modular approach using “stepwise refinement” [57], this
technique is often not easy to apply in practice when
the project is of reasonable size. Building a system using
a well-modularized, top-down approach requires that the
problem and its solution be well understood. Even if the
implementors have previously undertaken a similar
project, it is still difficult to achieve a good design for a
new system on the first try. Furthermore, design flaws
often do not show up until the implementation is well
underway so that correcting the problems can require
major effort. ‘

One practical approach to this problem is to start with
a simple initial implementation of a subset of the problem
and iteratively enhance existing versions until the full
system is implemented. At each step of the process, not
only extensions but also design modifications can be made.
In fact, each step can make use of stepwise refinement
in a more effective way as the system becomes better

Manuscript received August 5, 1975. This work was supported in
part by the Office of Naval Research under Grant N00014-67-A-
0239-0021 (NR~044-431) to the Computer Science Center of the
University of Maryland, and in part by the Computer Science
Center of the University of Maryland.

V. R. Basili is with the Department of Computer Science, Uni-
versity of Maryland, College Park, Md. 20742.

A. J. Turner is with the Department of Mathematical Sciences,
Clemson University, Clemson, S. C.

understood through the iterative process. As these itera-
tions converge to the full solution, fewer and fewer modi-
fications need be made. “Iterative enhancement” repre-
sents a practical means of applying stepwise refinement.

This paper discusses the heuristic iterative enhance-
ment algorithm and its application to the implementation
of a fully instrumented production compiler for the pro-
gramming language SIMPL-T [6]. The SIMPL-T project
represents a successful practical experience in using the
approach in conjunction with several of the standard
informal techniques to develop a highly reliable and easily
modifiable product in a relatively short amount of time.

The next section of this paper contains a discussion
of the basic iterative enhancement method, independent
of a specific application. The following section discusses
the application of the method as used in the development
of the compiler for SIMPL-T, and includes some initial
results from a quantitative analysis of the SIMPL-T
project.

OVERVIEW OF THE METHOD

The first step in the application of the iterative en-
hancement technique to a software development project
consists of a simple initial implementation of a skeletal
subproblem of the project. This skeletal implementation
acts as an initial guess in the process of developing a final
implementation which meets the complete set of project
specifications. A project control list is created that contains
all the tasks that need to be performed in order to achieve
the desired final implementation. At any given point in
the process, the project control list acts as a measure of the
“distance’” between the current and final implementations.

In the remaining steps of the technique the current
implementation is iteratively enhanced until the final
implementation is achieved. Each iterative step consists
of selecting and removing the next task from the list,
designing the implementation for the selected task (the
design phase), coding and debugging the implementation
of the task (the implementation phase), performing an
analysis of the existing partial implementation developed
at this step of the iteration (the analysis phase), and
updating the project control list as a result of this analysis.
The process is iterated until the project control list is
empty, i.e., until a final implementation is developed that
meets the project specifications.

Although the details of the algorithm vary with the
particular problem class and implementation environment,

Copyright ©1975 by The Institute of Electrical and Electronics Engineers, Inc.

Printed in U.S.A. Annals No. 512SE007

BASILI AND TURNER: ITERATIVE ENHANCEMENT

a set of guidelines can be given to further specify the
various steps in the process. The development of the first
step, the skeletal initial implementation, may be achieved
by defining the implementation of 2 skeletal subset of
the problem. A skeletal subset is one that contains a good
sampling of the key aspects of the problem, that is simple
enough to understand and implement easily, and whose
implementation would make a usable and useful prodict
available to the user. This subset should be devoid of
special case analysis and should impose whatever re-
strictions might be necessary to facilitate its implementa-
tion without seriously affecting its usability. The imple-
mentation itself should be simple and straightforward in
overall design and straightforward and modular at lower
levels of design and coding so that it can be modified
easily in the iterations leading to the final implementation.

The project control list guides the iterative process
by keeping track of all the work that needs to be done in
order to achieve the final implementation. The tasks on
the list include the redesign or recoding of components in
which flaws have been discovered, the design and imple-
mentation of features and facilities that are missing from
the current implementation, and the solution of unsolved
problems. The sequence of lists corresponding to the
sequence of partial implementations is a valuable com-
ponent, of the historical documentation of the project.

Each entry in the project control list is a task to be
performed in one step of the iterative process. It is im-
portant that each task be conceptually simple enough to
be completely understood in order to minimize the chance
of error in the design and implementation phases of the
process. ‘

A major component of the iterative process is the
analysis phase that is performed on each successive im-
plementation. The project control list is constantly being
revised as a result of this analysis. This is how redesign
and recoding work their way into the control list. Specific
topics for analysis include such items as the structure,
modularity, modifiability, usability, reliability and effi-
ciency of the current implementation as well as an assess-
ment of the achievement of the goals of the project. One
approach to a careful analysis is the use of an appropriate
set of guidelines as follows.

1) Any difficulty in desigh, coding, or debugging a

modification should signal the need for redesign or -

recoding of existing components.

2) Modifications should fit easily into isolated and
easy-to-find modules. If not, then some redesign is
needed.

3) Modifications to tables should be especially easy to
make. If any table modification is not quickly and
easily done, then a redesign is indicated.

4) Modifications should become easier to make as the
iterations progress. If not, then there is a basic
problem such as a design flow or a proliferation of
“‘pateches.”

5) “Patches” should normally be allowed to exist for

391

only one or two iterations. Patches should be allowed,
however, in order to avoid redesigning during an
implementation phase.

6) The existing impleméntation should be analyzed fre-
quently to determine how well it measures up to the
project goals.

7) Program analysis facilities should be used whenever
available to aid in the analysis of the partial im-
plementations.

8) User reaction should always be solicited and analyzed
for indications of deficiencies in the existing im-
plementation.

Certain aspects of the iteration process are dependent
on the local environment in which the work is being per-
formed, rather than on the specific project. Although the
techniques used in the design and implementation phases
of each iteration step should basically be top-down step-
wise refinement techniques, the specifics can vary depend-
ing on such factors as installation standards and the
number of people involved. Much has been written else-
where about such techniques, and they will not be dis-
cussed further here. The procedures used in the analysis
phase for each partial implementation are dependent
upon such local factors as the program analysis facilities
available, the programming languages used, and the
availability of user feedback. Thus, to some extent the
efficient use of the iterative enhancement technique must
be tailored to the implementation environment.

In summary, iterative enhancement is a heuristic
algorithm that begins with the implementation of a sub-
problem and proceeds with the iterative modification of
existing implementations based on a set of informal guide-
lines in order to achieve the desired full implementation.
Variants of this technique have undoubtedly been used
in many applications. However, iterative enhancement
is different from the iterative techniques often discussed
in the literature, in which the entire problem is initially
implemented and the existing implementations are itera-
tively refined or reorganized [2] to achieve a good final
design and implementation.

APPLICATION OF THE METHOD TO
COMPILER DEVELOPMENT

Compiler development falls into a class of problems
that can be called input directed. Such problems have well-
defined inputs that determine the processing to be per-
formed. The application of the iterative enhancement
method to compiler development will be discussed in this
section. In order to be more specific, it is assumed that
the syntax of the language L to be compiled is defined by
a context free grammar G.

Since a compiler is input directed, the skeletal compiler
to be initially implemented can be specified by choosing
a skeletal language, Ly, for L. The language Lo may be
slightly modified sublanguage of L with a grammar Go
that is essentially a subgrammar of G.

In choosing Lo, a small number of features of L are

392

chosen. as a Basis. For example, this basis might include
one data type, three or four statement types, one param-
eter mechamsm, a few operators, and other features
needed to give Lo the overall general flavor of L. The
language derived from this basis can then be modified
for ease of implementation and 1mproved usability to
obtain L.

The remainder of this section describes the use of itera-
tive enhancement in an actual compiler implementation.

A Case Study: the SIMPL-T Project

The iterative enhancement method was used at the
University of Maryland in the implementation of a com-
piler for the procedure-oriented algorithmic language
SIMPL-T [6] on a Univac 1108. The SIMPL-T project is
discussed in this section, beginning with a brief illustration
of the scope of the project.

- Overview: SIMPL-T is designed to be the base language
for a family of programming languages [7]. Some of its
features are as follows.

1) A program consists of a set of separately compiled
modules,

2) Each module consists of a set of _global variables
and a set of procedures and functions,

3) The statement types are ‘assignment, if-then-else,
while, case, call, exit, and return.

4) The data types are integer; character, and character
string.

5) There are extensive sets of operators and intrinsics
for data manipulation.

6) There is a one-dimensional array of any data type.

7) Procedures and functions may optionally be re-
eursive. A

8) Scalar arguments may be passed by reference or
by value; arrays are passed by reference.

9) Procedures and functions may not have internal
procedures or functions; neither procedures nor
functions may be passed as parameters.

10) There is no block structure (but there are com-

~ pound statements). ,

11) Procedures, functions, and data may be shared by
separately compiled modules.

Characterizing the overall design of the language, its
syntax and semantics are relatively conservative, con-
sistent and uncluttered. There are a minimal number of
language constructs, and they are all rather basic. A
stack is adequate for the runtime environment. These
design features contributed to a reasonably well-defined
language design which permitted the development of a
reasonably well-understood compiler design.

The following are characteristics and facilities of the
SIMPL-T compiler:

1) It is programmed in SIMPL-T and is designed to be
transportable by rewriting the code generation
modules [8].

2) It generates very good object code on the 1108, (In

IEEE TEANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1975

the only extensive test [9], the code produced was
better than that generated by the Univac optmuzmg
Fortran compiler.)

3) Good diagnostics are provided at both compile and

runtimes. _

4) An attribute and cross-reference listing is available.

5) There are traces available for line numbers, calls

and returns, and variable values.

6) Subscript and case range checking are available.

7) There are facilities for obtaining statistics both at

compile time and after a program execution.

8) Execution timing for procedures, functions,

separately compiled modules is available.

In summary, the compiler is a production compiler
that generates efficient object code, provides good diag-
nostics, and has a variety of testing, debugging, and
program analysis facilities. The compiler itself consists
of about 6400 SIMPL-T statements, and the library
consists of about 3500 (assembly language) instructions.
(The statement count does not include declarations,
comments, or spacing. The compiler consists of 17 000
lines of code:)

The Inatial Implementation: The skeletal language im-
plemented initially in the SIMPL-T project was essentially
the language SIMPL-X [10]. Some of the restrictions
(with respect to SIMPL-T) imposed for the initial im-
plementation were:

1) There was only one data type (integer).

2) Only call by value was allowed for scalar parameters.

3) All procedures and functions were recursive.

4) Only the first 12 characters of an identifier name

were used.

5) Case numbers were restricted to the range 0-99.

6) Both operands of a logical operator (+AND-,:0OR")

were always evaluated.
Since the compiler was to be self-compiling, some character
handling facility was nieeded. This was provided by an
extension that allowed character data to be packed in an
integer variable just as in Fortran.

Restrictions were also made on compiler facilities for
the initial implementation. Only a source listing and
reasonable diagnostics were provided, leaving the de-
bugging and analysis facilities for later enhancements.

The design of the initial skeletal implementation was a
rather straightforward attempt to provide a basis for
future enhancements. This allowed the initial implementa-
tion to be completed rather quickly so that the enhance-
ment process could get underway. It is instructive to
note that while most of the higher level design of the
compiler proved to be valid throughout the implementa-
tion, most of the lower level design and code was redone
during the enhancement process. This illustrates the
difficulty in doing a good complete project design initially,
especially in light of the fact that the initial implementa-
tion was an honest attempt to achieve a good basis upon
which to build later extensions,

The importance of using a simple approach in the initial

and

BASILI AND TURNER: ITERATIVE ENHANCEMENT

implementation was illustrated by the experience with
the initial SIMPL-X code generation module. Although it
was not intended to generate really good code, far too
much effort was expended in an attempt to generate
moderately good code. As a result, most of the initial
debugging effort was spent on the code generator (which
was later almost completely rewritten anyhow). A simple
straightforward approach would have allowed the project
to get underway much faster and with much less effort.

A final comment on the skeletal implementation is
that it is clear in retrospect that had the compiler not
been self-compiling it would 1.ave been better to use an
even more restricted subset of SIMPL-T. This was not
considered at the time because programming the compiler
in the initial subset would have been more difficult.

The design and implementation phases of each iteration
were performed using a basic top-down approach. Every
attempt was made to ensure a high level of clarity and
logical construction.

It is worth noting that the SIMPL-T language itself
was also being iteratively enhanced in parallel with the
compiler development. As experience was gained by using
the language to program the compiler, new features were
added and old features were modified on the basis of this
experience. Thus user experience played a major role not
only in the implementation of the software project (i.e.,
the compiler) but also in the specification of the project
(i.e., the language design). '

The Analysis Phase: The analysis performed at the
end of each iterative step was basically centered around
the guidelines given above in the overview of the method.
Some of the specific techniques used are briefly discussed
below.

Since the intermediate compilers were mostly self-
compiling, a large amount of user experience was available
from the project itself. This user experience together with
the valuable test case provided by the compiler for itself
represent two of the advantages of self-compilers.

A second source of user experience in the SIMPL-T
project was derived from student use in the classroom.
Since classroom projects are not generally ongoing, there
was normally no inconvenience to students in releasing
the intermediate versions of the compiler as they were
completed. These two sources of user experience are
examples of how the details of applying iterative enhance-
ment can be tailored to the resources available in the
implementation environment.

Testing the intermediate compilers was done by the
usual method of using test data. Again the self-compiling
feature of the compiler was valuable since the compiler
was often its own best test program. The bug farm and
bug contest techniques [11] were also used and some of
the results are given below.

Timing analyses of the compiler were first done using
the University of Maryland Program Instrumentation
Package (PIP). PIP provides timing information based
on a partition of core and is thus more suitable for assem-

393

bly language programs than for programs written in
higher level languages. However the information obtained
from PIP was of some value in locating bottlenecks,
especially in the library routines.

When the timing and statistics facilities for object
programs were added to the compiler, new tools for analysis
of the compiler itself became available. The timing facility
has been used to improve the execution speed through the
elimination of bottlenecks, and the statistics facilities
have been used to obtain information such as the frequency
of hashing collisions. Future plans call for further use of
the timing information to help improve compiler per-
formance. The statistical facilities were also used to obtain
the quantitative analysis discussed at the end of this
section. :

Project Summary: The SIMPL-T project was completed
during a 16 calendar month period. Since other activities °
took place in parallel with the implementation effort, it is
difficult to accurately estimate the total effort, but a fairly
accurate effort for the language and compiler design,
implementation, and maintenance (excluding the boot-
strap and library implementations) is 10 man-months.
Counting only the code in the final compiler, this time
requirement represents an average output of almost 30
statements (75 lines) of debugged code per man-day. It
is felt that the use of iterative enhancement was a major
contributing faetor in this achievement.

Experience has thus far indicated that the compiler
1s reasonably easy to modify. Two fairly large modifica-
tions have been made by people not previously participat-
ing in the compiler implementation. One of these efforts
involved the addition of a macro facility and in the other,
single and double precision reals were added [97]. Both
efforts were accomplished relatively easily even though
there was little documentation other than the compiler
source listing.

Finally, the reliability of the compiler has been quite
satisfactory. During the two and one-half month duration
of the bug contest a total of 18 bugs were found, many
of which were quite minor. (All bugs regardless of severity
were counted.) Of course, several additional bugs had
been found before the contest and some have been found
since, but overall their number has been small. As could
be predicted, most of the bugs occurred in the least well un-
derstood components: error recovery and code generation.

Project Analysis: In an attempt to justify that the
heuristic iterative enhancement algorithm gives quantita-
tive results, an extensive analysis of four of the inter-
mediate compilers plus the final ecompiler was performed.
As of this writing (June 1975) the analysis is only in the
early stages, but some of the preliminary statistics com-
puted are given in Table I. The interpretation of some
of these statistics has not been ecompleted, but they have
been included as a matter of interest.

The compilers referenced in Table I are

1) One of the early SIMPL-X compilers (SIMPL-X

2.0).

394

2) The SIMPIL-X compiler after a major revision to
correct some structural defects (SIMPL-X 3.1). .

3) The first SIMPL-T compiler, written in SIMPL-X
(SIMPL-X 4.0). '

4) Compiler (3), rewritten in SIMPL-T (SIMPL-T
1.0).

5) The current SIMPL-T compiler at the time of the
analysis (SIMPL-T 1.6).

The statistics were computed by using the existing
statistical facilities of the SIMPL-T compiler, and by
adding some new facilities.

An explanation of the statistics given is as follows.

1) Statements are counted as defined by the syntax. A
compound statement such as a wWHILE statement
counts as one statement plus one for each statement
in its statement list.

2) A separately compiled module is a collection of
globals, procedures, and functions that is compiled
independently of other separately compiled modules
and combined with the other modules for execution.

3) A token is a syntactic entity such as a keyword,
identifier, or operator.

4) Globals were only counted if they were ever modified.
That is, named constants and constant tables were
not counted.

5) A data binding occurs when a procedure or function
P modifies a global X and procedure or function
accesses (uses the value of) X. This causes’a binding
(P,X,Q). It is also possible to have the (different)
binding (Q,X,P); however (P,X,P) is not counted.
The counting procedure was modified so that if P
and @ execute only in separate passes and the execu-
tion of P precedes that of @, then (P,X,Q) is counted
but (@,X,P) is not counted.

The reasons for choosing these statistics were based on
intuition and a desire to investigate quantitatively the
data and control structure characteristics of the sequence
of compilers. .

It is interesting to note that the statistics indicate a
trend towards improvement in the compiler with respect
to many generally accepted theories of good programming
principles, even though the redesign and recoding efforts
that caused this trend were done only on the basis of the
informal guidelines of the iterative enhancement algorithm.
As the project progressed, the trend was toward more
procedures and functions with fewer statements, more
independently compiled segments, less nesting of state-
ments, and a decrease in the use of global variables. These
improvements occurred even though the changes were
being made primarily to correct difficulties that were

encountered in incorporating modifications during the

iterative enhancement process.

The meaning of many of the trends indicated in Table
I is clear. For example, due to the difficulties encountered
in working with larger units of code, the number of pro-
cedures and functions and the number of separately
compiled modules increased much more than did the
number of statements. Similarly, the decrease in nesting

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1975

level corresponds to the increase in the number of pro-
cedures and functions.

One of the harder to explain sequences of statistics
is the average number of tokens per statement. The
probable cause for the large jump between compilers
1) and 2) is the relaxation of several Fortran-like restric-
tions imposed for the initial bootstrap. The more inter-
esting jump between compilers 3), written in SIMPL-X,
and 4), written in SIMPL-T, seems to suggest that writing
in a more powerful language (SIMPI-T) may also affect
the writing style used by a programmer. That is, with
more powerful operators more operators are used per
statement.

The statistics for globals, locals, and parameters indicate
a clear trend away from the use of globals and toward
increased usage of locals and parameters. The large drop
in the number of globals accessible to the average pro-
cedure or function between compilers 3) and 4) and com=
pilers 4) and 5) corresponds to the increase in the number
of separately compiled modules for 4) and 5). Splitting
one separately compiled module into several modules
decreases the number of accessible globals because the
globals are also divided among the modules and are usually
not made accessible between modules.

The notion of data binding is more complex than the
notions considered above and the data binding statistics
require more effort to interpret. Note, for example, that
if the number of procedures and functions doubles, then
the data binding count would most likely more than double
due to the interactions between the new and old procedures
and functions. Similarly, splitting a separately compiled
module into several modules would tend to decrease the
number of possible bindings due to the decrease in the
number of accessible globals.

In light of these considerations, the data binding counts
in Table I seem reasonable except for the decrease in
actual bindings from compiler 4) to compiler 5). A more
detailed investigation of this decrease revealed that it
was primarily- due to the elimination of the improper
usage of a set of global variables in the code generation
component of the compiler. The sharing of these variables
by two logically independent sets of procedure had caused
several problems in modifying the code generator, and the
data accessing was restructured in an attempt to eliminate
these problems.

Finally, the percentage of possible data bindings that
actually oceurred can be interpreted as an indication of
how much variables that are declared globally are really
used as globals. (If every procedure and function both
modified and aceessed all its accessible globals, then the
percentage would be 100.) As with the other measures,
ideal values (in an absolute sense) are not clear, but the
trend toward higher values that is shown in Table I is the
desired result.

CONCLUSION

Two major goals for the development of a software
product are that it be reasonably modifiable and reliable.

BASILEI AND TURNER: ITERATIVE ENHANCEMENT

395

MEAsURES MADE oN Five DirrerENT CoMPILERS IN THE SIMPL-T ProJect

Number of Statements
Number of Procedures and Functions
Number of Separately Compiled. Modules
Average Number of Statements per Proc/Func
Average Nesting Level
Average Number of Tokens per Statement
Number of Data Variables:
Globals
Locals
Parameters
MﬂmemmwoémmemM%pﬂPmdmm:
G]oba]s‘
Locals
Parameters
Percentage of:
Globals
Locals
Parameters
Average Number of Globals Accessible by a Proc/Func
Number of Actual Data Bindings

Number of Possible Data Bindings

TABLE 1
(1) (2) (3) (4) 5)

3404 4217 5181 5847 6350
89 189 213 240 289

4 4 7 15 37.
82 223 24.3 24.4 22.0
3.4 2.9 2.9 2.9 2.8
5.7 6.3 6.6 7.2 7.3
155 132 151 180 193
112 381 496 550 621
35 184 215 257 388
1.7 0.7 0.7 0.8 0.7
1.3 2.0 2.3 2.3 2.1
0.4 1.0 1.0 1. S 1.3
51.3 18.9 17.5 18.2 16.1
37.1 54.7 57.5 55.7 51.7
1.6 2.4 24.9 2.0 32.3
52.0 52.2 57.4 33.9 22.3
2610 6662 | 8759 12006 10442
243780 | 814950 .| 1337692 | 497339 342727
1.1 0.8 0.7 2.4 3.0

Percentage of Possible Bindings that Occurred

This paper recommends the iterative enhancement tech-
nique as a methodology for software development that for
many projects facilitates the achievement of these goals
and provides a practical means of using a top-down step-
wise refinement approach.

The technique involves the development of a software
product through a sequence of successive ‘design and im-
plementation steps, beginning with an initial “guess”
design and implementation of a skeletal subproblem. Each
step of the iterative process consists of either a simple,
well-understood extension, or a design or implementation
modification motivated by a better understanding of the
problem obtained through the development process.

It is difficult to make a nonsubjective qualitative judg-
ment about the success of a software technique. However
the preliminary statistics from an analysis of the SIMPL-T
project do indicate some desirable quantitative results.
These statistics suggest that the informal guidelines of
the heuristic iterative enhancement algorithm encourage
the development of a software product that satisfies a
number of generally accepted evaluation criteria.

The measure of accomplishment for the SIMPL-T
project was based upon relative improvement with respect
to a set of measures. A question remains as to what are
absolute 'measures that indicate acceptable algorithm
termination ecriteria. More work on several different
projects and studies of the implications of these measures

are needed to help determine some quantitative charac-
teristics of good software.

A need also exists for developing a formal basis for
software evaluation measures. An analytical basis for
evaluation would not only increase the understanding of
the meaning of the measures but should also shed some
light on appropriate absolute values that indicate the
achievement of good characteristics.

The implementation and analysis of the SIMPL-T
system have demonstrated that not only is the iterative
enhancement technique an effective means of applying
a modular, top-down approach to software implementa-
tion, but it is also a practical and efficient approach as
witnessed by the time and effort figures for the project.
The development of a final product which is easily modified
is a by-product of the iterative way in which the product
is developed. This can be partiaily substantiated by the
ease with which present extensions and modifications can
be made to the system. A reliable product is facilitated
since understanding of the overall system and its com-
ponents is aided by the iterative process in which the
design and code are examined and reevaluated as en-
hancements are made.

REFERENCES

1] H.D. Mllls “On the development of large, reliable programs,”
Rec. 1978 I1EEE Symp. Comp. Software Reliability, Apr. 1973,
pp. 155-159.

396

(2] ——, “Techniques for the specification and design of complex
programs,” in Proc. 8rd Tezas Conf. Computing Systems, Univ.
Texas, Austin, Nov. 1974, pp. 8.1.1-8.1.4.

[3] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming. London: Academic, 1972.

[4] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” C Ass. Comput. Mach., vol. 15,
pp. 1053-1062, Dec. 1972.

{5] N. Wirth, “Program development by stepwise refinement,”’
C. . Ass. put. Mach., vol. 14, pp. 221-227, Apr. 1971.

[6] V. R. Basili and A. J. Turner, “SIMPL-T: a structured pro-
gramming language,” Univ. of Maryland, Comp. Sci. 8tr
CN-14, Jan. 1974.

[71 V. R. Basili, “The SIMPL family of programming languages
and compilers,” Univ. of Maryland, Comp. Sci. Ctr., TR-305,
June 1974,

[8] V. R. Basili and A. J. Turner, “A transportable extendable
compiler,” in Software—Practice and Experience, vol. 5, 1975,
pp. 269-278. i

{91 J. McHugh and V. R. Basili, “SIMPL-R and its application
to large, sparse matrix problems,” Univ. of Maryland, Comp.
Sci. Ctr., TR-310, July 1974.

(10] V. R. Basili, “SIMPL-X, a language for writing structured
prggrams,” Univ. Maryland, Comp. Seci. Ctr., TR-223, Jan.
1973.

{11] M. Rain, “Two unusual methods for debugging system soft-
ware,” in Software—Practice and Ezperience, vol. 3, pp. 61-63,
1973.

Victor R. Basili was born in New York;,
N.Y., on April 13, 1940. He recieved the B.S.
degree in mathematics from Fordham College,
New York, N.Y., the M.S. degree in mathe-
matics from Syracuse University, Syracuse,
N.Y. and the Ph.D. degree in computer
science from the University of Texas, Austin,
in 1961, 1963, and 1970, respectively.

From 1963 to 1967 he was with the Depart-
ment of Mathematics and Computer Science,
Providence College, as an Instructor, and for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, DECEMBER 1975

the latter two years, as Assistant Professor. From 1970 to 1975 he
was Assistant Professor, and is currently Associate Professor, in the
Department of Computer Science, University of Maryland, College
Park. He is a consultant with the Institute for Computer Applications
in Science and Engineering, NASA Langley Research Center,
Hampton, Va., the Naval Research Laboratory, Washington, D.C.,
and the Naval Surface Weapons Center, Dablgren Laboratory,
Dabhlgren, Va. He has been involved in the design and development
of the graph algorithmic language, GRAAL;, the SIMPL family of
programming languages and compilers, and the SL/1 language for
the CDC Star computer. His special fields of interest include de-
sign, implementation, modeling, and analysis of programming
languages and software methodology.

Dr. Basili is a member of the Association for Computing Ma-
chinery, the IEEE Computer Society, and the American Association
of University Professors.

Albert J. Turner received the B.S. and M.S.
degrees in mathematics from the Georgia
Institute of Technology, Atlanta, and is
currently a candidate for the Ph.D. degree in
computer science from the University of
Maryland, College Park.

Software development efforts in which he
has had a major role include the implementa-
tion of an administrative data processing
system at West Georgia College, and the
development of the SIMPL family of pro-
gramming languages and compilers at the University of Maryland.
He is currently a faculty member in the Department of Mathematical
Sciences, Clemson University, Clemson, S.C. His major interests are
the design, modeling, and implementation of programming languages,
and the design and implementation of computer software.

