Computers & Structures Vol. 10, pp. 3943
© Pergamon Press Ltd., 1979. Printed in Great Britain

0045-7949/79/0401-0039/$02.00/0

MEASURING SOFTWARE DEVELOPMENT CHARACTERISTICS
IN THE LOCAL ENVIRONMENT?

VICTOR R. BASILI and MARVIN V. ZELKOWITZ

Department of Computer Science, University of Maryland, College Park, MD 20742, U.S.A.

(Received 12 May 1978)

Abst.ract'—This paper discpsses the characterization and analysis facilities being performed by the Software
Engineering Laboratory which can be done with minimal effort on many projects. Some examples are given of the kinds

of analyses that can be done to aid in managing,
production environment.

INTRODUCTION

Software development is big business. Estimates on the
actual expenditures for software development and main-
tenance were ten billion dollars in 1973[1] and most
likely 15-25 billion dollars today. These are only esti-
mates because little data is gathered by the software
industry in monitoring itself, analyzing its environment
and defining its terms.

The software product and its development/main-
tenance environments cover a wide range. The product
varies from first time, one of a kind systems, to standard
multi-level run of the mill systems; from large scale
hundreds of man-year developments to small scale one
- to two man-year developments. The environment varies
from shops dedicated to the development of software to
organizations which simply maintain their existing
software system. A large number of methodologies, tools
and techniques are available to help in the cost effective
production of maintainable software. However, most of
these techniques involve tradeoffs when applied in actual
practice; some tools are impractical in certain environ-
ments and some techniques may not be applicable in
other environments.

For example, for a new one-of-a-kind project where
some specifications are still unknown or subject to
change (not a recommended procedure), incremental
development techniques, such as iterative
enhancement{2] may be more cost effective than the
more standard top down approach. Some tools, such as
requirements analyzers{3] which are highly effective in
the development of large scale systems, are not effective
when the project is relatively small due to the substantial
overhead in using the tool. Peer code reading is im-
possible in an environment of only one programmer.

Understanding the characteristics of a particular
software environment leads to more cost effective main-
tainable software. This requires knowledge of the
various parameters that affect the development of
software and its maintenance. Unfortunately there is
little effort expended in analyzing this process in local
environments. Most of the data has come from the very
large scale developments, projects like 0S360, Sage,
Gemini and Saturn[4].

Although these projects are major contributors to the
software development budgets, they are not necessarily

fResearch supported in part by grant NSG-5123 from NASA
Goddard Space Flight Center to the University of Maryland.

39

understanding and characterizing the development of software in a

typical of software development across the industry.
However, they are easiest to secure funding for collec-
ting data and analyzing it. For example, if the budget for
a project 1s twenty million dollars, then it is easy to add
two hundred thousand for data collection and analysis, a
mere 1% overhead. However, if the project has a budget
of two hundred thousand dollars, then adding fifty
thousand for data collection imposes a prohibitive 25%
overhead.

What characterizes these large scale software de-
velopment projects? The development activities usu-
ally involve about 30% analysis and design, 20% coding
and 50% testing. However, development costs account
for only 20% of total system costs on some projects if
maintenance and modification activities are included[1].

These cost characteristics however are different for
different software environments. What characterizes the
projects studied above is that they are large one time
only systems. Testing is very expensive because it is
difficult to integrate the various pieces of the system into
a working unit. Clearly smaller better understood
systems would require a smaller proportion of the testing
time and possibly less design and analysis time.

The authors have been analyzing development in an
environment in which the software is of the six-ten
man-year variety involving the development of ground
support. software for spacecraft control; a set of prob-
lems whose basic solutions and designs are fairly well
understood. Thus the tailoring of methodoligies and tools
for this environment would surely be different than in
other environments.

THE SOFTWARE ENGINEERING LABORATORY

The Software Engineering Laboratory began in
August, 1976 to evaluate various techniques and
methodoligies to recommend better ways to develop
software within the local NASA environment. Three
groups participate in the Laboratory—the University of
Maryland, whose role is to develop an operational
measurement environment and analyze the development
process; NASA Goddard Space Flight Center, whose
role is to implement the operational measurement en-
vironment and whose goal is to discover ways to develop
more product for the money spent; and the contractor,
Computer Sciences Corporation, whose role is to supply’
data as they develop software and whose goal is to gain
feedback on project development both for understanding

4 Victor R. Basii and MARVIN V. ZELKOWITZ

the characteristics of past development and to monitor
software development in real time.

More specifically, the goals of the Laboratory are:

1. Organize a data bank of information to classify
projects and the environment in which they were
developed.

2. Compare what is happening with what is supposed to
be happening (e.g. are the proposed methodologies being
employed as they are supposed to be implemented?).

3. Isolate the significant parameters that characterize
the product and the environment.

4. Test out existing measures and models as . they
appear in the literature (usually for large scale software
developments) and develop measures for the local
environment.

5. Analyze methodologies and their instrumentation in
the local environment.

6. Discover and recommend appropriate milestones,
methodologies, tools and techniques for use under given
conditions in order to develop more manageable, main-
tainable, reliable, and less expensive software products.

The research objectives of the Laboratory can be
divided into three basic areas: management, reliability
and complexity. The management study is to analyze
and classify projects based on management parameters,
and investigate management measures and forecasting
models. The reliability study is to examine the nature
and causes of errors in the environment, find
classification schemes for errors and expose techniques
that reduce the errors that occur in the local environ-
ment. The purpose of the complexity study is to gain
insight into the nature of complexity and develop models
that correlate well with those insights and discover
whether various techniques create more systematic and
thus easier to maintain program structures.

The primary data gathering technique for the Labora-
tory is a set of seven reporting forms:

General Project Summary

This form is used to classify the project and is used in
conjunction with the other reporting forms to measure
estimated vs actual project progress. It is filled out by the
project manager at the start of the project, at each major
milestone, and at completion. The final report should
accurately describe the system development life cycle.

Programmer| Analyst Survey

This form is filled out by each programmer at the start
of the project, and is used to classify the background of
all project personnel.

Component Summary

This form is used to keep track of the components of a
system. A component is a piece of the system identified
by name or common function (e.g. entry in a tree chart,
COMMON block, subroutine). With the information on
this form combined with the information on the
component status report, the structure and status of the
system and its development can be monitored. This form
is filled out for each component at the time that the
component is identified (usually during the design stage),
and at the time it is completed (usually during

testing). It is filled out by the person responsible for the

component.

Component Status Report
This form is used to keep track of the development of
each component of the system. The form is turned in

weekly by each person on the project, and it identifies
the components worked on, hours devoted to each
component, and tasks performed (e.g. design, code, re-
view). ~

Resource Summary

This form keeps track of project costs on a weekly
summary basis. It is filled out by the project manager and
lists for all personnel the total number of hours spent on
the project.

Change Report

The change report form is filled out every time the
system changes because of change or error in design,
code, specifications or requirements. The form identifies
the error, its cause and other facets of the project that
are affected.

Computer Program Run Analysis

This form is used to monitor computer activities used
in the project. Entries are made every time a run is
submitted for processing. The form briefly describes the
purpose of the run (e.g. compile, test, file utility), and the
results (e.g. successful, error termination with message).

DATA COLLECTION ON A SMALLER SCALE

The research goals of the Software Engineering
Laboratory require the collection of large amounts of
data to make full investigations into the nature of the
software development process. The information being
collected by the Laboratory, due to its research nature, is
ambitious and not cost effective for simple management
control; it requires a major expenditure just for process-
ing and validating data for inclusion into the data base.

However, it is possible to gather less data to get
effective results in analyzing the characteristics of the
local software environment. For example, a subset of the
information contained essentially on only three basic
forms is used for the analysis in the. next section. The
three forms are the General Project Summary, the
Resource Summary and the Change Report forms.

From the General Project Summary the following in-
formation is used:

1. Project description including the form of input
(specifications), products developed and products
delivered.

2. Resources of computer time and personnel, includ-
ing constraints and usable items from similar projects.

3. Time including start and end dates and estimated

- system lifetimes.

4. Size of project including various measures such as
lines of code, source lines and number of modules.

5. Cost estimates, man-month estimates and sche-
dules. ,

6. Organization factors, personnel and the kinds of
people used (e.g. managers, librarians, programmers).

7. Methodologies, tools and techniques used.

Data from the Resource summary includes weekly
charges for manpower and computer time, and other
costs for all categories of personnel. The change report
form supplies data on changes made to the system, when
they were made, what modules were affected by the
change, and why the change was made.

PROGRESS FORECASTING

One important aspect of project control is the valida-
tion of projected costs and schedules. A model of esti-

Measuring software development characteristics 41

mating project progress has been developed and with it
estimates on project costs can be predicted.

The Rayleigh curve has been found to closely resem-
ble the life cycle costs on large scale software projects[5,
6]. The curve yielding current resource expenditures (y)
at time (t) is given by the equation:

y=2Katexp(-at’)

where the constant K is the total project cost, and the
constant a is equal to 1/(Td**2) where Td is the time
when development expenditures reach a maximum. The
following analysis demonstrates how this data can be
used for management control of a project. The data was
obtained on projects built for NASA and monitored by
the Software Engineering Laboratory.

For each project in the NASA environment, require-
ments analysis yields estimates of the total resources and
development time needed for completion, which is
recorded on the General Project Summary form. The
following three parameters are relevant to this analysis:

1. Ka, total estimated resources estimated to. be
needed to complete the project through acceptance tes-
ting (in hours).

2. Yd, the maximum resources estimated to be needed
per week to complete the project (in hours).

3. Ta, the number of weeks estimated until acceptance
testing.

Since the Rayleigh curve has only two parameters (K
and a), the above system is over specified and one of the
above values from the General Project Summary can be
determined from the other two. Thus the consistency of
those estimates can be validated. Alternatively, by esti-
mating two of these parameters (e.g. total cost and
maximum weekly expenditures), then the third value
(e.g. completion date) can be calculated.

For example, since budgets are generally fixed in ad-

]
]
]
[+ +
] + +
) + +*
' . -
ol +
Q1 + . +
-
+ .
] LEE R R R RS
] + .
(] 'y . .
L] - L
+)
(X -
+ oo
LI *
[=4 .
o + *
L]
3 * &«
+ e ¥
» -
w .. : « 3
w
= . *
..
o« ®
w s *
o » .
(=X}
|
xN) + *
2 10
o 9 -
x ’ + .
*
1
]
] + %
]
} «
+
o +
o1 *
-
1 x
"+
e
[
]

vance, there is usually little freedom with total resources
available (K). Also, since a fixed number of individuals
are usually assigned to work on the project, the maxi-
mum resources Yd (at least for several months) is also
relatively fixed. Therefore, the completion date (Ta) will
vary depending upon K and Yd.

As stated above, Ka is the total estimated resources
needed to develop and test the system through the ac-
ceptance testing stage. For each environment, the actual
resources K must be obtained from this figure. There are
several methods for estimating K. One approach is by
the empirical data available on past projects. By studying
past projects as NASA, this figure is 12% greater than
estimated expenditures - (hence K =Ka/.88). The
remaining 12% is for last minute changes after accep-
tance testing. Since maintenance costs are not covered,
this figure seems quite low when compared to other
programming environments—the corresponding figure in
other organizations that do include maintenance costs
will probably be correspondingly higher.

Give K, a was computed by assuming different values
of Td to yield the given value of ‘Yd on the General
Project Summary. Then given constant a, the estimated
date of acceptance testing Ta can be comput as follows:

The integral form of the Rayleigh curve is given by:

E=K(1-exp(-at))
where E is the total expenditures up to time t. From the
previous disucssion, we know that at acceptance testing,
E is .88 K (for NASA). Therefore,
88K =K(1 —exp(- at?)).
Solving for t yields:

t = sqrt(—In(.12)/a).

e o« o
® %
+* L 3 . L]
. * .
PEY
+ * .
+ «
x
+ * (S
* «
+ L]
+ -«
« .
+
*
+ * .
+ x e
*
+ * . .
+ *
L] .
+ « .
+ *
+ *
* .
+ *
+ - x
+ *« .
+ *
+ * %
+ . .x
++
+ o
++
++
++
+4+ e

. !-NMQV\ONW@OPNMQV\ONMOOFNM\TV\ O 00O D e AW FN O 00 ONI# NP IN O N 00 O I v= UM~ LN O P 00 O LI e= AIMNLF N ON-00 O
FEEST T T e e e NN N NN N NN AN MM MM M NS E F T8 3 TS DIAIMNININIAININ N0 01000 0000

“WEEK -

Fig. 1. Project A—Estimated resource expenditures curve based upon initial estimates. *, Estimating curve with
Yd (maximum resources) fixed. +, Estimating curve with Ta (Completion date) fixed. -, Actual data.

4 Victor R. Basiii and MARVIN V. ZELKOWITZ

Also, in a second analysis, the estimated acceptance
time Ta was fixed in order to yield a value of a (and
hence Yd) that represents the manpower needed to finish
on schedule.

If the original estimates from the General Project
Summary are accurate, then the estimated and calculated
values should be comparable. If the maximum manpower
estimate was reasonable, then the predicted date for
acceptance testing should be similar to the estimated
date on the General Project Summary. If this acceptance
date is reasonable, then maximum manpower estimates
should be similar to the calculated values.

Figure 1 represents data from one actual project. Ac-
cording to the above analysis two different Rayleigh
curve estimates were plotted. The curve limiting maxi-
mum weekly expendiutres (Yd) might be considered the
more valuable of the two since it more closely ap-
proximates project development during the early stages
of the project. In this case, the weekly expenditures from
the General Project Summary were insufficient for
completing acceptance testing by the initially estimated
completion date Ta. The model predicted acceptance
testing in 58 weeks instead of the proposed 46 weeks.
The actual date was 62 weeks—yielding only a 7% error
(Fig. 2).

In order to complete the project in 46 weeks, up to
440 hr per week (rather than the estimated 350 hr per
week) would have to be spent.

As it turned out, the project used approximately
1600 hr more than initially estimated and maximum
weekly resources were slightly more than original esti-
- mates (371 hr/week instead of 350 hr/week). If these
corrected figures for Ka and Yd are used in the analysis,
then Ta, the date for acceptance testing, is 60 weeks
instead of the actual 62 weeks—an error of only 3%.

OVERHEAD

Overhead is often an elusive item to pin down. In our
projects three aspects of development have been
identified: programmer effort, project management, and
support (librarians, typing, etc). In one project (Fig. 3),
programmers accounted for about 80% of total expen-
ditures with the support activities taking about one third
of the remainder. In addition, only about 60% of all
programmer time was accountable to explicit
components of the system (as reported on the
Component Status Report). The remaining time includes
activites like meeting, travel, training sessions, and other

activities not directly accountable. This “loss” of time is
a signficant overhead item which must be considered in
developing accurate project budgets.

ERROR ANALYSIS

The correction of errors in a system is the major task
of integration testing. Even a simple counting of errors
can be useful as a management estimating tool. Figure
4(a) represents the number of error reports reported per
week on one NASA project. It remained surprisingly
constant over the testing stage. However, the more in-
teresting measure is the handling rate[7], or the number
of different components altered each week (Fig. 4b).

Consider the following set of assumptions:

1. The number of errors in a system is finite, but
unknown.

2. The probability of finding an error is proportional to
the number of individuals working on the problem.

3. The probability of finding an error is random and
uniformly distributed.)

These three assumptions lead to a Poisson distribution

—at

y=e

as the probability of an error remaining after time t.
Furthermore, if we include the assumption that the
probability of fixing a found error-(as oppesed to creating
a new error by fixing the previous error) is the function
a=Dbt (e.g. errors are “easier” to find as you get “good at
it”), then the resulting distribution is the same Rayleigh
curve described previously[5].

Therefore, if N is the total number of errors in a
system, and if h is a measure of the maximum number of
errors found per week, then the number of errors found
per week agrees with the curve:

y = 2Nht exp(~ht?).

A preliminary evaluation of the data of Fig. 4 (and
other projects) seems to bear out these assumptions.
Therefore, by using least squares techniques, the follow-
ing algorithm can be used to measure testing progress:

1. Collect data on errors reported for several weeks.

2. Use least squares to fix a curve to this data. This
gives a measure of N (modules handled) and h (a
measure of maximum errors found).

3. N gives the number of modules in error in the
system, however, this value can never be reached

INITIAL ESTIMATES FROM GENERAL PROJECT SUMMARY

Ka, Resources needed (hours)
Ta, Time to completion (weeks)
Yd, Maximum resources/week (hrs)

14,213
46
350

COMPLETION ESTIMATES USING RAYLEIGH CURVE

K, Resources needed (hours)
Estimated Yd with Ta fixed (hrs)
Estimated Ta with Yd fixed (hrs)

ACTUAL PROJECT DATA
K, Resources needed (hrs)
Yd, Maximum resources (hrs)
Ta, Completion time (weeks)

Ta, estimated using actual
values of K and Yd (weeks)

16,151
40
58

17,742
m
62

60

Fig. 2. Estimating Ta and Yd from General Project Summary data.

/3

AR AR FEELEEEFL LIRS EE PRI NS

LR e detdadutad R R R I R A AR R)

Measuring software development characteristics

Three

MR IR X

LAY
AR AR X IR)

N AR R R R R A e
MR Y R IR XY
AT YT
XA A TR

IESN b ettt
cHEIbEEERIEIS S
Tertrrbribbbey
AL T NN R Y XN 2R X
A L AR AT T X IR Y
e bbb PP EPEEIIIOS
L et A IR R R R R T
AR A AR R X XN]

IAARAR L LT R R R
eense AR I RN R R R AR A RIS X]
Concuntbtb bt rrttttrsseers
P R N T X X R R R RS d

MO R R I T R A
R L R T Ry R R R e
tleenam L R R R R X g]
et A R R R R R R S R R TR R
R R R A R R AR R R T R R
AR I R R R R R R R A RN R Y]
R Y N X T)
R R R R R R A A LR dd s
R R L R R R
R R R R R R T N Y X
B X e R T R R R Y R R R
RS E-CI T R Y Y R R Ry 8
uuuuu P R Y ey
M e R R R
R e A R R R

R ARl R R AR AR AR L AR

asverecs

LR e A IR I R T RN R TN
R L AL R R X
LR CEEIPEEEAEPII LIS

LR PEEEEEEEEPEEEE IO RESD
MR el PELFPFPEEL L EEEEP LI EEIEEY

LR s FEEEEEPSEIIT OGS
AR T T T I Y R R R NN
AR E R R R X

Support effort (librarians, typing, clerical, etc.).

A R R R R R
R R A AR A R R N TN N
R Y R
i A A R R R]
Clammc b bbb b IE I AN
ARG I R N R R IR R XN
LA Y X
AL L X R IR R AL R]
R AR R TR N L L

A N TR R Y

LR Y Y Y X Y X
R I X R TR
AR R R R T
Clemt bbbttt bbELIES
AR AT I R TR N
SOt r bbbt bER e
AR R X

h
1
)
)
)
-
:
be
b4
*
:
*
be
:
+*
:
b
be
be
:
:
:
be
be
be
b4
Fig. 3. Resources expended on various developmental activites. +, Programmer effort. —, Management effort. -,

A model of lai'ge program

" development. IBM Systems J. 15(3), 225-252 (1976).

8. J. D. Musa,

REFERENCES
1. B. Boehm, Software and its impact: a quantitative assessment
A theory of software reliablility and its ap-

technique for software development. IEEE Transactions

Software Engng 1(4), 390-396 (1975).
3. D. Teichroew and E. A. Hershey, PSL/PSA: a computer aided

formation processing systems. IEEE Transactions Software

Engng 3(1), 41-48 (1977).
4. R. Wolverton, The cost of developing large scale software.

development. IEEE Computer Society Compcon, pp. 138-143,

Washington, D.C. (Sept. 1976).

7. L. A. Belady and M. M. Lehman,

Production. (Edited by M. K. Starr) pp. 71-101. Penguin

Books, Baltimore, Maryland (1970).
6. L. Putnam, A macro-éstimating methodology for software

technique for structured documentation and analysis of in-

IEEE Transactions Comput. 23(6), 615-636 (June 1974).
5. P. Norden, Use tools for project management. Management of

Datamation 97-103 (July 1977).
2. V. Basili and A. J. Turner, Iterative enhancement: a practical
plication. IEEE Transactions Software Engng 1(3), 312-327

(Sept. 1975).

.)]
Fig. 4. Handling and report rates on one project. (a) Report rate by week. (b) Handling rate by week.

The project represented by Fig. 4 shows the practi-

exactly. Compute the time needed to get the number of
cality of this measure. This project has a total of 1115

remaining errors to an “acceptable” level[8).
this aspect of errors in order to refine this measure

further.
butions and cooperation of Mr. Frank McGarry, head of the

components that were handled. A least squares fit yiel-
ded an N of 10249 and an h of .0009024 with a cor-
relation of .7264. This figure of 1024 was only an error of
8% in the true handling rate. Current research is studying
Acknowledgements—We would like to acknowledge the contri-
Systems Development Section of NASA Goddard Space Flight
Center. He has been instrumental in organizing the Laboratory
and in interfacting with the contractor in order to see that the
data is collected reliably and timely. We would also like to thank
Computer Sciences Corporation for their patience during form
development and their contributions to the organization and
operation of the Laboratory.

C.hS, 10/1-2. D

