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Recently, considerable attention has been de-
voted to the notion that factors directly related to the
psychological nature of human beings play a major

_role in the development of computer software.10 If
human factors do significantly affect software
development, then varying the size of the program-
ming team and the degree of methodological disci-
pline—two supposedly potent human factors—
should induce measurable differences in both the
development process and the developed product.
Controlled experimentation involving easily meas-
ured “low-level” programming aspects can serve not
only to verify this hypothesis but also to accumulate
a detailed set of empirically supported conclusions.
Interpreting these conclusions in view of subjective
reasoning about software can yield further under-
standing about the effect of human factors on certain
“high-level” software properties that are difficult to
measure directly.

To this end, we conducted a controlled experiment
involving several replications of a specific software
development task under varying programming en-
vironments. For eachreplication, successive versions
of the software were entered in a historical data bank
that recorded details of the development process and
product. A host of low-level measurements, such as
the number of textual revisions during development
and the number of decision statements in the
delivered source code, were extracted from the data
bank and statistically analyzed. Some of these
measuremments were ‘‘confirmatory,” planned in
advance and expected to show differences among the
programming environments; but many were simply
“exploratory.” For each measured aspect, dif-
ferences in both the expectancy and the predictabili-
ty of its behavior under the different programming
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environments were checked for statistical signifi-
cance. The experiment’s conclusions were inter-
preted according to subjective reasoning about soft-
ware in order to perceive their implications regarding
certain high-level software properties, such as
reliability and complexity.

The investigation focused on the effects of two par-
ticular human factors: the size of the programming
“team” deployed and the degree of methodological
discipline employed. For the team-size factor, in-
dividual programmers working alone were compared
to teams of three programmers working together. For
the degree-of-discipline factor, an ad hoc approach
allowing programmers to develop software without
externally imposed methodological constraints was
compared to a disciplined methodology obliging pro-
grammers to follow certain modern programming
practices and team organization procedures. It
should be noted that the terms ‘“methodology’’ and
“methodological”’ are used herein to connote a com-
prehensive integrated set of development techniques
as well as team organizations, rather than a par-
ticular technique or organization in isolation.

Two distinguishing characteristics of this ex-
perimental investigation deserve emphasis. First,
this study was based upon direct quantification of
software development phenomena: measurement
that is quantitative (on at least an interval scale'l),
objective (without inaccuracy due to human subjec-
tivity), unobtrusive (to those developing the soft-
ware), and automatable (not dependent on human
agency). Second, this study was concerned with con-
trolled experimentation involving an entire software
development project of nontrivial size in a lifelike set-
ting. This particular experiment represents a reason-
able compromise between ‘‘toy’’ experiments, which
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often suffer from artificiality or lack practical ap-
plication, and “‘production” experiments, which in-
cur prohibitively high costs.

This paper discusses human factors issues relative
toinitial results from an extensive software engineer-
ing research project; a comprehensive treatment of
the overall study appears elsewhere.1214

Designing and conducting the experiment

Experimental design. Completion of a specific soft-
ware development project was the basic task in-
volved in the experiment. Nineteen replications of
the basic task were performed concurrently and in-
dependently by separate software development
teams under controlled but varied conditions. Two
programming factors (each with two levels) were
selected as the independent variables: size of pro-
gramming team (single individual, three-person
team) and degree of methodological discipline (ad hoc
approach, disciplined methodology). Three ex-
perimental treatment groups, designated AI, AT,
and DT (containing 6, 6, and 7 teams, respectively),
operated under a different factor-level combination:

AT —ad hoc approach, single individual;
AT —ad hoc approach, three-person team;
DT —disciplined methodology, three-person team.

There was no DI group since the disciplined
methodology cannot be exercised by an individual
programmer.

The dependent variables to be observed consisted
of a large set (over 130) of quantifiable programming
aspects characterizing the development process and
the developed product. Following a reductionist ap-
proach, many programming factors were held cons-
tant across all programming teams: programming
project, project specifications, implementation
language, calendar schedule, computer resource
allocation, and automated debugging tools.
However, two other factors could not be explicitly
controlled and were allowed to vary among the teams:
the personal ability and/or experience of the par-
ticipants and the amount of time and/or effort they
actually devoted to the project.

Software development methodologies. The ad hoc
approach exercised by groups Al and AT allowed
programmers to develop software in a manner entire-
ly of their own choosing. No methodology was being
taught in the course that these subjects were taking.
The disciplined methodology exercised by group DT
consisted of an integrated set of state-of-the-art
techniques, including top-down design, process
design language (PDL), functional expansion, design
and code reading, walk-throughs, and chief program-
mer team organization. These techniques were being
taught as an integral part of the course that these
subjects were taking, using texts by Linger, Mills,
and Witt,!5 Basili and Baker,'® and Brooks.!? Since
the subjects were novices in the methodology, they
executed the techniques to varying degrees of

thoroughness and were not always as successful as
seasoned users of the methodology would be.

Experimental setting. The experiment was con-
ducted during the spring 1976 semester in conjunc-
tion with regular academic courses at the University
of Maryland. A graduate-level academic setting pro-
vided the opportunity both to achieve an adequate
experimental design and to simulate key elements of
a production environment. The experimental task
and treatments were built into the course material
and assignments of two comparable advanced elec-
tive courses. Everyone in the two classes par-
ticipated in the experiment; they were aware of being
monitored, but had no knowledge of what was being
observed or why.

The programming application was a simple com-
piler, involving string processing and translation
from an Algol-like language to a zero-address
machine code. The total task was to design, imple-
ment, test, and debug a complete system from given
specifications. The scope of the project excluded both
extensive error handling and user documentation.
The project was of modest but nonnegligible difficul-
ty, requiring roughly a two man-month effort and
resulting in systems that averaged over 1200 lines of
high-level language source code. All facets of the pro-
ject itself were fixed and uniform across all develop-
ment teams.

The participants were advanced undergraduate
and graduate students in the Department of Com-
puter Science. None were novice programmers, all
had completed at least four semesters of program-
ming course work, several were about to graduate
and take programming jobs in government or in-
dustry, and a few had as much as three years of pro-
fessional programming experience. Generally speak-
ing, they were all familiar with both the implementa-
tion language and the host computer system, but in-
experienced in team programming and the disci-
plined methodology.

It was necessary in the statistical model to assume
homogeneity among the participants with respect to
personal factors such as ability and/or experience,
motivation, time and/or effort devoted to the project,
etc. As a reasonable measure of individual program-
mer skill levels under the circumstances of this
study, the participants’ grades from a pertinent pre-
requisite course provided a post-experimental confir-
mation of at least one facet of this assumed homo-
geneity: the distribution of these grades among the
three experimental groups would have displayed the
same degree of homogeneity as was actually ob-
served in over 9 out of 10 purely random assignments
of the participants to the groups. If anything, based
on the researchers’ subjective judgement, the par-
ticipants in group AI seemed to have a slight edge
over those in groups AT and DT with respect to
native programming ability, while groups Al and AT
seemed slightly favored over group DT with respect
to formal training in the application area.

The implementation language was the high-level,
structured-programming language SIMPL-T,!®
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which is taught and used extensively in course work
at the university. SIMPL-T contains the following
control constructs: sequence, IFTHEN, IFTHEN-
ELSE, CASE, WHILEDO, EXIT from loop, and
RETURN from routine (but no GOTO). SIMPL-T
allows two levels of data declaration scope, local toan
individual routine or global across several routines,
but routines may not be nested. The language
adheres to a philosophy of “strong data typing” and
supports integer, character, and string data types
and single-dimension array data structures. It pro-
vides the programmer with both recursion and
string-processing capabilities similar to PL/I.

Data collection and reduction. For the experiment,
data collection was automated on-line, followed by an
off-line data reduction step. While the software pro-
jects were being developed, the computer activities of
each team were automatically and unobtrusively
monitored. Special module compilation and program
execution processors (invoked by very slight changes
to the regular command language) created a histori-
cal data bank, consisting of all source code and test
data accumulated throughout the project develop-
ment period, for each development team. The raw in-
formation in this data bank was subsequently re-
duced to obtain the experimental observations.
Scores for each low-level programming aspect were
extracted directly and algorithmically from the data
bank, thus ensuring their objectivity.

Programming aspects measured. Thelow-level pro-
gramming aspects are specific isolatable and observ-
able features of programming phenomena, related to
either the process or the product of software develop-
ment. Process aspects represent characteristics of
the development process itself, in particular, the cost
and required effort as reflected in the number of com-
puter job steps (or runs) and the amount of textual
revision of source code during development. Product
aspects represent characteristics of the final product
that was developed, in particular, the syntactic con-
tent and organization of the symbolic source code.
Examples of product aspects are number of lines, fre-
quency of particular statement types, and average
size of data variables’ scope. The range of features
considered as product aspects includes control-flow
constructs, data variable organization, and inter-
routine communication. For each programming
aspect there exists an associated metric, a specific
algorithm which ultimately defines and measures
that aspect. (A complete list of programming aspects
and explanatory notes appear in the appendices.)

Confirmatory. The complete set of programming
aspects may be partitioned into two subsets based
upon the motivation for their inclusion in the study.
Several aspects, denoted as confirmatory, had been
consciously planned in advance of collecting and ex-
tracting data, because intuition suggested that they
would serve particularly well as quantitative in-
dicators of important qualitative characteristics of
software development phenomena. It was hypothe-
sized a priori that certain differences among the
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groups would be indicated by the confirmatory
aspects, as detailed elsewhere.14

Exploratory. The remaining aspects, denoted as
exploratory, were considered mainly because they
could be collected and extracted cheaply along with
the confirmatory aspects. There was little serious ex-
pectation that these exploratory aspects would be
useful indicators of differences among the groups,
but they were included in the study with the intent of
observing as many aspects as possible on the off
chance of discovering any unexpected tendency or
difference. Thus, the study combines elements of
both confirmatory and exploratory data analysis
within one common experimental setting.1?

It should be noted that a large percentage of the
product aspects fall into the exploratory category.
On the whole, the examined product aspects repre-
sent a fairly extensive taxonomy of the surface
features of software. The idea that important soft-
ware qualities (e.g., complexity) could be measured
by counting such surface features has generally been
disregarded as too simplistic.?’ A resolve to study
these surface features empirically, to see if some-
thing might turn up, before rejecting the underlying
idea, was partially responsible for their inclusion in
the study.

Objective results and interpretations

The study’s objective results are the statistical
conclusions for the programming aspects considered
in the experiment; they are reported in Tables 1
through 9. The study’s interpretations state general
trends in the conclusions based on classifications
reflecting certain abstract programming notions,
such as cost, modularity, and data organization.

The tables express each statistical conclusion in
the concise form of a three-way comparison outcome
“equation.” It states any observed differences, and
the directions thereof, among the programming en-
vironments represented by the three groups exam-
ined in the study: ad hoc individuals, AI; ad hoc
teams, AT; and disciplined teams, DT. The equality
Al = AT = DT expresses the null outcome of no
systematic difference among the groups. (Note that
within the tables a simple pair of equal signs appears
in place of the null outcome.) An inequality, e.g., AI<
AT = DT or DT < AI < AT, expresses a non-null (or
alternative) outcome of certain systematic dif-
ferences among the groups in stated directions. A
critical level (or risk) value is also associated with
each non-null outcome, indicating its individual
reliability. This value is the probability of having er-
roneously rejected the null conclusion in favor of the
alternative; it also provides a relative index of how
pronounced the differences were in the sample data.
If no alternative outcome could be supported at a
critical level below 0.20, the comparison defaulted to
the null outcome.

Two kinds of comparisons, location and dispersion,
were made for each measured aspect. Location com-
parisons deal with a measure’s central tendency or
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average value; dispersion comparisons deal with a
measure’s variability around its central tendency.
Note that examination of both location and disper-
sion differences among the three groups imposes a
certain duality on the entire investigation, sinceit ad-
dresses both the expectancy and the predictability of
software development behavior under different pro-
gramming environments.

Regardless of the particular aspects being
measured and the particular kinds of comparisons be-
ing made, it is important to understand the implica-
tions of the comparison outcome equations just in
terms of the experimental factors. The outcome AI #
AT = DT (i.e., either AI< AT = DT or AT = DT<
Al) indicates a difference attributable to the team
size factor alone; the measured aspect is apparently
sensitive to differences in team size but not to dif-
ferences in methodological discipline. Similarly, the
outcome DT # Al = AT (i.e., either DT< Al = AT or
Al = AT < DT) indicates a difference attributable to
the methodological discipline factor alone.

However, the outcome AT # DT = Al (ie., either
AT<DT = Al or DT = AI < AT) is not as easy to ex-
plain. Such an outcome clearly indicates an interac-
tion between the levels of the two experimental fac-
tors, as though the effect (on the measured aspect) of
an increase in team size were somehow counteracted
by an accompanying increase in methodological
discipline. It is the researchers’ belief, as elaborated
elsewhere,1214 that the AT # AI = DT outcome in-
dicates a difference attributable to an intangible
“conceptual integrity’’ factor that is, in turn, predic-
tably sensitive to the tangible factors of team size
and methodological discipline.

In general, interpretations express the researchers’
own ideas, according to personal intution about pro-
gramming and software, of the implication and im-
portance of the study’s objective results. The inter-
pretations presented here are based on a simple
classification of the low-level programming aspects.
Each class consists of aspects that are related by
some common feature (e.g., all aspects relating to the
program’s statements, statement types, and state-
ment nesting), and classes are not necessarily dis-
joint (i.e., a given aspect may be included in two or
more classes). A particular high-level software prop-

erty (in the example, control structure organization)
is associated with each class. Such a classification
provides a framework for jointly interpreting the cor-
responding statistical conclusions in light of the
underlying issues by which the aspects themselves
are related.

The programming aspects measured in this study
were categorized into a hierarchy of nine classes (with
about 10 percent overlap overall), outlined as follows:

High-Level Software Property Class
Development Process Efficiency
Effort (jobsteps)............... I
Errors (program changes). .. ... .. 11
Final Product Quality
Gross Size.................... 111
Control-Construct Stucture. ... .. v
Data Variable Organization. . . . . . Vv
Modularity
Packaging Structure.......... VI
Invocation Organization. ...... VIl
Inter-Routine Communication
ViaParameters............... VIII
Via Global Variables.......... IX

Tables 1 through 9 list the individual aspects com-
prising each class, together with the corresponding
statistical conclusions for both location and disper-
sion comparisons. For each aspect class, the follow-
ing interpretations were formulated by jointly ex-
amining the particular statistical conclusions and in-
tuitivley abstracting the empirically derived details,
in order to glimpse something of how the correspond-
ing high-level software property is affected by the
team size and methodological discipline factors.

Class I: Effort (job steps). Within Class I, process
aspects dealing with computer job steps, there is
strong evidence that the teams using the disciplined
methodology reduced their average development
costs relative to both the other teams and the in-
dividuals (see Table 1). As a class, these aspects
directly reflect the frequency of computer system
operations (i.e., module compilations and test pro-
gram executions) during development. They are one
possible way of measuring machine costs, in units of
basic operations rather than monetary charges.

Table 1.
Conclusions for Class I: Effort (job steps).
LOCATION DISPERSION
PROGRAMMING ASPECT COMPARISON  CRITICAL COMPARISON  CRITICAL
OUTCOME** LEVEL OUTCOME** LEVEL
* COMPUTER JOB STEPS DT < Al = AT 0.003 = =
*  MODULE COMPILATION DT < Al = AT 0.022 = =
* UNIQUE DT < Al = AT 0.011 = =
IDENTICAL = = = =
*  PROGRAM EXECUTION DT < Al = AT 0.022 = =
MISCELLANEOUS DT < Al = AT 0.144 AT = DT < Al 0.077
*  ESSENTIAL DT < Al = AT 0.003 = =
AVERAGE UNIQUE COMPILATIONS PER MODULE DT < Al = AT 0.088 = =
MAXIMUM UNIQUE COMPILATIONS FOR ANY ONE MODULE DT < Al = AT - 0.118 DT < Al = AT 0.003
***Confirmatory’’ aspects (presupposed to be quantitative indicators of important qualitative characteristics).
**Paired equal signs indicate the null outcome, Al=AT=DT.
COMPUTER



Assuming each computer system operation involves
a certain expenditure of the programmer’s time and
effort (e.g., effective terminal contact, test result
evaluation), these aspects indirectly reflect human
costs of development (at least that portion not
devoted to design work).

The strength of the evidence supporting a dif-
ference with respect to location comparisons within
this class is based on both (1) the near unanimity [8
out of 9 aspects]of the DT < AI = AT outcome and (2)
the very low critical levels [< 0.025 for 5 aspects] in-
volved. Indeed, the single exception among the loca-
tion comparisons (outcome AI = AT = DT on the
Identical Module Compilations aspect) is readily ex-
plained as a direct consequence of the fact that all
teams made essentially similar use (or nonuse, in this
case, since identical compilations were not uncom-
mon) of the on-line storage capability (for saving
relocatable modules and thus avoiding identical
recompilations). This was expected since all teams
had been provided with the same storage capability,
but without any training or urging to use it. The con-
clusions onlocation comparisons within this class are
interpreted as demonstrating that employment of
the disciplined methodology by a programming team
reduces the average costs, both machine and human,
of software development, relative to both individual
programmers and programming teams not employ-
ing the methodology. Examination of the raw data
scores themselves indicates the magnitude of this
reduction to be on the order of 2 to 1 (i.e., 50 percent)
or better.

With respect to dispersion comparisons within this
class, the evidence generally failed to make any
distintction among the groups [AI = AT =DTon 7
out of 9 aspects]. These null conclusions in dispersion
comparisons are interpreted as demonstrating that
variability of software development costs, especially
machine costs, is relatively insensitive to the factors
of programming team size and degree of methodo-
logical discipline. The two exceptions on individual
process aspects both deserve mention. The
Miscellaneous Job Steps aspect showed an AT =DT
< Al dispersion distinction among the groups, re-
flecting the wider-spread behavior (as expected) of in-
dividual programmers relative to programming
teamsin the area of building on-line tools to indirectly
support software development (e.g., stand-alone
module drivers, one-shot auxiliary computations,
table generators, unanticipated debugging stubs).
The Maximum Unique Compilations for Any One
Module aspect showed a DT < AI = AT dispersion
distinction among the groups at an extremely low

critical level [<0.005], reflecting the lower variation
(increased predictability) of the disciplined teams
relative to the ad hoc teams and individuals in term of
“worst case” compilation costs for any one module.

Class I1 Errors (program changes). Within Class I1,
the process aspect Program Changes, there is strong
evidence of an important difference among the
groups, again in favor of the disciplined methodol-
ogy, with respect to average number of errors en-
countered during implementation. (See Table 2. For
an explanation of how program changes are counted,
see (9)in Appendix 2.) This aspect directly reflects the
amount of textual revision to source code during
(post-design) system development. Claiming that
textual revisions are generally necessitated by errors
encountered while building, testing, and debugging
software, independent research?! has demonstrated a
high (rank order) correlation of total program
changes (as counted automatically according to a
specific algorithm) with total error occurrences (as
tabulated manually from exhaustive scrutiny of
source code and test results) during software im-
plementation. This aspect is thus a reasonable
measure of the relative number of programming er-
rors encountered outside of design work. Assuming
each textual revision involves a certain expenditure
of the programmer’s effort (e.g., planning the revi-
sion, on-line editing of source code), this aspect in-
directly reflects the level of human effort devoted to
implementation.

With respect to location comparison, the strength
of the evidence supporting a difference among the
groups is based on the very low critical level {< 0.005]
for the DT < AI = AT outcome. The interpretation is
that the disciplined methodology effectively reduced
the average number of errors encountered during
software implementation. This was expected since
the methodology purposely emphasizes the criticali-
ty of the design phase and subjects the software
design (code) to thorough reading and review prior to
coding (key-in or testing), enhancing error detection
and correction prior to implementation (testing).

With respect to dispersion comparison, no distinc-
tion among the groups was apparent, with the inter-
pretation that variability in the number of errors en-
countered during implementation was essentially
uniform across all three programming environments.

Class III: Gross Size. Within Class III, product
aspects dealing with the gross size of the software at
various hierarchical levels, there is evidence of cer-
tain consistent differences among the groups with

Table 2.
Conclusions for Class II: Errors (program changes).

PROGRAMMING ASPECT

LOCATION DISPERSION
COMPARISON  CRITICAL COMPARISON  CRITICAL

OUTCOME** LEVEL OUTCOME** LEVEL

* PROGRAM CHANGES

DT < Al = AT 0.003 = =

*Confirmatory aspects.
**Paired equal signs indicate the null outcome.
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respect to both average size and variability of size
(see Table 3). As aclass, these aspects directly reflect
the number of objects and the average number of
component (sub)objects per object, according to the
hierarchical organization (imposed by the program-
ming language) of the software itself into objects
such as modules, routines, data variables, lines,
statements, and tokens. )

With respect to location comparisons within this
class, the non-null conclusions [7 out of 17 aspects]
are nearly unanimous [5 out of 7}inthe AIKAT =DT
outcome. The interpretation is that individuals tend
to produce “smaller” software on the average than
that produced by teams. It is unclear whether such
spareness of expression, primarily in number of
routines, global variables, and formal parameters, is
advantageous or not. The two non-null exceptions to
this AI< AT = DT trend deserve mention. The AT =
DT < AI outcome on the Average Statements per
Routine aspect is a simple consequence of the out-
come for the number of Statements [Al = AT = DT]
and the outcome for the number of Routines [AI< AT
=DT], and it still fits the overall pattern of Al # AT =
DT on location differences on size aspects. On the
Lines (of delivered source code) aspect, however, the
DT = AI < AT distinction breaks the pattern. Since
the number of statements was roughly the same for
all three groups, this difference must be due mainly to
the stylistic manner of arranging the source code
(which was free-format with respect to line bound-
aries), to the amount of documentation comments
within the source code, and to the number of lines
taken up in data variable declarations.

With respect to dispersion comparisons within this
class, the few aspects which do indicate any distinc-
tion among the group [5 out of 17 aspects] seem to
concur on the Al = AT < DT outcome. This pattern,
which associates increased variation in certain size

aspects  with the disciplined methodology, is
somewhat surprising and lacks an intuitive explana-
tion in terms of the experimental factors. The excep-
tion DT = AI < AT on Average Routine Per Module
is really an exaggeration due to the fact that several
teams in group AT built monolithic single-module
systems, yielding rather inflated raw scores for this

-aspect. The exception AT < DT = Al on Statements

is only a very slight trend, reflecting the fact that the
AT products rather consistently contained the
largest numbers of statements.

One overall observation for Class 111 is that while
certain distinctions did consistently appear (especial-
ly for location but also for dispersion comparisons) at
the middle levels of the hierarchical scale (routines,
data variables, lines, and statements), no distinctions
appeared at either the highest (modules) or lowest
(tokens) levels of size. The null conclusions for size in
modules and average module size seem attributable
to the fact that particular programming applications
often have standard approaches at the topmost con-
ceptual levels which strongly influence the organiza-
tion of software systems at this highest level of gross
size. In the case at hand, a two-pass symbol-table/
scanning/parsing/code-generation approach is ex-
tremely common for compilers, regardless of the par-
ticular parsing technique or symbol table organiza-
tion employed, and the modules of nearly every
system in the study distinctly reflected this common
approach. The null conclusions for size in tokensis in-
terpretable in view of Halstead’s software science
concepts,?? according to which the programlength N
is predictable from the number »,* of basic input-
output parameters and the language level A. Since the
functional specification, the application area, and the
implementation language were all fixed in the study,
both n,* and A are essentially constant for each of the
software systems, implying essentially constant

Table 3.
Conclusions for Class HI: Gross Size.

PROGRAMMING ASPECT

DISPERSION
COMPARISON  CRITICAL
OUTCOME** LEVEL

LOCATION
COMPARISON  CRITICAL
OUTCOME** LEVEL

*

MODULES
AVERAGE ROUTINES PER MODULE
AVERAGE GLOBAL VARIABLES PER MODULE

ROUTINES

AVERAGE STATEMENTS PER ROUTINE

AVERAGE NONGLOBAL VARIABLES PER ROUTINE
PARAMETER
LOCAL

DATA VARIABLES
GLOBAL
NONGLOBAL

PARAMETER
LOCAL

* LINES
* STATEMENTS
AVERAGE TOKENS PER STATEMENT

* TOKENS

*

*

* % *

*

DT 0.021

[ |
=
Al
=
3

Al
AT

AT
DT

0.063
0.170

Al
o
=5

Al AT 0.174

AT IA

[
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pur}
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Al

AT
AT

0.069
0.147 Al

oo
3
[wsr}
=1

AT 0.124

=
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=

0.127 Al AT 0.106

AT AA
[
| I O
AT AT

DT Al 0.061

AT
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>
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0.106
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A
>
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A

>
_‘
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o
=

*Confirmatory aspects.
**Paired equal signs indicate the null outcome.
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lengths N as measured in terms of operators and
operands. Considering the number of tokens as
roughly equivalent to program length N, the study’s
data seem to support the software science conceptsin
this instance.

Class IV: Control-Construct Structure. Within
Class IV, product aspects dealing with the software’s
organization according to statements, constructs,
and control structures, there are only a few distinc-
tions between the groups (see Table 4).

With respect to location comparisons, the few [5
out of 24] aspects that showed any distinction at all
were nearly unanimous [4 out of 5] in concluding DT
= AI < AT. The one exception is the AT = DT < Al
outcome for the Average Statement List Nesting
Level aspect, indicating a slight tendancy for the ad
hoc individuals to write code with greater statement
nesting depth than either group of teams, apparently
as a consequence of coding fewer but longer routines.

Essentially three particular issues are involved
with the predominant DT = AI < AT outcome. First,
the If Statement Count, If Statement Percentage,
and Decisions aspects are all related to the frequency
of programmer-coded decisions in the software prod-
uct. Their common outcome DT = AI < AT is inter-
preted as demonstrating an important area in which
the disciplined methodology causes a programming
team to behave as an individual programmer. The
number of decisions has been commonly accepted,

and even formally derived,?® as a measure of program
complexity since more decisions create more paths
through the code. Thus, the disciplined teams effec-
tively reduced this form of software complexity,
relative to the ad hoc teams. Second, the Return
Statement Count aspect also distinguished between
the ad hoc teams and the other two groups. Since the
EXIT and RETURN statements are restricted forms
of GOTOs, it seems to hint at another area in which
the disciplined methodology improves conceptual
control over program structure. Third, the Intrinsic
(Proc) Call Statement Count aspect indicated a slight
difference in the frequency of input-output opera-
tions coded, which seems interpretable only as a
result of stylistic preferences.

With respect to dispersion comparisons, only two
particularissues areinvolved. The Return Statement
Count and Return Statement Percentage aspects
both indicated a strong DT = AI < AT difference,
suggesting that the frequency of these restricted
GOTOs is an area in which the disciplined
methodology reduces variability, causing a program-
ming team to behave more like an individual pro-
grammer. The (Proc) Call Statement Count and
Nonintrinsic {Proc) Call Statement Count aspects
both showed a DT < AI = AT distinction among the
groups, which is dealt with more appropriately
within Class VIII below.

In summary of Class IV, the interpretation is that
the functional component of control-conduct organi-

Table 4.
Conclusions for Class IV: Control-Construct Structure.

PROGRAMMING ASPECT

LOCATION
COMPARISON  CRITICAL
QUTCOME™* LEVEL .

DISPERSION
COMPARISON  CRITICAL
OUTCOME** LEVEL

* STATEMENTS

STATEMENTS TYPE COUNTS:
IF
CASE
WHILE
EXIT
(PROC) CALL
NONINTRINSIC
INTRINSIC
*  RETURN

STATEMENT TYPE PERCENTAGES:

I ]

IF

CASE

WHILE

EXIT

(PROC) CALL
NONINTRINSIC
INTRINSIC

*  RETURN

* AVERAGE STATEMENT LIST NESTING LEVEL
* DECISIONS

FUNCTION CALLS
NONINTRINSIC
INTRINSIC

I T ]

= = AT < DT = Al 0.195
DT = Al < AT 0.078 - -

= = DT < AT = AT 0.032

= = DT < Al = AT 0.186
DT = Al < AT 0.173 = =
DT = Al < AT 0.086 DT = Al < AT 0.003
DT = Al < AT 0.106 - -

= = DT = Al < AT 0.040
AT = DT < Al 0.193 = =
DT = Al < AT 0.146 = =

*Confirmatory aspects.
**Paired equal signs indicate the null outcome.
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zation is largely unaffected by the team size and
methodological discipline factors, probably due to
the overriding effect of project uniformity. However
two facets of the control component that were in-
fluenced were the frequency of decisions (especially
IF statements) and the frequency of restricted
GOTOs (especially RETURN statements). For these
aspects, the disiplined methodology altered the con-
trol structure (and reduced the complexity) of a
team’s product to that of an individual’s product.

Class V: Data Variable Organization. Within Class
V, product aspects dealing with data variables and
their organization within the software, there are
several distinctions among the groups, with an
overall trend for both the location and dispersion
comparisons (see Table 5). Data variable organization
was, however, not emphasized in the disciplined
methodology, nor in the academic course which the
participants in group DT were taking.

With respect to location comparisons, all aspects
showing any distinction at all were unanimous in con-
cluding AI # AT = DT. The trend for individuals to
differ from teams, regardless of the disciplined
methodology, appears not only for the total number
of data variables declared, but also for data variables

~ at each scope level (global, parameter, local) in one

fashion or another. In particular, the individuals
seemed to program with fewer global variables and
formal parameters than either group of teams. The
difference regarding formal parameters is especially
prominent, since it shows up for their raw count fre-
quency, their normalized percentage frequency, and
their average frequency per natural enclosure (rou-
tine).

With respect to dispersion comparisons, the ap-
parent overall trend for aspects which show a distinc-
tion is toward the AI = AT < DT outcome. No par-
ticular interpretation in view of the experimental fac-
tors seems appropriate. Exceptions to this trend ap-

Table 5.
Conclusions for Class V: Data Variable Organization.

PROGRAMMING ASPECT

LOCATION ' DISPERSION
COMPARISON  CRITICAL  COMPARISON  CRITICAL
OUTCOME**  LEVEL OUTCOME**  LEVEL

DATA VARIABLES

DATA VARIABLE SCOPE COUNTS:
*  GLOBAL
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED
NONGLOBAL
* PARAMETER
VALUE
REFERENCE
* LOCAL

DATA VARIABLE SCOPE PERCENTAGES:
*  GLOBAL
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED
NONGLOBAL
* PARAMETER
VALUE
REFERENCE
* LOCAL

AVERAGE GLOBAL VARIABLES PER MODULE
ENTRY
NONENTRY
MODIFIED
UNMODIFIED

AVERAGE NONGLOBAL VARIABLES PER ROUTINE
PARAMETER
LOCAL

Al < AT = DT 0.069 = =

Al AT

o
3

0.147 Al AT < DT 0.124

Al AT

9
=

0.161

Al AT

o
—

0.127 Al AT < DT 0.106

Al AT = DT 0.019

L | 1 2 1 '
LI AN T YT [N

BT EALEADLT 0000 A
AN | O 1 1 O

Ai AT < DT 0.075

DT Al AT 0.021

AT
AT
AT
AT

DT 0.075
DT 0.055
DT 0.094
DT 0.152

Al
DT 0.150 Al
Al
Al

Al AT

EAT L0 EADT 000

TUEAAAT LT RN T H0NA

Bma AN nnwwnn
LA S T T

AT = DT Al 0.109

DT Al AT 0.110

|| | I
AN

Al AT = DT 0.174

Al
|||
[l
n

*Confirmatory aspects. **Paired equal signs indicate the null outcome.

COMPUTER



peared for both the raw count and percentage of call-
by-reference parameters (both AI < AT = DT), as
well as two other aspects.

Class VI: Packaging Structure. Within Class VI,
product aspects dealing with modularity in terms of
the packaging structure, there are essentially no
distinctions among the groups, except for two loca-
tion comparison issues (see Table 6). Most of the
aspects in this class are also members of Class I11,
Gross Size, but are reconsidered here to focus atten-
tion upon the packaging characteristics of modulari-
ty (e.g., how the source code is divided into modules
and routines, and what type of routines). The
disciplined methodology did not explicitly include
{nor did group DT’s course work cover) concepts of
modularization or criteria for evaluating good
modularity; hence, no particular distinctions among
the groups were expected in this area (Classes VI and
VII).

With respect to location comparisons, the AI< AT
= DT outcome for the Routines aspects, along with
the companion outcome AT = DT < Al for the
Average Statements per Routine aspect (as ex-
plained under Class III above), indicates one area of
packaging that is apparently sensitive to the team
size factor. Individual programmers built the system
with fewer, but larger, routines (on the average) than
either the ad hoc teams or the disciplined teams. The
AI< AT = DT outcome for the Average Parameters
per Routine aspect indicates that average ‘‘calling se-
quence’’ length, curiously enough, is another area of
packaging sensitive to team size. With respect to
dispersion comparisons, there really were no dif-
ferences, since the single non-null outcome for
Average Routines per Module is actually a fluke (raw
scores for AT are exaggerated by the several
monolithic systems) as explained above. The overall
interpretation for this class is that modularity, in the
sense of packaging code into routines and modules, is
essentially unaffected by team size or methodologi-
cal discipline, except for a tendency by individual pro-

grammers toward fewer, longer routines than pro-
gramming teams.

Class VII: Invocation Organization. Within Class
VII, product aspects dealing with modularity in
terms of the invocation structure, there are two
distinct trends for location comparisons, but no clear
pattern for the dispersion comparison conclusions
(see Table 7). This class consists of raw counts and
average-per-routine frequencies for invocations (pro-
cedure call statements or function references in ex-
pressions) and is considered separately from the
previous class since modularity involves not only the
manner in which the system is packaged, but also the
frequency with which the pieces are invoked. For the
raw count frequencies of calls to intrinsic procedures
and intrinsic routines, the trend is for the individuals
and disciplined teams to exhibit fewer calls than the
ad hoc teams. These intrinsic procedures are almost
exclusively the input-output operations of the

language, while the intrinsic functions are mainly
data type conversion routines. The second trend for
location comparisons occurs for two aspects related
to the average frequency of calls to programmer-
defined routines, in which the individuals display
higher average frequency than either type of team.
This seems coupled with group AI’s preference for
fewer but larger routines, as noted above. With
respect to dispersion comparisons, several distinc-
tions appear within this class, but no overall inter-
pretation is readily apparent (except for a consistent
DT < Al difference, with AT falling in between, lean-
ing to one side or the other).

Class VIII: Inter-Routine Communication via
Parameters. Within Class VIII, product aspects
dealing with inter-routine communication via formal
parameters, there are only a few distinctions among
the groups (see Table 8). Withrespect tolocation com-
parisons, the total frequency of parameters and the
average frequency of parameters per routine both
show a difference. The interpretation is that the in-
dividual programmers tend to incorporate less inter-

Table 6.
Conclusions for Class VI: Packaging Structure.

PROGRAMMING ASPECT

LOCATION
COMPARISON ~ CRITICAL
OUTCOME** LEVEL

DISPERSION
COMPARISON  CRITICAL
OUTCOME** LEVEL

* MODULES

AVERAGE ROUTINE PER MODULE
AVERAGE GLOBAL VARIABLES PER MODULE

* ROUTINES
FUNCTIONS
PROCEDURES
FUNCTION PERCENTAGE
PROCEDURE PERCENTAGE

* AVERAGE STATEMENTS PER ROUTINE
AVERAGE NONGLOBAL VARIABLES PER ROUTINE
PARAMETER
LOCAL

= = DT = Al < AT 0.021
Al < AT = DT 0.063 = =
AT = DT < Al 0.170 = =
Al < AT = DT 0.174 - -

*Confirmatory aspects.
**Paired equal signs indicate the null outcome.

December 1979

29



routine communication via parameters, on the
average, than either the ad hoc or the disciplined pro-
gramming teams. With respect to dispersion com-
parisons, in addition to the difference in the raw
count of parameters referred to in Class V, there is a
strong difference in the variability of the number of
call-by-reference parameters, also apparent in the
percentages-by-type-of-parameter aspects. The in-
terpretation is that the individual programmers were
more consistent as a group in their use (in this case,
avoidance) of reference parameters than either type
of programming team.

Class IX: Inter-Routine Communication via Global
Variables. Within Class IX, product aspects dealing
with inter-routine communication via global
variables, there are several differences among the
groups, including two which indicate the beneficial
influence of the disciplined methodology (see Table
9). This class is composed of aspects dealing with (1)
frequency of globals, (2) average frequency of globals

per module, (3) routine-global usage pairs (frequency
of access paths from routines to globals), and (4)
routine-global-routine data bindings** (frequency of
logical bindings between two different routines via a
global variable which is modified by the first routine
and referenced by the second). These last two
measures may be viewed as quantitative indicators
of the general ‘“‘globality”’ of global variables in a pro-
gram, that is, the degree to which globals are accessi-
ble to exactly the routines that actually use them.
With respect to location comparisons, there is the
Al < AT = DT distinction in sheer numbers of
globals, particularly those modified during execu-
tion. However, when averaged per module, there ap-
pears to be nodistinctionin the normalized frequency
of globals. The AI < AT = DT difference in the
number of possible routine-global access paths
makes sense as the result of group AI having both
fewer routines and fewer globals. All three groups
had essentially similar average levels of actual
routine-global access paths, but several differences

Table 7.
Conclusions for Class VII: Invocation Organization.
LOCATION DISPERSION
PROGRAMMING ASPECT COMPARISON  CRITICAL COMPARISON  CRITICAL
QUTCOME** LEVEL OUTCOME** LEVEL
INVOCATIONS = = AT = DT < Al 0.020
FUNCTION = = = =
NONINTRINSIC = = = =
INTRINSIC = = = =
PROCEDURE = = DT < Al = AT 0.032
NONINTRINSIC = = DT < Al = AT 0.186
INTRINSIC DT = Al < AT 0.173 = =
NONINTRINSIC = = AT = DT < Al 0.051
INTRINSIC DT = Al < AT 0.043 = =
AVERAGE INVOCATIONS PER (CALLING) ROUTINE = = = =
FUNCTION = = = =
NONINTRINSIC = = = =
INTRINSIC = = = =
PROCEDURE = = = =
NONINTRINSIC = = = =
INTRINSIC = = DT < Al = AT 0.065
NONINTRINSIC AT = DT < Al 0.169 = =
INTRINSIC = = = =
AVERAGE INVOCATIONS PER (CALLED) ROUTINE AT = DT < Al 0.169 = =
FUNCTION AT = DT < Al 0.193 AT < DT = Al 0441
PROCEDURE = = = =
Table 8.
Conclusions for Class Vill: Communication via Parameters.
LOCATION DISPERSION
PROGRAMMING ASPECT COMPARISON  CRITICAL COMPARISON  CRITICAL
‘ QUTCOME** LEVEL QUTCOME** LEVEL
* PARAMETERS Al < AT = DT 0.127 Al = AT < DT 0.106
VALUE = = = =
REFERENCE = = Al < AT = DT - 0.019
AVERAGE PARAMETERS PER ROUTINE Al < AT = DT 0.174 = =
PARAMETER PASSAGE TYPE PERCENTAGES:
VALUE = = Al < AT = DT 0.160
REFERENCE = = Al < AT = DT 0.160
*Confirmatory aspects.
**Paired equal signs indicate the null outcome.
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appear in the relative percentage (actual-to-possible
ratio) category. These three instances of AT< DT =
Al differences indicate that the degree of “globality’’
for global variables was higher for the individuals
and the disciplined teams than for the ad hoc teams.
Finally, another AT # DT = Al difference appears for
the frequency of possible routine-global-routine data
bindings, indicating that the disciplined methodolo-
gy effectively counteracted the ad hoc teams’ in-
crease in possible data coupling among routines. It
may be noted that these last two categories of
aspects, routine-global usage pair relative percen-

tages and routine-global-routine data bindings, also
reflect the quality of modularization, since good
modularity should promote a higher degree of
‘““globality”’ for globals and minimize the data cou-
pling among routines. The interpretation here is that
certain aspects of inter-routine communication via

globals seem to be positively influenced, on the '

average, by the disciplined methodology.

With respect to dispersion comparisons, there is a
diversity of differences in this class, without any uni-
fying interpretation in terms of the experimental fac-
tors.

Table 9.
Conclusions for Class IX: Communication via Global Variables.

PROGRAMMING ASPECT

LOCATION
COMPARISON:  CRITICAL
OUTCOME** LEVEL

DISPERSION
COMPARISON  CRITICAL
OUTCOME** LEVEL

GLOBAL VARIABLES
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

AVERAGE GLOBAL VARIABLES PER MODULE
ENTRY
NONENTRY
MODIFIED
UNMODIFIED

(ROUTINE, GLOBAL) ACTUAL USAGE PAIRS
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

(ROUTINE, GLOBAL) POSSIBLE USAGE PAIRS
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

* (ROUTINE, GLOBAL) USAGE PAIR RELATIVE PERCENTAGE
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

(ROUTINE, GLOBAL, ROUTINE) DATA BINDINGS:
*  ACTUAL
SUBFUNCTIONAL
INDEPENDENT
POSSIBLE
*  RELATIVE PERCENTAGE

At < AT = DT 0.147 Al = AT < DT 0.124
Al < AT = DT 0.161 = =
= = DT = Al < AT 0.110
= = AT < DT = Al 0.106
Al < AT = DT 0.122 Al < AT = DT 0.020
= = Al < AT = DT 0.078
= = DT = Al < AT 0.051
= = Al < AT = DT 0.116
AT < DT = Al 0.082 = =
AT < DT < Al 0.123 = =
AT < DT = Al 0.154 = =
= = Al < AT = DT 0.196
DT = Al < AT 0.186 DT = Al < AT 0.152

*Confirmatory aspects.
**Paired equal signs indicate the null outcome.
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Conclusion

Research into the effects of human factors on com-
puter software is dependent upon adequate measure-
ment of various “high-level” software properties,
such as reliability, maintainability, modifiability,
cost-effectiveness, complexity, comprehensibility,
and readability. Because they are ill-defined, intangi-
ble, and multifaceted, it is very difficult to character-
ize and quantify these high-level properties directly.

There do exist numerous ‘“low-level” programming
aspects (such as those considered in this paper) which
are so well-defined, tangible, and simple that they can
readily be characterized and quantified on an in-
dividual and independent basis. Although each low-
level aspect bears an intuitive relationship to one or
more high-level properties, no single aspect (even the
more promising ones) can adequately characterize
and quantify a high-level property.

However, the coherent collective behavior of
several low-level aspects, all related to the same high-
level property, can serve as a credible (albeit indirect)
indicator of the behavior of that high-level property.
Thus it should be possible to conduct human factors
research using statistically significant differences
observed on several related low-level programming
aspects to infer the existence of a differential effect
upon the corresponding high-level software property.

The goal of this paper has been to demonstrate the
feasibility of the above-outlined human factors
research scenario, using the experimental results
from a more extensive research project which quan-
titatively investigated different software develop-
ment approaches. The study’s findings reveal several
programming aspects for which statistically signifi-
cant differences do exist among the development ap-
proaches, and valuable insights have been gleaned
regarding the effects of team programming and
methodological discipline upon software reliability,
complexity, etc.

Many of the low-level programming aspects,
especially the “confirmatory’”’ ones, demonstrate im-
portant characteristics for which the larger program-
ming team size and the use of a disciplined
methodology had beneficial effects on the develop-
ment process and the developed product. The
disciplined teams required fewer computer runs and
apparently made fewer errors during software
development than either the individual programmers
or the ad hoc teams. The individual programmers and
the disciplined teams both produced software with
essentially the same number of decision statements,
but software produced by the ad hoc teams contained
greater numbers of decision statements. In fact, for
no aspect was it concluded that the disciplined
methodology impaired the effectiveness of a pro-
gramming team or diminished the quality of the soft-
ware product.

Based upon collective interpretation of classes of
these low-level programming aspects, the study’s
findings indicate that the disciplined methodology
increased software reliability beyond that achieved
by either individual programmers or programming
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teams using an ad hoc approach. As expected, ad hoc
programming teams produced software having
greater control flow complexity than individual pro-
grammers, but the disciplined methodology seemed
effective in reducing this attendant software com-
plexity.

Further research is now being undertaken, utiliz-
ing the study’s data bank, to examine more elaborate
software metrics, especially McCabe’s measures of
complexity?® and Halstead’s software science met-
rics.?2 Examination of the behavior of software pro-
duct measures over the development time period is
another direction open to human factors research. In
addition, replications of the experiment itself are

planned in order to strengthen and confirm this
study’s findings. W
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Appendix 1.
Measured programming aspects with statistical description of raw scores.

Across-all-groups and within-each-group sample mean values
and standard deviations supply a statistical description of the
raw scores obtained in the experiment for each programming
aspect.

The following table lists the particular ‘“low-level” program-
ming aspects examined in the experiment, grouped by defini-
tionally related categories. The parenthesized numbers refer to
the explanatory notes in Appendix 2. The asterisks mark “con-

firmatory” aspects; ‘‘exploratory’”’ aspects are unmarked.
PROGRAMMING ASPECTS MEAN VALUES STANDARD DEVIATIONS
ALL Al AT DT ALL Al AT 0T
DEVELOPMENT PROCESS ASPECTS
(1) * COMPUTER J0B STEPS 157.0 185.5 223.5 75.6 93.8 90.7 84.2 25.5
(2) *  MODULE COMPILATION 92.5 102.2 136.5 46.6 52.1 47.3 43.9 13.2
3> UNIQUE 73.1 81.3 108.3 35.9 41.4 32.5 37.9 1.6
(3) IDENTICAL 19.4 20.8 28.2 10.7 17.9 22.8 19.7 6.1
(4)*  PROGRAM EXECUTION 60.3 76.0 82.3 28.0 4.6 43.8 51.5 14.5
(5)  MISCELLANEOUS 4.2 7.3 4.7 1.0 5.5 7.6 4.9 1.5
(6) *  ESSENTIAL 133.4 157.3 190.7 63.9 81.4 7.7 81.4 24.2
(3)  AVERAGE UNIQUE COMPILATIONS PER
MODULE 31.74 28.97 59.80 10.07 40.69 17.31 63.37 5.29
(3) MAXIMUM UNIQUE COMPILATIONS FOR
ANY ONE MODULE 51.0 56.7 81.5 20.0 44.5 33.6 58.0 9.9
(9) * PROGRAM CHANGES 335.2 353.0 522.7 159.1 237.9 145.0 304.8 56.2
FINAL PRODUCT ASPECTS
(10) * MODULES 45 3.8 5.3 4.3 3.7 3.1 5.6 2.1
(11} * ROUTINES 40.1 30.7 47.7 N7 12.1 9.5 13.4 7.9
(12)  ROUTINE TYPE COUNTS:
(11) FUNCTION 6.2 4.7 8.8 5.3 5.2 5.7 5.1 4.8
(1) PROCEDURE 33.9 26.0 38.8 36.4 13.2 13.0 15.0 10.0
(12)  ROUTINE TYPE PERCENTAGES:
(11) FUNCTION 17.14 19.05 19.68 13.33 18.22 28.43 12.83 12.57
(11) PROCEDURE 82.86 80.95 80.32 86.67 18.22 28.43 12.83 12.57
AVERAGE ROUTINES PER MODULE 14.62 10.53 21.30 12.39 11.40 4.62 17.29 7.46
(14) * LINES 1323.5 1026.7 1676.5 1275.3 409.6 330.8 399.6 252.2
(15) * STATEMENTS 609.6 563.3 674.2 593.9 116.0 136.7 70.7 118.3
(16)  STATEMENT TYPE COUNTS:
1= 205.6 202.3 204.3 209.4 63.3 53.4 44.6 89.1
* IF 78.7 68.2 102.8 67.0 28.9 33.5 18.0 21.1
CASE 6.6 7.0 5.2 7.4 3.6 3.7 3.0 41
*  WHILE 25.2 25.2 27.2 23.6 5.6 6.7 5.2 5.3
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PROGRAMMING ASPECTS

MEAN VALUES

STANDARD DEVIATIONS

ALL Al AT DT ALL Al AT DT
* O EXIT 2.7 4.7 3.2 0.7 4.6 5.8 5.4 1.3
(44) (PROC) CALL 230.0 205.5 249.3 234.4 56.5 81.3 59.0 12.4
(23) (44) NONINTRINSIC 187.0 167.3 192.3 199.3 54.2 74.8 64.2 10.5
(23) (44) INTRINSIC 43.0 38.2 57.0 35.1 18.8 19.3 17.9 13.9
*  RETURN 60.7 50.3 82.2 51.3 22.6 9.0 30.0 6.5
(16)  STATEMENT TYPE PERCENTAGES:
= 33.78 36.72 30.50 34.09 8.03 8.81 7.17 8.16
* IF 12.56 11.55 15.22 11.16 3.20 3.62 2.15 2.37
*  CASE 1.10 1.32 0.77 1.20 0.55 0.68 0.41 0.46
*  WHILE 419 4.48 4.05 4.06 0.75 0.64 0.74 0.88
BT 0.40 0.70 0.42 0.13 0.61 0.78 0.68 0.22
(PROC) CALL 38.00 36.02 36.97 40.59 7.48 7.97 8.08 6.91
(23) NONINTRINSIC 31.09 29.58 28.35 34.74 8.41 9.60 8.27 7.27
(23) INTRINSIC 6.91 6.45 8.62 5.84 2.56 2.59 2.88 1.65
*  RETURN 9.99 9.23 12.07 8.86 2.80 1.90 3.80 1.45
* AVERAGE STATEMENTS PER ROUTINE 15.97 19.03 14.70 14.43 3.89 4.62 2.79 2.7
(26) * AVERAGE STATEMENT LIST NESTING LEVEL -  2.596 2.760 2.573 2.476 0.268 0.222 0.336 0.189
(27) * DECISIONS 110.5 100.3 135.2 98.0 31.5 36.7 18.5 26.0
(44)  FUNCTION CALLS 90.8 90.2 104.8 79.4 441 65.2 33.8 31.6
(23) (44) NONINTRINSIC 65.8 72.8 76.5 50.7 40.6 59.1 38.4 19.2
(23) (44) INTRINSIC 25.0 17.3 28.3 28.7 13.5 9.0 15.3 14.1
(28) * TOKENS 3340.2 30728 3707.0 3255.0 797.4 812.2 477.4 976.4
(28) * AVERAGE TOKENS PER STATEMENT 545 545 5.50 5.40 0.55 0.37 0.43 0.80
(29)  INVOCATIONS 320.8 295.7 354.2 313.9 54.1 73.6 44.4 28.5
(11) (44) FUNCTION 90.8 90.2 104.8 79.4 441 65.2 33.8 31.6
(23) (44) NONINTRINSIC 65.8 72.8 76.5 50.7 40.6 59.1 38.4 19.2
(23) (44) INTRINSIC 25.0 17.3 28.3 28.7 13.5 9.0 15.3 14.1
(11) (44) PROCEDURE 230.0 205.5 249.3 234.4 56.5 81.3 59.0 12.4
(23) (44) NONINTRINSIC 187.0 167.3 192.3 199.3 54.2 74.8 64.2 10.5
(23) (44) INTRINSIC 43.0 38.2 57.0 35.1 18.8 19.3 17.9 13.9
(23) NONINTRINSIC 252.8 240.2 268.8 250.0 43.0 61.3 43.7 19.7
(23) INTRINSIC 68.0 55.5 85.3 63.9 21.0 18.3 17.7 17.4
(29)  AVERAGE INVOCATIONS PER i
(CALLING) ROUTINE 8.51 10.18 7.70 7.76 2.54 3.61 1.46 1.63
(1) FUNCTION 2.57 3.53 2.32 1.97 2.07 3.48 0.89 0.88
(23) NONINTRINSIC 1.92 2.90 1.72 1.26 1.89 3.12 1.01 0.52
(23) INTRINSIC 0.66 0.63 0.60 0.73 0.34 0.4 0.22 0.40
(11) PROCEDURE 5.93 6.67 5.38 5.76 1.38 1.59 1.44 0.99
(23) NONINTRINSIC 4.81 5.38 4.07 4.96 1.27 1.51 1.08 1.04
(23) INTRINSIC 1.13 1.30 1.32 0.83 0.56 0.74 0.58 0.23
(23) (44) NONINTRINSIC 6.72 8.25 5.82 6.17 2.04 2.77 0.98 1.33
(23) INTRINSIC 1.79 1.93 1.90 1.57 0.69 0.96 0.67 0.43
(29) (44)  AVERAGE INVOCATIONS PER
(CALLED) ROUTINE 6.71 8.25 5.82 6.16 2.05 2.77 0.98 1.35
(11) FUNCTION 16.86 23.02 9.70 17.71 11.14 10.87 3.36 13.21
(1) PROCEDURE 6.33 8.07 5.12 5.87 3.2 5.10 1.31 1.73
(32)  DATA VARIABLES 94.6 68.2 103.7 109.6 33.3 27.4 19.2 36.7
(37)  DATA VARIABLE SCOPE COUNTS:
(33) *  GLOBAL 35.7 247 35.3 45.6 20.0 5.6 7.3 29.9
(33) ENTRY 9.2 7.0 9.8 10.4 10.0 9.0 14.0 8.0
(35) MODIFIED 8.5 6.3 8.7 10.3 9.0 7.9 11.9 8.0
(35) UNMODIFIED 0.6 0.7 1.2 0.1 1.7 1.0 2.9 0.4
(33) NONENTRY 26.6 17.7 25.5 35.1 20.2 6.7 16.4 28.6
(35) MODIFIED 18.1 15.0 18.7 20.1 9.2 6.7 10.8 10.1
(35) UNMODIFIED 8.5 2.7 6.8 15.0 16.4 1.8 9.3 255
(35) MODIFIED 26.6 21.3 27.3 30.4 9.5 3.7 4.7 14.0
(35) UNMODIFIED 9.2 3.3 8.0 15.1 16.2 2.3 8.7 25.4
(33) NONGLOBAL 58.9 43.5 68.3 64.0 24.5 23.5 14.9 28.2
(33) * PARAMETER 25.1 13.0 29.3 31.9 17.0 11.1 10.8 211
(36) VALUE 17.7 11.8 21.3 19.7 11.5 10.9 9.4 13.0
(36) REFERENCE 7.4 1.2 8.0 121 12.1 1.6 9.9 17.0
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PROGRAMMING ASPECTS

MEAN VALUES

STANDARD DEVIATIONS

ALL Al AT oT ALL Al AT oT

(33) * LOCAL 33.8 30.5 39.0 32.1 10.8 13.3 8.0 10.5
(37)  DATA VARIABLE SCOPE PERCENTAGES:
(33)*  GLOBAL 38.05 38.82 34.33 40.59 12.95 9.93 5.85 19.25
(33) ENTRY 9.86 8.28 10.50 10.67 11.42 9.90 16.35 9.13
(35) MODIFIED 9.10 7.58 9.02 10.47 9.97 8.80 13.19 9.17
(35) UNMODIFIED 0.77 0.73 1.48 0.20 2.1 1.16 3.63 0.53
(33) NONENTRY 28.17 30.48 23.83 29.91 16.08 16.67 13.09 19.33
(35) MODIFIED 20.64 26.32 18.12 17.94 10.90 15.40 11.01 3.31
(35) UNMODIFIED 7.54 417 5.72 11.99 13.15 3.49 7.28 20.66
(35) MODIFIED 29.74 33.92 27.13 28.40 8.33 8.37 6.52 9.38
(35) UNMODIFIED 8.31 4.88 7.20 12.19 12.94 3.67 6.78 20.55
(33) NONGLOBAL 61.95 61.18 65.67 59.41 12.95 9.93 5.85 19.25
(33) * PARAMETER 24.50 16.67 27.67 28.50 12.19 7.54 7.45 16.19
(36) VALUE 17.81 15.22 20.03 18.13 8.18 7.65 5.95 10.52
(36) REFERENCE 6.69 1.47 7.62 10.37 11.14 2.13 9.31 15.89
(33) * LOCAL 37.44 4453 37.98 30.89 9.45 7.05 6.66 9.4

AVERAGE GLOBAL VARIABLES PER MODULE 12.62 8.52 16.98 12.40 10.76 3.83 16.31 8.80
(33) ENTRY 1.68 1.42 1.00 2.49 1.65 1.53 1.10 1.98
(33) NONENTRY 10.97 7.12 16.02 9.94 11.34 4.67 17.16 8.97
(35) MODIFIED 9.13 7.48 11.97 8.10 5.78 3.25 9.10 3.20
(35) UNMODIFIED 3.51 1.03 5.03 4.3 7.31 0.86 9.84 8.36

AVERAGE NONGLOBAL VARIABLES PER

ROUTINE 14.74 14.38 14.70 15.07 4.93 6.72 3.10 5.19
(33) PARAMETER 5.90 3.97 6.23 7.27 3.27 2.26 2.20 4.22
(33) LOCAL 8.84 10.40 8.48 7.80 3.39 5.14 2.10 2.22
(39) PARAMETER PASSAGE TYPE PERCENTAGES:
(36) VALUE 81.12 91.23 76.73 76.21 25.21 14.49 25.33 32.36
(36) REFERENCE 18.88 8.77 23.27 23.79 25.21 14.49 25.33 32.36
(40)  (ROUTINE, GLOBAL) ACTUAL USAGE PAIRS  142.5 120.7 151.3 1563.7 36.1 35.4 19.8 42.7
(33) ENTRY 55.3 48.3 93.3 63.0 53.7 53.6 74.4 39.3
(35) MODIFIED 54.8 48.3 52.3 62.4 52.6 51.5 72.9 39.4
(35) UNMODIFIED 0.8 0.8 1.0 0.6 1.7 1.3 2.4 1.5
(33) NONENTRY 86.9 71.5 98.0 90.7 57.2 47.2 66.4 62.6
(35) MODIFIED 75.4 67.0 90.2 69.9 541 44.8 61.8 60.0
(35) UNMODIFIED 11.6 4.5 7.8 20.9 26.6 4.2 10.1 43.1
(35) MODIFIED 130.2 115.3 142.5 132.3 32.2 32.6 17.5 40.0
(35) UNMODIFIED 12.4 5.3 8.8 21.4 26.3 4.2 9.4 42.8
(40)  (ROUTINE, GLOBAL) POSSIBLE USAGE

PAIRS 828.1 488.3  1195.3 804.4 518.2 182.9 680.4 375.5
(33) ENTRY 269.4 170.7 368.3 269.3 394.0 2341 646.7 227.8
(35) MODIFIED 262.6 163.5 355.5 267.9 390.6 219.7 645.0 228.8
(35) UNMODIFIED 6.8 7.2 12.8 1.4 19.4 16.1 31.4 3.8
(33) NONENTRY 558.6 317.7 827.0 535.1 535.6 225.6 779.5 425.4
(35) MODIFIED 397.7 277.8 563.3 358.6 362.9 182.5 474.2 369.3
(35) UNMODIFIED 160.9 39.8 263.7 176.6 302.8 50.4 434.8  299.8
(35) MODIFIED 660.3 441.3 918.8 626.4 379.3 139.9 472.9 335.8
(35) UNMODIFIED 167.7 47.0 276.5 178.0 299.7 50.5 426.5 298.9
(40) * (ROUTINE, GLOBAL) USAGE PAIR

RELATIVE PERCENTAGE 22.07 26.38 16.80 22.90 9.59 7.49 9.50 10.32
(33) ENTRY 28.97 43.23 13.83 29.71 18.99 17.55 13.39 15.57
(35) MODIFIED 29.26 43.35 14.57 29.77 19.03 17.32 14.57 15.64
(35) UNMODIFIED 6.42 12.35 1.30 5.71 17.27 26.75 3.18 15.12
(33) NONENTRY 20.12 23.63 15.98 20.64 8.59 7.36 7.50 9.98
(35) MODIFIED 23.02 24,57 21.78 22.76 8.76 8.53 9.43 9.57
(35) UNMODIFIED 12.94 23.85 3.48 11.70 18.84 29.64 3.90 10.46
(35) MODIFIED 23.89 27.25 19.22 25.03 9.12 6.98 9.72 9.79
(35) UNMODIFIED 13.25 22.67 4.78 12.44 18.03 27.95 3.81 12.28
(41)  (ROUTINE, GLOBAL, ROUTINE) DATA

BINDINGS:
(42) *  ACTUAL 419.9 344.7 426.7 478.6 357.2 142.9 333.5 513.2
(43) SUBFUNCTIONAL 262.6 249.0 270.0 268.0 208.0 107.4 217.8 283.4
(43) INDEPENDENT 157.3 95.7 156.7 210.6 163.9 39.0 124.7 243.4
(42) *  POSSIBLE 21310 11014 42391 12065 26463 6477 39828 9691
(42) *  RELATIVE PERCENTAGE 3.66 3.83 1.92 5.00 3.55 2.31 1.49 5.14
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Appendix 2.
Explanatory notes for measured programming aspects

The following numbered paragraphs, keyed to the list of aspects
in Appendix 1, describe the programming aspects examined in the
experiment, with definitions for the nontrivial or unfamiliar ones.
Various system- or language-dependent terms (e.g., module,
routine, intrinsic, entry) are also defined here. (The experiment was
part of a larger software research project, and aspects not rele-
vant to this report have been omitted. The numbering scheme
used is consistent with that of the total report, published
elsewhere.1?)

(1) A computer job step is a single indivisible activity per-
formed on a computer at the operating system command level: it is
inherent to the development effort and involves a nontrivial ex-
penditure of computer or human resources. Only module compila-
tions and program executions were counted.

(2) A module compilation is an invocation of the implementa-
tion language processor on the source code of an individual
module. Only compilations of modules comprising the final soft-
ware product (or logical predecessors thereof) were counted.

(3) All module compilations are categorized as either identical
or unique depending on whether or not the source code compiled is
textually identical to that of a previous compilation.

(4) A program execution is an invocation of a complete
programmer-developed program (after the necessary compila-
tion(s) and collection or link-editing) upon some test data.

(5) A miscellaneous job step is an auxiliary compilation or ex-
ecution of something other than the final software product.

(6) Anessential job step is a computer job step thatinvolves the
final software product (or logical predecessors thereof) and could
not have been avoided (by off-line computation or by on-line
storage of previous compilations or results).

(9) The program changes metric?! is defined in terms of textual
revisions made to the source code of a module during the develop-
ment period, from the time that module is first presented to the
computer system, to the completion of the project. The rules for
counting program changes are such that one program change
should represent approximately one conceptual change to the pro-
gram. Each of the following is counted as a single program change:
modification of a single statement, insertion of contiguous
statements, or modification of a single statement followed im-
mediately by insertion of contiguous statements. However, the
following are not counted as program changes: deletion of con-
tiguous statements, insertion of standard output statements or
special compiler-provided debugging directives, insertion of
blank lines or comments, modification of comments, and refor-
matting of statements without semantic alteration. Program
changes are counted automatically according to a specific
algorithm which symbolically compares the source code from each
pair of consecutive compilations of a particular module (or logical
predecessor thereof).

(10} A module is a separately compiled portion of the complete
software system. In the implementation language SIMPL-T, a
typical module is a collection of the declarations of several global
variables and the definitions of several routines.

(11) A routine is a collection of source code statements,
together with declarations for the formal parameters and local
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variables manipulated by those statements, that may be invoked
as an operational unit. In the implementation language SIMPL-T,
a routine is either a valuereturning function (invoked via
reference in an expression) or else a non-value-returning procedure
(invoked via the CALL statement); recursive routines are allowed
and fully supported.

(12) The group of aspects named Routine Type Counts, etc.,
gives the absolute number of programmer-defined routines of
each type. The group of aspects named Routine Type Percen-
tages, etc., gives the relative percentage of each type of routine,
compared with the total number of programmer-defined routines.

(14) The Lines aspect counts every textual line of delivered
source code in the final product, including comments, compiler
directives, variable declarations, executable statements, etc.

(15) The Statements aspect counts only the executable con-
structs in the source code of the complete final product. These are
high-level, structured-programming statements—including sim-
ple statements, such as assignment and procedure call, as well as
compound statements, such as IFTHENELSE and WHILEDO,
which have other statements nested within them. The implemen-
tation language SIMPL-T allows exactly seven different state-
ment types (referred to by their distinguishing keyword or sym-
bol) covering assignment (:=), alternation-selection (IF, CASE),
iteration (WHILE, EXIT), and procedure invocation (CALL,
RETURN). Input-output operations are accomplished via calls to
certain intrinsic procedures.

(16) The group of aspects named Statement Type Counts, etc.,
gives the absolute number of executable statements of each type.
The group of aspects named Statement Type Percentages, etc.,
gives the relative percentage of each type of statement, compared
with the total number of executable statements.

(23) Intrinsic means provided and defined by the implementa-
tion language; nonintrinsic means provided and defined by the
programmer. Nearly all of the intrinsic procedures in the im-
plementation language SIMPL-T perform input-output opera-
tions and external data file manipulations. All of the intrinsic
functions in SIMPL-T perform data type coercions and character
string operations.

(26) In the implementation language SIMPL-T, both simple
(e.g., assignment) and compound (e.g., IFTHENELSE)
statements may be nested inside other compound statements. A
particular nesting level is associated with each statement list,
starting at 1 for the statement list at the outermost level of each
routine and increasing by 1 for successively nested statement
lists.

(27) The Decisions aspect counts the numbers of IF, CASE, and
WHILE statements within the complete source code.

(28) Tokens are the basic syntactic entities—such as keywords,
operators, parentheses, identifiers, etc.—that occur in a program
statement.

(29) An invocation is simply the syntactic occurrence of a con-
struct by which either a programmer-defined or built-in routine is
invoked from within another routine; both procedure calls and
function references are counted. Invocations are (sub)categorized
by the type of routine being invoked.
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(32) A data variable is an individually named scalar or array of
scalars. The Data Variables aspect counts each data variable
declared in the final software product once, regardless of its type,
structure, or scope. Note that each array is counted as a single
data variable.

(33} In the implementation language SIMPL-T, data variables
can have any one of essentially four levels of scope—entry global,
nonentry global, parameter, and local—depending on where and
how they are declared in the program. Global variables are accessi-
ble by name to each of the routines in the module in which they are
declared. Entry globals are actually accessible by name to each of
the routines in several (two or more) modules: the module which
declares it ENTRY, plus each of the modules which declare it
EXTernal. Nonentry globals are accessible by name only within
the module in which they are delcared. Nonglobal variables are ac-
cessible by name only to the single routine in which they are
declared: formal parameters have values that are somehow related
to a calling routine (by the parameter passing mechanism), while
locals have values that are completely isolated from any other
routine.

(35) Modified means referred to, at least once in the program
source code, in such a manner that the value of the data variable
would be {re)set when (and if) the appropriate statements were to
be executed. Unmodified means referred to, throughout the pro-
gram source code, in such a manner that the value of the data
variable could never be (re)set during execution. In the implemen-
tation language SIMPL-T, unmodified globals must be initialized
{(within their declarations) in order to be useful as ‘“‘named con-
stants.”

(36) The implementétion language SIMPL-T allows two types
of parameter passage. Pass-by-value means that the value of the
actual argument is simply copied (upon invocation) into the cor-

responding formal parameter (which thereafter behaves like a

local variable for all intents and purposes), with the effect that the
called routine cannot modify the value of the calling routine’s ac-
tual argument. Pass-by-reference means that the address of the
actual argument—which must be a variable rather than an expres-
sion—is passed (upon invocation) to the called routine, with the ef-
fect that any changes made by the called routine to the correspon-
ding formal parameter will be reflected in the value of the calling
routine’s actual argument (upon return). In SIMPL-T, formal
parameters that are scalars are normally (default) passed by
value, but they may be explicitly declared to be passed by
reference; formal parameters which are arrays are always passed
by reference.

(37) The group of aspects named Data Variable Scope Counts,

etc., gives the absolute number of declared data variables accor-
ding to each level of scope. The group of aspects named Data
Variable Scope Percentages, etc., gives the relative percentage of
variables at each scope level, compared with the total number of
declared variables.

(39) The group of aspects named Parameter Passage Type
Percentages, etc., gives the percentages of each type of parameter
relative to the total number of parameters declared in the pro-

gram.

{(40) A routine-global usage pair (r,g) is an instance of a global
variable g being used by a programmer-defined routine r (i.e., the
global is either modified (set) or accessed {(fetched) at least once
within the statements of the routine). Each usage pair represents
a unique ‘‘use connection” between a global and a routine.

In this study, routine-global usage pairs were (sub)categorized
by the type of global involved and were counted in three different
ways. First, the (Routine, Global) Actual Usage Pairs aspects
count the absolute numbers of true usage pairs (r,g) : the global
variable g is actually used by routine r. Second, the (Routine,
Global) Possible Usage Pairs aspects count the absolute numbers
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of potential usage pairs (r,g), given the program’s global variables
and their declared scope: the scope of global variable g merely con-
tains routine r, so that r could potentially modify or access g.
These counts of possible usage pairs are computed as the sum of
the number of routines in each global’s scope. Third, the (Routine,
Global) Usage Pair Relative Percentage aspects are a way of nor-
malizing the number of usage pairs since these measures are simp-
ly the ratios (expressed as percentages) of actual usage pairs to
possible usage pairs.

(41) A routine-global-routine data binding?* (r1,g,r2) is an oc-
currence of the following arrangement in a program: a
programmer-defined routine 71 modifies (sets) a global variable g
that is also accessed (fetched) by a programmer-defined routine
r2, with r1 different from r2. The binding (r1,g,72) is different from
the binding (r2,g,r1) which may also exist; occurrences such as
{r,g,r) are not counted as data bindings.

(42) In this study, routine-global-routine data bindings were
counted in three different ways. First, the Actual count is the ab-
solute number of true data bindings (r1,g,72): the global variable g
is actually modified by routine r1 and actually accessed by routine
r2. Second, the Possible count is the absolute number of potential
data bindings (r1,g,72), given the program’s global variables and
their declared scope: the scope of global variable g merely contains
both routine 1 and routine r2, so that r1 could potentially modify
g and r2 could potentially access g. This count of Possible data
bindings is computed as the sum of terms s *(s—1) for each global,
where s is the number of routines in that global’s scope; thus, it is
fairly sensitive (numerically speaking) to the total number of
routines in a program. Third, the Relative Percentage is a way of
normalizing the number of data bindings since it is simply the quo-
tient (expressed as a percentage) of the actual data bindings divid-
ed by the possible data bindings.

(43) Actual data bindings are (sub)categorized depending on
theinvocation relationship between the two routines. A data bind-
ing (rl,g,r2) is subfunctional if either of the two routines r1 or r2
can invoke the other, whether directly or indirectly (via a chain of
intermediate invocations involving other routines). In this situa-
tion, the functioning of the one routine may be viewed as con-
tributing to the overall functioning of the other routine. A data
binding (r1,g,72)is independent if neither of the two routines r1 or
r2 can invoke the other, whether directly or indirectly. The tran-
sitive closure of the call graph among the routines of a program is
employed to make this distinction between subfunctional and in-
dependent.

(44). Several instances of duplicate programming aspects exist
in the tables presented in this paper. That is, certain logically
unique aspects appear a second time with another name, in order
to provide alternative views of the same metric and to achieve a
certain degree of completeness within a set of related aspects.
Listed below are the pairs of duplicate programming aspects that
were considered in this study:

FUNCTION CALLS <=> INVOCATIONS,
- FUNCTION
NONINTRINSIC <=>  NONINTRINSIC
INTRINSIC <=> INTRINSIC
STATEMENT TYPE <=> INVOCATIONS,
COUNTS, (PROC) CALL PROCEDURE
NONINTRINSIC <=>  NONINTRINSIC
INTRINSIC <=> INTRINSIC

AVERAGE INVOCATIONS <=> AVERAGE
PER (CALLING) ROUTINE, INVOCATIONS PER
NONINTRINSIC (CALLED) ROUTINE

By definition, the data scores obtained for any pair of duplicate

aspects will be identical, and thus the same statistical conclusions
will be reached for both aspects.
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