Transporting Up: A Case Study

Victor R. Basili

Computer Science Department, University of Maryland

John G. Perry, Jr.

Naval Surface Weapons Center, Dahlgren Labora-
tory, Virginia

This paper discusses the various aspects of trans-
porting one language, SIMPL-T, from the UNIVAC 1108
computer to the CDC 6700 computer, a machine of
larger word size. Special attention is given to the oper-
ational mechanism, the testing plan, the problems en-
countered in transporting, and the various statistics kept
during the development.

INTRODUCTION

It is the authors’ experience that developing a trans-
portable and efficient software product is a difficult
task. The main difficulties arise in achieving a good

transportable design of the product and in making the

product operational. Design is difficult because of lit-
tle theory for developing a transportable design ap-
plicable to a set of heterogeneous machines; also, a
transportable design may conflict with other require-
ments, such as efficiency. Operational problems arise
in making software that executes on one machine ex-
ecute on another, due to the different machine envi-
ronments, especially the different operating systems,
as well as the testing requirement that the program
perform the ‘‘same’’ on the new machine, to whatever
degree that term is meant.

The specific software discussed is a compiler for
the language SIMPL-T [1], a structured programming
language in the FORTRAN/ALGOL 60 size range, and
~ the project involves the bootstrapping of the com-
piler. The original compiler was developed for the
UNIVAC 1100 series computer and was designed to

Address correspondence to Dr. Victor R. Basili, Computer Sci-
ence Department, University of Maryland, College Park, Maryland
20742.

The Journal of Systems and Software 1, 123-129
© Elsevier North Holland, Inc., 1980

be transportable and efficient, i.e., as efficient as the
standard UNIVAC FORTRAN compiler [2]. Since the
target architectures in mind had a smaller word size
than the 36-bit-word UNIVAC machine, e.g., the
IBM 360/370 and 16-bit minicomputers, it was as-
sumed that bootstrapping to a machine with larger
words would be easier; thus the problems of trans-
porting up had not been thoroughly considered.

METHODS FOR TRANSPORTING

There are two possible approaches for transporting a
compiler from one machine to another.

Standard Approach

The code generator on the host computer is modified
to produce code for the target computer. Assuming
the compiler for a language is written in the language
itself, the source of the modified compiler can then be
compiled on the host computer to yield a compiler
executable on the target machine. A set of interface
routines with the operating system that are not part
of the compiler but are essential to the use of the com-
piler must be written. These interface routines (also
called run-time routines or language-support routines)
are usually written in a host machine language. Trans-
porting a compiler involves three steps: (1) the de-
velopment of the target compiler at the host site, (2)
the development of the run-time routines at the target
site, and (3) the installation and integration of the tar-
get compiler and run-time routines at the target site.
Testing and debugging may require repeated use of
the host machine, however.

123
0164-1212/80/020123-07$02.25

124

Transportable Approach

The host computer’s compiler is translated into an-
other language that runs on the target computer. This
creates a source for the host compiler that can operate
on the target machine. It assumes the existence of a
translator program that runs on the target machine
that will convert a program to a high-level target lan-
guage along with a set of run-time routines written in
that language. For SIMPL-T, there exists such a trans-
lator written in SNOBOL 4 that translates SIMPL-T pro-
grams into ANSI standard FORTRAN, along with a set
of FORTRAN run-time routines [2]. The benefit of this
approach is that it does not require the use of the host
computer [3].

TRANSPORTING AND TESTING

We shall now discuss the transporting of the SIMPL-T
compiler to the CDC 6700 [4], a task that was com-
pleted in 5 person-months of effort.

The initial plan was to use the transportable boot-
strap approach since the tools (e.g., the translator,
FORTRAN routines) were available and had been used
to bootstrap the compiler to an IBM 360/370 series
computer. Also, the two sites were 60 miles apart and
had no mutual teleprocessing capability. The trans-
portable approach, however, proved unsatisfactory
because the translator was written in SNOBOL 4 and
a version with the necessary functions (SNOBOL 4 and
at least 36-bit integer arithmetic) was not available on
the CDC 6700. Thus, we were forced to the standard
approach.

The approach will be discussed in two phases: the
work predominantly done at the UNIVAC site and
the work done at the CDC site. In phase 1 (at the
UNIVAC site) the code generator of the host com-
puter’s compiler was redesigned to take into consid-
eration the run-time environment of the CDC 6700.
CDC assembly language (COMPASS), rather than ma-
chine code, was used as the target language in order
to keep the project as uncomplicated as possible.
COMPASS was selected since (1) relocatable binary is
not easy to generate for the CDC system; (2) conver-
sion (including character sets) to different CDC op-
erating systems (SCOPE 3.3 and SCOPE 3.4) is eas-
ier; (3) the compass source file could be changed on
the CDC system to correct a code generator error or
to change a test problem without having to return to
the UNIVAC 1108; and (4) compass code output of
the code generator is more readable than machine
code output. '

About 40 sIMPL-T routines, written to check out
the original compiler, were run on the UNIVAC 1108

V. R. Basili and J. G. Perry, Jr.

to test the coMpass code produced by the modified
code generator. The checking was done visually, first
checking the sIMPL-T code generator source (desk
checking) and then checking the output (COMPASS) of
the test cases produced by the new compiler. Finally,
the SIMPL-T compiler was used as a test program to
get a version of the compiler that would execute on
the CDC machine.

The second phase was accomplished at the CDC
6700 site. The run-time support routines were written
in compass for the CDC machine. These were the
routines (e.g., string packages, input/output, etc.) that
enabled the new compiler to be integrated success-
fully with the target computer’s operating system.

A check was made of the new code generator in its
new environment, after the new compiler was com-
piled for the first time on the target machine’s com-
piler. The check was performed by comparing the
compiler output from the host compiler against the
output of the target machine compiler. To check the
CDC run-time routines, test routines written in
SIMPL-T were used to (1) permit the use of the set of
test routines already developed in siMPL-T for the
UNIVAC compiler effort; (2) minimize the time re-
quired to write new test routines; and (3) help check
out the CDC code generator further. Each SIMPL-T
test routine was used to test a particular CDC run-
time routine; then if an error occurred during testing,
it was assumed to be in that run-time routine. The new
test routines were then added to the existing library
of sIMPL-T test routines that could be used in testing
modifications to the compiler being tested or any
other bootstrapping projects involving the SIMPL-T
language. The resulting group of test routines forms
a standard that is used to help check that the various
compilers are operating the ‘‘same.”’

There were two disadvantages to this SIMPL-T test
program approach for the run-time routines. First, it
was assumed that the code generator was error-free;
therefore any error caught by the run-time test rou-
tines was in the run-time routine itself. If this were not
the case, time was lost examining a good run-time rou-
tine. Second, if a test routine had not been designed
well enough to test out all aspects of the routine, or
the test needed to be enhanced to check out some
newly exposed, potentially unreliable code segment
more fully, or if an error of some kind were made,
then recompilation was required. Recompilation im-
plied returning to the UNIVAC site, making the
change, recompiling, and then repeating the run on
the CDC machine. Fortunately, since CoMPASs rather
than machine language was used. as the target lan-
guage, the coMPAss version of the SIMPL-T test pro-
gram could be modified by using an editor to change

Transporting Up: A Case Study

or add new COMPASS statements to the test program.

These changes could be accumulated, put into the
SIMPL-T source test programs, and recompiled at one
time. However, these local patches were possible for
only minor changes in the CoMPASS code;any serious
changes required recompilation.

The final test program was the SIMPL-T compiler
itself. The compiler consists of about 6000 SIMPL-T
statements and produces about 100,000 lines of com-
pAsS code. The compass code was then assembled
and run.

TRAiNSPORTABILITY DESIGN PROBLEMS

As stated in the introduction, designing a transport-
able and efficient software product is a difficult task.
First of all, there is little theory for the transportable
design of software that is effective with respect to a
set of time and storage efficiency constraints. This is
not because all problems are hard to solve on a case-
by-case basis: Each problem often has a reasonable
solution [5]. The difficulties occur due to the diversity
of problems and their solutions, which tend to be ad
hoc and based on incomplete knowledge. Local de-
cisions in one situation appear to be counterproduc-
tive to decisions made in another situation. The trade-
offs among time, space, and portability appear to
complicate the process considerably.

Mills [6] speaks about solving problems that are
yet too hard; i.e., we have not yet enough understand-
ing of a rigorous solution to a given problem and must
use ad hoc methods or heuristics in specifying the so-
lution. Developing a transportable product is just such
a problem. The characteristics of such a product are
not well defined except by the success of the final
product to execute on several machine architectures.

Second, unlike efficiency, the final target for a
transportable design is not very specific. It is not a
unique machine with a given set of characteristics. It
involves a multitude of architectures with a variety of
special characteristics. For example, one may know
how to write an efficient program on the UNIVAC
1108 because one understands the machine architec-
ture; but there are too many variables involved in the
attempt to develop a product to be efficient on a va-
riety of machine architectures. That is, one cannot
have them all in mind unless one distills away all of
their idiosyncratic properties, leaving portability
without efficiency. These variables complicate the
product development process considerably.

Third, developing a product that is correct, relia-
ble, and modifiable is difficult enough; adding a set of
efficiency constraints complicates the problem fur-
ther; and adding portability constraints raises the

125

complexity of design one more level. The design level
becomes more complex because several of the goals
of one of these different product characteristics con-
flict with the goals of others. Thus, for example, a
product that is efficient’is often nonportable specifi-
cally because design decisions were made in favor of
efficiency over portability. Also, portability intro-
duces a new and complicated balance to the set of
product properties.

The UNIVAC simMpL-T compiler is very reliable:
There has been success with several modifications; it
generates efficient object code comparable with com-
pilers for languages of its size; and there has been suc-
cess with transporting the compiler onto other ma-
chines [1, 7, 8]. To support transportability, both the
language and the compiler were designed with that
goal in mind; the compiler having been written in the
language.

The language contains character strings to mini-
mize word size problems in handling textual data.
Although there are several word-size-dependent op-
erators in the language, such as bit, partword, and
shift operators, their machine-dependent effects can
be minimized without affecting efficiency by carefully
using the parameterized define facility and macro pre-
processor provided with the sIMPL system.

The front end of the SIMPL-T compiler (scanner and
parser functions) has been designed to be machine in-
dependent. It interfaces to a machine-dependent code
generator by generating a file of very-high-level, ma-
chine-independent quadruples (quads) transcending
the architecture of any particular machine. (A quad
is a 4-tuple of pseudocode that consists of an opera-
tion field, two operand fields when needed, and a re-
sult field when needed.) To minimize the word-size
dependency problems, the compiler uses variable
length character strings to represent textual data. All
bit strings of information are packaged into multiples
of some ‘‘transportable’’ word size (16 bits in this
case) and machine-dependent operators are used
sparingly and carefully in parameterized macros. To
handle the machine dependency of internal character
representations, 8-bit ASCII is used as the internal
form.

Although transportability was designed into the
compiler, which was transported successfully to
smaller word-size machines, several problems arose
with transporting to the CDC 6700. The UNIVAC
front end was designed to handle a maximum of 36-
bit integers, and 60-bit integers were required for the
CDC 6700. Thus, checking for the size of constants
in the conversion routines allowed a maximum integer
of 2%, This was clearly a problem on a machine that
permitted a maximum of 2°. This problem was solved

126

by generating two extra versions of the compiler. A
version was generated that did not check for maxi-
mum integer size. The modified compiler was then run
through this nonchecking version and the checking
was put back in, this time using a 60-bit constant for
confirmation. The fact that the arithmetic of both
computers was one’s complement, so that integers
were bit-for-bit compatible with the CDC integer,
simplified the conversion effort. However, if the tar-
get machine were two’s complement, extra checking
and conversion would have been needed to convert
from one’s complement to two’s complement. If a 60-
bit arithmetic version of the sNoBoL 4 had been
found, this problem would have been easily solvable
since the change of constant could have been made
in the SNOBOL translator itself.

A second problem was that the compiler did not
make full use of the larger 60-bit word on the CDC
machine. Information was stored in packets of 16 bits.
Unfortunately, the macros were designed to handle
16- and 32-bit words easily, but multiples of three
were not so easily handled. Thus the SIMPL-T com-
piler symbol table uses only the right 32-bits of the
CDC’s 60-bit word. One solution is to redefine the
symbol table macros to use 48 of the 60 bits. This ap-
proach is feasible, but some work is involved since
routines do not always use consistent access meth-
ods. More centralized symbol table access routines

would have avoided this problem and isolated ma-

chine dependencies better.

A third problem involves the partword operators,
operators that allow access of bit fields within a word.
First, only 36 bits of the 60-bit CDC word are acces-
sible because of error checks built into the UNIVAC
compiler. Second, the siMPL-T language defines the
bit ordering from left to right; i.e., the left-most bit
(the sign bit) is bit number zero. Thus a SIMPL-T pro-
gram referencing bit zero would refer to an entirely
different bit on the two machines; e.g., bit zero on the
UNIVAC machine is 2%, whereas while bit zero on
the CDC machine is 2°°. The bit numbering from left
to right was chosen to be compatible with the UNI-
VAC system use architecture. It permitted an effi-
cient mapping into the machine defined bit/partword
operators (e.g., quarter-word, half-word).

Here efficiency was considered above transporta-
bility since partword was defined in SiMPL-T specifi-
cally for efficiency. Partword operators were not
transportable and it was not worth the effort to make
them ‘‘pseudotransportable.”” They were to be made
as efficient for the machine on which they were op-
erating as possible, and any code written using them
was to be rewritten for the new machine if that code
was to be transported.

V. R. Basili and J. G. Perry, Jr.

To handle the problem of transporting the part-
word code, the partword macros were redefined
changing the maximums used in the range checks.
Reversing the ordering of the bits to be more com-
patible with the CDC architecture standards was con-
sidered but not implemented in order to maintain
compatibility with the UNIVAC version.

Character sets are traditionally a problem in boot-
strapping whether moving to a larger or smaller ma-
chine. Although the SIMPL-T compiler uses 8-bit
ASCII for its internal representation of characters, it
lives with a character set of less than 2% characters.
The number of characters permitted the mapping of
the 8-bit ASCII code into the 6-bit display code avail-
able on the CDC machine. The mapping was one-to-
one except for two characters which had to be
changed. The only drawback to the character set map-
ping is that an extra conversion is needed, for exam-
ple, to access into the ASCII hash coded symbol
table. Unfortunately, this is an unavoidable problem
if lexigraphic order is to be kept consistent from com-
piler to compiler.

STATISTICS ON THE PROJECT

Detailed information was kept on a daily basis for
each stage of the project. Difficulties occurred in
trying to define discrete stages (e.g., design, code,
checkout) and being able to break down the time ex-
penditures of each day into these categories. The ter-
minology involved is not standardized; therefore, the
discrete categories used are defined below.

Discussion: discussing global aspects of project and
method used to develop the simpL-T UNIVAC
compiler.

Background: researching reference material; writing
special purpose programs to display the internal
workings of the compiler (on the UNIVAC ma-
chine); getting the necessary background knowl-
edge and studying source listings for the scanner
and parser.

Design: designing, flowcharting, and outlining.

Redesign: redesigning a part of the project because
the initial design was incomplete.

Code: writing on coding sheets, also including some
minor design.

Check: visually checking logic of code; desk
checking.

Debug: detecting, locating, isolating, and eliminating
mistakes, malfunctions, or faults.

Test: writing or running test cases; also visually ana-
lyzing the results.

Transporting Up: A Case Study

Keypunch: keypunching or entering code into a
terminal.

Setup: preparing files, tapes, and jobs; including cre-
ating bootstrap tapes on the UNIVAC machine
and transporting them into the CDC file system.

System Changes: making changes required by exter-
nal system or compiler changes.

System Problems: making corrections or redoing
work as a result of a system malfunction (software
or hardware).

The statistics for the project are given for the
UNIVAC (first) phase, the CDC (second) phase, and
the total project. The steps were also grouped to-
gether to give percentages for the general areas of (1)
design (discussion, background, design, and rede-
sign); (2) code; (3) test (checking, debugging, and test-
ing); and (4) miscellaneous (keypunch, setup, system
changes, and system problems).

Table 1 gives a percentage breakdown of work on
the project over nine calendar months (150 days or
746 hours). Only hours spent on the project are
considered.

UNIVAC phase. The UNIVAC phase involved
the general design of the code generator, the design
of the CDC run-time environment, and the coding and
testing on the UNIVAC machine of the CDC code
generator. Note that the design percentage of the
UNIVAC phase was kept to a minimum due to the
simple nonoptimizing design of the code generator. If
a more sophisticated code generator for the CDC
compiler had been written, it would have required
more design time.

CDC phase. The CDC phase involved the design,
coding, and testing of about 50 independent and small

Table 1. Percentage of Time

Phase 1 Phase 2 Total
Design 31 14 22
Discussion 4 3 3
Background 12 8 10
Design 10 3 6
Redesign S 0 3
Coding 17 29 23
Testing 39 50 45
Check 6 6 6
Debug 10 12 11
Test 23 32 28
Miscellaneous 13 7 10
Keypunch 5 0 2
Setup 2 6 4
Changes 4 0 2
Problems 2 1 2

127

run-time routines. It also included the final testing and
actual bootstrapping of the compiler.

The reasons for the differences in the design phase
percentages for the two phases are not surprising,
since the second phase required very little design for
the single-function, well-defined (algorithms existed
for the UNIVAC compiler) run-time routines. Both
coding and testing for the CDC phase were greater
because of the large number of routines that needed
to be written and checked. Most of the difference in
the miscellaneous group was due to the fact that
professional keypunching services were not available
at the UNIVAC site.

It is believed that if an optimized code generator
that produced relocatable code (as exists for the
UNIVAC compiler) were written for the CDC com-
piler, then the percentages would be changed to ap-
proximately 35% for design, 15% for coding, 40% for
testing, and 10% for miscellaneous.

Some productivity figures in the standard mea-
sures of lines/person-year and words/person-year are
given in Table 2. Although these measures of produc-
tivity are not too meaningful and are rather ambigu-
ous, they will permit us to compare our results with
several contemporary ‘‘hypotheses’’ [9]:

1. Programmers produce a fixed number of state-
ments per year, regardless of the language.

2. Programmer productivity is increased several fold
when a suitable high-level language is used.

Before we make this comparison, let us qualify
some aspects of the project that affect the productiv-
ity results to aid in interpretation of the results. The
compiler generated in this project is effective but does
not generate very efficient code; more work is needed
to get a good optimizing compiler. There was only one
programmer, working part time in a time-sharing en-
vironment at both sites. The majority of his experi-
ence was with the CDC environment. Coding was
done partly in the assembly language coMPASs (with
which he was familiar) and the structured program-
ming language SIMPL-T (with which he was less fa-
miliar). The problem was a typical translator problem
and was reasonably well specified. All code was writ-
ten from scratch and almost no new documentation
was required for the project.

Now let us examine the aforementioned ‘‘hy-
potheses’’ with respect to this project. The first state-
ment does not appear to be supported by this project
study if we compare the figures 22 vs 70 statements/
day. However, the following two points tend to cloud
the issue. First, this project used a computer with a
primitive instruction set (CDC 6700), where, for ex-
ample, three instructions are necessary to transfer

128

Table 2. Productivity

V. R. Basili and J. G. Perry, JIr.

Statements

Source Statement _ per

language language Statements® Lines® Words® Hours? hour day

Phase 1 SIMPL-T SIMPL-T 1,000¢ 1,700 9,536 353 2.8 22
SIMPL-T COMPASS 18,606 20,007 9,536 353 53.0 424

Phase 2 COMPASS COMPASS 3,500 5,100 3,836 393 8.8 70

“Includes only lines with executable statements (no comment lines, no declarations, and no initialization; includes only
statements contained in the code statements) written for the code generator and CDC run-time routines (no statements

from test cases).
*Includes comments, declarations, etc.
°CDC 60-bit words (includes data storage).

“Total project hours: includes time spent on all aspects of the project (all 12 components considered in the separate time

estimates—see Table 1).

“The SIMPL-T code generator produced cOMPASS statements. These COMPASS statements (produced by the 1000 stmpL-
T source statements) are described by the second line of the table. The statistics here are a function of the quality of the

code generator and the machine instruction set of the CDC 6700.

data from one memory location to another. Second,
phase 2 of the project was composed of less compli-
cated tasks than was phase 1; e.g., there were 50 small
self-contained routines written in phase 2 as opposed
to the one more complex code generator written in
phase 1.

The second “‘hypothesis,” that programmer pro-
ductivity is increased by use of a high-level language,
seems to be validated if we compare 424 statements/
day, which is the number of cOMPASS statements pro-
duced as output by the 1000 SIMPL-T statements, with
70 statements/day, which is the number of statements
produced directly in coMPAss. This yields a 6:1 ratio.

Statistics were also kept on the number of errors
uncovered in testing (Table 3). There were also four
errors found in the final integration testing of phases
1 and 2. It is interesting to note that the ratio of state-
ments written to errors found appears to be relatively
independent of the source language; i.e., there was
one error per 67 SIMPL-T statements and 70 COMPASS
statements. If the error ratio can be shown to be con-
sistent for individual programmers, one could show
that the use of a high-order language reduces the
words of storage generated per error ratio, just as it
increases productivity; i.e., in this case, 636 words/
error for simPL-T-generated code vs 77 words/error

Table 3. Errors

for compass-generated code. Of course, this ratio
cannot be taken too literally as a more efficient com-
piler should reduce the total number of words of com-
pass code generated by the CDC sIMPL-T compiler.

CONCLUSION

Based on this experience, we make several recom-
mendations. The standard bootstrapping approach is
fraught with operational problems that waste time and
add the expense of extra knowledge requirements,
€.g., an extra operating system.

Duplicate test cases for both versions of the com-
piler helps guarantee the ‘‘sameness”’ of both imple-
mentations. The same front end for both compilers
also helps, especially with respect to the ‘‘sameness’’
of error messages and error recovery. However,
nothing beats careful code reading.

There is software that is portable and efficient in
the context of two or three machine architectures; it
is rare and difficult to achieve portability and effi-
ciency among many machine architectures. We sus-
pect that small design problems will continue to
plague the development of a transportable and effi-
cient design without the development of a more rig-
orous theory. However, it is helpful to keep a check-
list of the problems likely to be encountered in order

Source Statements/
language Statements Words Errors error Statements/error
Phase 1 SIMPL-T 1000 9536 15 67 636
Phase 2 COMPASS 3500 70 71

3836 50

Transporting Up: A Case Study

to examine them in the context of new problems as
they arise. The integer-size problem encountered in
the existing design could have been solved using the
portable bootstrap with maximum constants para-
meterized. The real problem is that it is not clear what
new problems may be encountered with the existing
design for some yet untried architecture.

Based on the error statistics and an analysis of the
kinds of error committed, it is believed that code read-
ing and walk-throughs would have greatly minimized
the error rate and time. This would have required a
second programmer being assigned to the project—
an impossible situation in our case, but one for which
we shall try to make arrangements in our next product
development. Much has been said about having too
many people on a project; not enough has been said
about having too few—not from the point of view of
project size but for the express purpose of reading
each other’s code. The authors believe two heads are
better than one and that programming should not be
an individual but a group activity.

We should like to see more statistics on error rate
per lines of code written. It would be interesting to
see if this is an invariant dependent upon the pro-
grammer or the type of project, as well as to see if
other studies come up with a rate invariant across lan-
guage level. If so, it would be another argument for
high-level languages. Also, it would be interesting to
see whether specific program development method-

129

ologies improve that rate on an individual basis. We
should like to see more such statistics published in
open literature.

REFERENCES

1. V. R. Basili and A. J. Tumer, SIMPL-T, A Structured
Programming Language, Paladin House, Geneva, Illi-
nois, 1976.

2. V.R.Basiliand A. J. Turner, A Transportable, Extend-
able Compiler, Software Practice and Experience 5,
269-278 (1975).

3. R. Dunn, sNOBOL 4 as a Language for Bootstrapping a
Compiler, SIGPLAN Notices 8 (5), 28-32 (1973).

4. Control Data Corporation (CDC), 6400/6500/6600 Com-
puter Reference Manual, Publ. No. 60100000, St. Paul,
Minnesota, 1969.

5. P. J. Brown, Macro Processors and Techniques for
Portable Software, Wiley, New York, 1974.

6. H. D. Mills, Software Development, Proc. 2nd Int.
Conf. on Software Engineering, October, 1976.

7. V. R. Basili, The Design and Implementation of a Family
of Application-Oriented Languages, Proc. 5th Texas
Conf. on Computing Systems, University of Texas, Oc-
tober 18-19, 1976, pp. 6-12.

8. K. Harada and V. R. Basili, Structured Programming
Language for Complier Writing: SIMPL-T (in Japanese).
Information Processing 17 (3), 222-228 (1976), Infor-
mation Processing Society of Japan.

9. F. P. Brooks, The Mythical Man-Month, Addison-Wes-
ley, Reading, Massaschusetts, 1975.

