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A Comparison of the Axiomatic and Functional
Models of Structured Programming

VICTOR R. BASILI AND ROBERT E. NOONAN

Abstract—This paper discusses axiomatic and functional models of the
semantics of structured programming. The models are presented to-
gether with their respective methodologies for proving program correct-
ness and for deriving correct programs. Examples using these method-
ologies are given. Finally, the models are compared and contrasted.

Index Terms—Axiomatic correctness, functional correctness, program
derivation, structured programming,

I. INTRODUCTION

TRUCTURED programming methodology has centered

around the use of a particular set of program constructs,
chosen because they provide the programmer with the ability
to maintain control of the program development. This con-
trol involves the ability to break the program into small easily
understood pieces using a few simple structures which permit
the verification of each step in the development process before
going on to the néxt step. Each step involves the decomposi-
tion of the current set of pieces into another set of simple
structures. This development technique is commonly referred
to as stepwise refinement.

The guidelines for choosing these basic structures and the
ability to prove the correctness of the partial solution of a
program are based on formal models of the semantics of
various program constructs. Associated with each of these
constructs is a rule for verifying the correctness of the ex-
pansion from its specification or intended function. This
paper discusses an axiomatic model (Floyd [3], Hoare [6])
and a functional model (Mills [8], [9]).

It should be noted that these models were originally defined
in different frameworks: Floyd’s with program flowcharts,
Hoare’s model with programming language statements, and
Mills’ model with single-entry-single-exit program segments,
For the purposes of comparison, variants of the basic Hoare
and Mills models have been chosen and defined within the
common framework of the standard structured programming
constructs. For those readers familiar with one model or the
other, the discussion of the specific correctness and deriva-
tion techniques may be glossed over, but they should be read
in order to provide a common framework for comparison.

In the next section, the basic models will be given along with
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the methodology used for proving the correctness of a pro-
gram in each model. Section III gives the algorithm for de-
riving a correct program and contains an example derivation
using each model. Section IV compares the two models: their
similarities, differences, and interrelationships.

II. BAsic MODELS OF PROGRAM CONSTRUCTS
AND CORRECTNESS

In this section the variants of the Hoare and Mills models
are defined. Although the Hoare model is oriented toward
programming language statements and the Mills model toward
single-entry-single-exit program constructs, by restricting the
constructs used to the standard structured programming ones,
both models can be defined over precisely the same constructs.
This is done to facilitate a comparison of the two models.
For the remainder of this paper, the terms statement and pro-
gram construct will be used interchangeably.

The semantic rules are given below for each program con-
struct, where S1 and S2 are again constructs from this set:

1) assignment: x:=f

2) sequence: S1;S2

3) iteration:  while b do S1 od

4) choice: if b then S1 else S2 fi
if b then S1 fi.

For the purpose of this paper, a program consisting of only
these constructs will be called a structured program. These
particular constructs were chosen because they are repre-
sentative, they are the most commonly used, and they are
sufficient for the examples given in this paper.

Based on the semantic definitions of the individual con-
structs, we show the standard correctness criteria for each
construct and how to apply the correctness criteria to a
structured program. These program constructs permit break-
ing the program into a hierarchy of structured subprograms
such that the correctness of each subprogram can be proved
independent of the rest of the program. Given any of the
allowable program constructs discussed earlier, we can create
this program hierarchy by defining each of those statements
to be at a particular level in the hierarchy. Then consider the
constructs S1 and S2 used in the definition of those basic
constructs -to be single logical statements at the next lower
level. This creates a hierarchy in which the lowest level must-
consist solely of assignment statements.

As an example, consider the program given in Fig. 1. The
program hierarchy is the following:
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4. Y= Y-1;
5. Z = Z+A
6. od

Fig. 1. Simple multiplication program.

level 1 level 2
(sequence) | (assignment) | Z :=0

level 2
(assignment) | Y :=B

level 2 while Y > 0 do
(iteration)
level 3 Y=Y-1
(sequence) ]
Z:=Z+A

A. Axiomatic Correctness

The particular model of axiomatic correctness that we use
here is due to Hoare [6].

The intended function of a program, or part of a pro-
gram can be specified by making general assertions about
the values which the relevant variables will take after ex-
ecution of the program. These assertions will usually
not ascribe particular values to each variable, but will
rather specify certain general properties of the values
and the relationships holding between them. ...In
many cases, the validity of the results of a program (or
part of a program) will depend on the values taken by
the variables before that program is initiated. These
initial preconditions of successful use can be specified
by the same type of general assertion as is used to de-
scribe the results on termination.

The notation

{r} s {Q}

is used to state the required connection between the input
assertion P, output assertion Q, and program (or part of a
program) S. The program S is partially correct with respect
to P and Q iff for every substitution of values which makes P
true, then after the execution of S, Q must be true. To prove
(total) correctness, we must also prove that if P is true then S
terminates.

Assignment
Al {P(xef)} x := £ (P}
where P(x4=f) 1s obtained from P by substituting

£ for all free occurrences of x.

Composition
A2 1If {P} s1 (R} and {R} S2 {Q},

then (P} S1; s2 {Ql.

Iteration
a3 1f {p, B} s (P},

then (P} while B do S od ({P,«B}

Choice
a4 1f {p, B} s1 {Q} and {p,.B} 2 {Q},

then {P} if B then S1 else S2 fi {Q}

a5 1If {p, B} s1 {Q} and P,4B*+Q

then {P} 1f B them S1 fi {Q}

Consequence
A6 If‘ (P} S {Q} and Q + R, then {P} S {R}.

A7 1f {Q} S {R} and P > Q, then {P} S ({(R}.

Fig. 2. Hoare’s rules of inference.

In this paper, we ignore the problem of termination since
the techniques used are identical for both models. For most
“real-world” programs, the method of proving termination
by using well-founded sets due to Floyd [3] has proved ade-

quate. All of the example programs in this paper have trivial

proofs of termination.

To prove that S is correct with respect to P, Q, a first-order
predicate theory is used together with an axiom scheme or
rule of inference for each program construct. These latter
are given in Fig. 2. A complete explanation of these can be
found in Hoare [6]. Note that the notation P, Q is used to
denote the formula PA Q. In the iteration rule A3 the asser-
tion P is usually called the loop invariant.

To prove the correctness of a particular program, assume
that every program statement, as well as the program itseif,
has both a pre- and postassertion and the program hierarchy
has been produced. Since each statement in the hierarchy
has both a pre- and postassertion, the correctness of each
piece is proved using the rules given in Fig. 2 based on the
form of the program hierarchy. This demonstrates the partial
correctness of the program.

In practice, however, every statement in a program is rarely
tagged with both its pre- and postconditions. The minimum
effective requirement is to be given the pre- and postcondi-
tions for the entire program and the loop invariant for each
loop. In this case, the pre- and postconditions can be gen-
erated by a top down process.

To produce the assertions, first produce the program hier-
archy using Algorithm A. In this case, a slight modification
(or normalization) of the process is introduced; given a se-



- 1); Sn. Given the hierarchy, the precondi-
tion of each statement is generated by a top down recursive
algorithm from the postcondition (note that the output
assertion of the entire program is assumed to be given).

Algorithm A:

1) Assignment: x:=f. 1If the post condition is P, then
the precondition is P(x < f) as given in rule A1 of Fig. 2.

2) Sequence: S1;S2. 1If the post condition is Q, then
the process is invoked recursively to find the precondition
of S2, namely, R. Repeat algorithm A on S1 given R as its
postcondition.

3) Iteration: while B do S od. Note that it is assumed that
the loop invariant P is given. If Q is the postcondition, it must
be proved (as part of the proof process) that P, 1B~ Q. P is
the precondition of the loop. {P, B} is the given precondi-
tion of S and P the postcondition of S. The process of finding
preconditions is continued by invoking Algorithm A on S.

4) Choice: if B then S1 else S2 fi. If Q is the postcondition
of the if, then the process is repeated by invoking Algorithm
A on S1 and on S2 with Q as their postconditions, yielding
P1 and P2 as their respective preconditions. The precondition
of the if is {(B—>P1),(71B > P2)}. Note that this condition
can normally be greatly simplified. For example, if P1 is of
the form {P,B} and P2 is of the form {P,\B} then the pre-
condition is P.

The proof can then be carried out as before, but much of
the work has been eliminated. Since the preconditions are
generated from the postcondition, the associated program part
must be correct with respect to these conditions. Only when
a precondition is given (e.g., a loop invariant) must it be
proved that the desired precondition is implied by the given
precondition.

In order t6 illustrate this method, the correctness of the pro-
gram given in Fig. 3 is proven. This program computes the
product of two natural numbers A and B by repeated addition.
Note that in order to be more precise the output assertion
should state that neither A nor B is modified by the program;
in the axiomatic model it is assumed that unless otherwise
stated no program modifies its input values (this restriction is
important, as shall be seen later).

To demonstrate that the program is partlally correct (i.e.,
that it does compute A * B), a more formal argument than
usual is given; this formality is dropped in later sections.
Strictly speaking, the proof given in Fig. 4 is a derivation
of a proof, since a proof is normally bottom-up. In Fig. 4
line numbers are used to refer to program parts of more
than one statement,

B. Functional Correctness

The model for functional correctness was developed by
Mills [8], [9]. Here the intended function of a program is
stated as a functional abstraction which summarizes the
possible outcomes of the program part under consideration
independent of the internal control structure and data opera-
tions. The goal is to produce loop-free, branch-free, and se-
quence-free descriptions of the effects of programs on data.
The question of correctness reduces to the question of func-
tional equivalence between the program under consideration
and the control-free functional version of the program with
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1 Z = 0;
2. Y := B
{z = A*@B-Y), Y > 0}

3. while Y > 0 do

4. Y = Y-1;

5. Z = Z+A

od

{2 = A*3B}

Fig. 3. Axiomatic correctness of simple multiplication.

respect to its intentional effect on data, i.e., the high level
function abstracts out any local variables, etc. This func-
tional abstraction is meant to represent a function in the
strict mathematical sense, i.e., given an input vector I and
an output vector O, the function (program segment) defines
a rule for finding O given I, namely, O = f(I).

The program S is partially correct with respect to f iff for
every argument X such that f is defined and f(X) =Y, then
if program S is executed with initial state vector X, its final
state vector is Y. To prove (fotal) correctness, we must prove
that if X is an element of the domain of f then S terminates.
(In this paper, we ignore the problem of proving termination
since the techniques used are identical for both models.)

To prove that S is correct with respect to f, function com-
position and equivalence are used together with functional
definitions for each program construct. These functional
definitions and equivalences are given in Fig. 5. The square
bracket notation is used to denote the function represented
by the program construct contained inside the brackets, i.e.,
[S] represents the function computed by the statement S.

Note that the rule for assignment given in F1 is a simple
function. A function is a model of assignment in that it
maps input values into output values; however, it differs
from an assignment in that the input and output states are al-
ways distinguishable. It is convenient to write the intended
function of a program segment as a generalized assignment,
in which the subscript “in™ is attached to all input variables
in order to emphasize this separation of value spaces. From
the point of view of an assignment statement, it is as though
there is a distinct copy of the input values.

As in the case of the axiomatic model, in order to prove cor-
rectness of a particular program, assume that every statement
S in the hierarchy has an intended function [S] associated
with it. Then merely show the equivalence of each statement
to its intended function using the rules given in Fig. 5. This
yields the proof of partial correctness of the program. In
order to more clearly identify statements with their associated
intended functions, the parts of the statement will be num-
bered sequentially as a subunit of the intended function, e.g.,
3.1, 3.2, etc., for a function numbered 3.

In practice, however, every statement is rarely tagged with
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Derived
Step from
Number Proof Step Justification
1 fhzo 3= 0} lnesl-5 {2-=a% 8} - Original problem
2 fa>o0 B >0 lines1 -2 {2z = & *(B-Y) 1_70} 1 Rule A2
iz-A*(n-Y) yzo} lines 3 - 5 {zw«*n} 1 Rule A2
b fZ=a*(3B) Bz0} Yi=B {Z=4%3Y),Y > o} 2 Rule A2; truth follows
from Al
fazo Bz o} zi=0 {z-a%pB) Bz0] 2, b Rule A2
{o = A #(B-B) B > 0} Z =0 {z = A *(B-B) B > o} 5 Rule A7, since
fhzo 3z >~
A*(8-B), B = 0}
truth follows from Al
? {z-A*(B-Y) Y__?_o} lines 3 - § {z=A*(B-Y) Y>o,
Y<o 3 Rule A6, since
= A *BY), Y >0, Y £ 0}
> §{z=a*3}
8 {2 =A%3y) Y> 0} 1lines 4-5 fZ =A *(B-Y) Y = o} 7 Rule A3
9 G aacaA*BY) Y20) 2=z +h{Z=h*BY) Y 20} 8 Rule A2 truth follows from
Al
10 {z =ax@Y), ¥ > o} Y=Y -1 {z +A=A*BY), Y > 0} 8, 9 Rule A2
1 {Z+A=A*(B-(Y-l)).¥-lzo}Y:a‘i-l 10 Rule A7, since {2 = A *
f2+a = ax(Y), Y >0} (BY), Y> 0} > {z+a=
A*(B-(¥-1) ), Y -1 > 0}
truth follows from Al
Fig. 4. Derivation of an axiomatic proof of simple multiplication.
Assignment program. In this process, the functions computed at the
n £(x) (where the assigmment is x := £(x)) various levels. in the hierarchy may be effectively created

Composition

F2 £(x) = [g3;hlx = hzkx)
Iteration
F3 £(x) = [while p do g odl(x)

= {f(g (x)) if p(x)

{ x if 5 px)
Choice
F4 £(x) = {if p then g else h fil(x)

= {sm 1 (o)

{h(x) if 9 p(x)
FS £(x) = [1f p then g fil(x)

if p(x)

if 9

8(x)
X
Fig. 5. Functions computed by program constructs.

its intended function. The minimum effective requirement is
to be given the intended function for the entire program and
for each loop. In this case, the proof is carried out by show-
ing the functional equivalence of each given function [S] and
its associated statement S at each level in the hierarchy of the

using a top-down recursive trace or symbolic execution
(Hantler [5]) algorithm through the levels of the program
as follows.

Algorithm B:

1) Assignment: The value of the left-hand side variable is
symbolically replaced by the function computed by the
right-hand side.

2) Sequence: Trace through the first statement followed
by the second statement.

3) Iteration: Use the given intended function in the trace.

4) Choice: Split the trace process into two cases, the then
part and the else part, and continue the trace process through
each part separately.

In order to illustrate this method, the partial correctness of
the program given in Fig. 6 is demonstrated in Fig. 7. Note
that this program is nearly identical to the one given in Fig. 3,
but does not save the value of the variable B. (Note: the algo-
rithm could have been written exactly as was done for the
axiomatic model example, but was not to demonstrate a-point
in Section IV')

III. FORMAL PROGRAM DERIVATION

In this section, an algorithm for carrying out a derivation of
a correct program is given and an example presented for each
model.

A. Algorithms for Formal Derivation

The algorithms used for carrying out a formal derivation are
surprisingly similar in the two models. In each case, the step-
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wise refinement methodology is applied leading usually to
new subproblems to be solved and lemmas to be proved. The
primary difference between the two methods is in stating the
problem requirements of the problem at each level of the de-
composition process.

Using the lemmas and subproblems shown in Table I, the
algorithm for carrying out an axiomatic derivation can be
stated as follows (note sets are denoted as [[- - -]]).

Algorithm C:
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Note that the functional model always generates a lemma to
be proved and at least one new subproblem, except when the
function can be achieved directly by an assignment (i.e., is
already primitive). As indicated by the above algorithm, the
process continues until all subproblems have been solved,
that is, all functions have been fully elaborated. Like the
axiomatic model “invention” is required in order to choose
the appropriate decomposition for f.

. /* Given the specifications, organize them into a function f
to be computed. Let P be the relations (assertions)
necessary to restrict the input domain of f. Let Q be
the assertion which “captures” the output of f. */

problems-to-be solved := [[ {P} S {Q}, for unknown S]]
while problems-to-be solved # empty do

“using some strategy, choose a specific element of problems-
to-be-solved, denoted {P} S {Q};

“choose an appropriate program construct for S and in the
case of sequence, determine the intermediate assertion R” ;

“prove the correctness of the associated lemmas (cf. Table I)” ;

“add all new subproblems generated (cf. Table I) to

problems-to-be-solved”
od

Depending on the program construct chosen for S, zero, one,
or two new subproblems may be generated. As indicated by
the above algorithm, the process continues until all subprob-
lems have been solved.

The above discussion would appear to indicate that the only
“invention” required in the process of deriving a program is in
the choice of the appropriate construct for S. Unfortunately,
this is not the case. Use of the composition rule (i.e., replacing
S by S;;S,) requires the invention of the intermediate asser-
tion R. Furthermore, it is usually the case that when S is to
be replaced by an iteration, the input assertion P is unsuitable,
either because it is not a loop invariant, or because it is not
true that {P,1B—>Q}, or both. Thus, P must often be
strengthened by means of the consequence axiom A7 or Q
changed by means of the other consequence axiom A6. A
more complete discussion of the problem of invention of loop
assertions and the derivation of loop body code is given in
Dijkstra [2], Gishen and Noonan [4].

The algorithm for carrying out a functional derivation can
be stated as follows.

Algorithm D:

It should be noted that Algorithms C and D are basically
the same, except for terminology, arising from different state-
ments of problem formulation, and for their lemmas and sub-
problem tables.

B. An Example: The Primes Problem

In the sections which follow, these algorithms are applied
to the same problem, namely, the problem of finding and
printing all primes less than or equal to a particular integer
n. For both the axiomatic and functional models, the de-
velopment of the appropriate specifications and the deriva-
tion of a correct algorithm are shown. The resulting programs
are identical,

Informally, the program is to compute the set called primes =
{[p1,p2, - -,pm]] where each pi is a prime number less
than or equal to n (>2). More specifically, each pi is a posi-
tive integer greater than one and satisfies the condition that
there does not exist an integer x, 1 < x < pi, such that pi/x is
an integer. - Also, there are no prime numbers less than or
equal to n that are not in the set primes.

/* Given the specifications, organize them into a functional
P
form where I represents the set of inputs, O represents
the set of outputs, and f represents the mapping from the

inputs to the outputs. */

functions-to-be-decomposed := [[ f]]
while functions-to-be-decomposed # empty do
“using some strategy, choose a specific element of
functions-to-be-decomposed, denoted £*;
“choose an appropriate decomposition for f”*;
“prove the correctness of the decomposition

(cf Table I)”;

“add all new functions generated to functions-to-be-decomposed;
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1. [z : Ain Bin where Ain and B:an 0]
1.1 [Z := 0]

1.1.1 Z := 03

. 1= + *

1.2 {z zin Ain Bin where B:Ln‘>‘ 0]
1.2.1 while B > 0 do
1.2.2 Z =27 + A;
1.2.3 B :«B-1

od

Fig. 6. Functional correctness of simple multiplication.

1. To prove
12 1= Ay, *Byl =
- [z,-zm-rA.m*Bm] .

(B =01 ZamZyy + Ay * By
(2 1= 0]

= [2:a 0O+a *EB, = Ag * 3.

(2 1= 01'

2. The proof that 1s the function achieved by statement 1.1.1
is obvious.
3. To prove

- - =Z +A
(2 zhu&m*nm] {while B > 0 do 2 3
B i» Bo1l god]
Case 1t B > 0 : must show
[z x-Zm"-Am'Bm] w {2 = Zin*Ain'
B 1= Em-lt

Z =2 +A%*D

‘ Using a table, we get

Step 2z A 2
Initially 2 in A in Bin
1.2.2 zin + Ain Ain Bin
A B, -1
1.2.3 zin + Ain in in
+A *(B -1
1.2 3 A tA v (B 1) . s -1
- 2. +A_ *B in in
in in in
Case 21 B £ 0 1 must show [Z2 = Z ]

(2 = Zya+dg* By,

* 0

n since 3 >0 ,B &0

-z, +A
=12,]

Fig. 7. Functional proof of simple multiplication.

In developing a solution, the following observations can be
made. First, 2 is the first prime number and the only even
prime. All other primes are odd and, therefore, it is necessary
to test only odd numbers as additional prime number candi-
dates. Second, any number that has a factor has a prime fac-
tor; therefore, it is necessary to divide the current candidate
only by the primes already calculated. This means, however,
that the primes must be saved as they are calculated.

In the specifications, primes will be treated as a set, a con-
venient choice for high level specification, but implemented
as an array. The necessary properties that the implementation
is valid could be stated and proved, but is irrelevant to the
purposes of this paper.

C. Axiomatic Derivation of Primes

In the axiomatic model a program to be derived always
starts out in the form
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TABLE 1
AXIOMATIC LEMMAS AND SUBPROBLEMS FOR PROBLEM {P} S {Q}
Lemma to New
Construct Chosen for S be Proved Subproblems

1. x = f {P + Q} where
P 1is obtained from
Q by replacing all
occurrences of x
by £ -—
2 51 H 52 - Determine R
(p} s, (R}
R} S, {Q}
3. Af B then S, else S, fi - {e, B} s, f{Q}
{p, =B} s, f{a}
4. while B do §; od {p, 9B~+Q}
loop terminates {p, B} 5y {r}
TABLE 1I
FUNCTIONAL LEMMAS AND SUBPROBLEMS
New
Construct Chosen Lemma Subproblens
1. Assignment - -
2, Sequence f2 (g h g h
3. Cholce £f=(g if p & h
(if p then g h if 4 P
else h fi
4, Iteration £z} [gf] L p [
(while p do g od) identity if - p

s {Q

where P gives the required assumptions on the input and Q the
intended function to be computed by S. Thus, the primes
problem can be stated:

)

In order to develop an axiomatic solution to this problem, a
definition of the set of primes is needed. In order to dis-
tinguish program variables from function definitions, the
latter will be underlined. Thus, the set of primes may be
defined:

{2<n} S {primes= [[plp<n,p is prime]]}.

primes (K) =empty ifK<2 2
= primes (K - 1) U [[K/|isprime (K)]]
otherwise
isprime (K) = (Vp) (p € primes (K - 1) > K rem p # 0).
3

Note that the operator rem returns the remainder of the value
of the first expression divided by the second. Using these def-
initions, the primes problem can be restated as

4

The problem of “inventing” such definitions is beyond the
scope of this paper. Much of the cleverness of the resulting

{n>2} S {primes = primes (n)}.
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program follows directly from the formulation of the defini-
tion of the problem.

The program can be refined by decomposing it into a se-
quence using Axiom A2 in order to compute the even and
odd primes separately. Then using Axiom Al on the first
of the two statements, we arrive at the following program:

{n=>2}

primes (1) :=2; size :=1;
{primes = primes (2)}

S1

{primes = primes (n)}.

®)

The program part S1 computes only odd primes; further-
more, S1 must contain a loop. Following Dijkstra [2] and
Gishen and Noonan [4], the necessary loop invariant is devel-
oped. Note that for a given y >3, if y is even then primes (y) =
primes (y - 1). Since n may be either even or odd, the fol-
lowing loop invariant is used:

{primes = primes (y - 1), 0dd (y),3<y<n+2}.

Thus, the loop (S1) can be further refined using Axioms A2,
Al, and A3 to arrive at

{primes = primes (2)}
y:=3; -
{primes = primes (y - 1),0dd (y),3<y<n+2}
while y <n do
S2
od
{primes = primes (n)}.

©

Note that proving the correctness of this elaboration requires
the proof of the following lemmas.

1) Primes = primes (2) - (primes = primes (3 - 1), odd ),
3<n+2).

The proof is obvious since it is known that n = 2.

2) (Primes=primes(y- 1), odd(y), 3<y<n+2,y> n) —>
primes = primes (n).

Two cases arise. If n is even, then y=n+1 and primes =
primes ((n + 1) - 1) = primes (n). If n is odd, then

y=n+2
and

primes = primes (n + 2) - 1)
= primes (n + 1)
= primes (n)

since n + 1 is even and, hence, not prime.
In a similar fashion, the code shown below is produced pro-
ceeding backward through S2:

{primes = primes (y - 1), 0dd (y),3 <y <n}
isprime := true; j := 2;

{primes = primes (y - 1), 0dd (y),3<y<n,
isprime = (VK) (1 <K < j > y rem primes (K) # 0)}
while j < sizE and isprime do o

isprime := (y rem primes (j) # 0);
ji=jtl
od
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{primes = primes (y - 1), odd (y), 3 <y <n, isprime =
isprime (y)}
if isprime then
size :=size+ 1 ;
primes (size) :=y
fi;
{primes = primes (y + 1) = primes (y), 0dd (y), 3 <y <n}
y:=y+2
{primes = primes (y - 1), 0dd (y),3 <y<n+2} @)
The final program with its intermediate assertions as docu-
mentation is shown in Fig. 8.

D. Functional Derivation of Primes

In the functional approach, the problem must be specified
as a function from a set of inputs to a set of outputs. As be-
fore, this can be stated

®

As with the previous solution, the even and odd primes are .
computed separately and the prime number candidates are
divided only by prime numbers. Under these conditions, the
functional specifications may be rewritten as

primes := [[p|p <n, p is prime]].

primes := [[2]] U oddprimes (3, n) ©)

using the functions:

oddprimes (I, u) = [[yly
=] A\ isprime (y)]] U oddprimes (I +2,u)
ifI<u
= empty ifi>u
isprime (x) = (vp) (p € oddprimes (3, x - 1)~
x rem p # 0).

The functional specification (9) can be decomposed into
two functions, the first of which initializes the basic data
and the second defines the iteration that does the bulk of
the calculation. h

1. [primes := [[2]] U oddprimes (3, njs)]

1.1 primes (1) :=2 ;size:=1;

12 y:=3;

1.3 [primes := primes;, U oddprimes (¥in, Nin)].

(10

The implicit loop in computing odd primes can now be
made explicit:

13  [primes := primes;, U oddprimes (Yin, Nin)]
13.1 while y<ndo
132 [primes := primes;, U [[yinlisprime (yin)]];
y =Yint2]
aan

od.

As with all expansions, the associated lemmas given in
Table TI must be proven. Since this refinement is not ob-
vious, the expansion is verified. Since the refinement is a
loop, three lemmas must be proved.

1) Does the loop terminate? Yes, since y is incremented
by 2 for each iteration and is bounded above.

2) Whenever the loop test is true (y <n), is the loop body
composed with the intended function of the loop equivalent
to the intended function of the loop? This is demonstrated
using a trace table.
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{n > 2}

primes (1) := 2 ; size := 1 ;

{primes = primes (2)}

y = 33

{primes = primes (y-1), odd (y), 3<ys<n+2}
while y <n do

isprime := true ; j := 2 ;
{primes = primes (y-1), odd (y), 3 <¥y<nmn,
isprime = (¥K) (1 < K < j + y rem primes (K) # 0)}
while j < size and isprime do
isprime := (y rem primes (3) # 0) ;
=3 +1
od ;
{primes = primes (y - 1), odd (), 3<y=<n,
isprime = isprime (y)}
if isprime then
size := gize + 1 ;
primes (size) := y
i
{primes = primes (y) = primes (y + 1), odd (y), 3 <y <n}
y = y+2

{primes = primes (y ~ 1), odd (y), } <y<n+2}

od
{primes = primes (n)}
Fig. 8. Axiomatic solution of primes problem.
Step Primes y
initially primesjy, Yin
loop body primes;y U [{yinlisprime (y;n)]] Yin+ 2

loop function  primesjp U [[yinlisprime (yin)1]
U oddprimes (yjp + 2, njp) -

= primes;j, U oddprimes (yin, njn)-

Since the final value for primes is the same as the intended
function of (11), this case is proved.’

3) Whenever y >n, is the intended function of the loop
an identity? Yes, since y > n, the set oddprimes (y;,, n) is
empty. Thus,

primes = primes;,, ,

and this case is proved.

Although the correctness of each successive expansion is
not verified, it should be clear that it is both possible and
often helpful to do so.

The solution process is continued by expanding the loop
body given in (11).

13.2  [primes := primes;, U [[yinlisprime (y;)]1;
Y :=Yin t2]
1.3.2.1 [isprime := isprime (y;ip)]
1.3.2.2 if isprime then
1323 size:=size+ 1 ;
1324  primes (size) ;= y
fi;

1325 y:=y+2. (12)
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1. [primes := [[2]] U oddprimes (3, n)]
1.1 primes (1) := 2 ; size := 1 ;
1.2 y =3 ;
1.3 [primes := primes, U oddprimes (ym, nin)]
1.3.1 while y <n do
1.3.2 [primes := primes, u [[yﬁl | isprime (yin)]];
y =y, t+2]
1.3.2.1 [isprime := isprime (yin)]
1.3.2.1.1 isprime := true ; j := 2 ;
1.3.2.1.2 while J < size and isprime do
1.3.2.1.3 isprime := (y rem primes (j) # 0) ;
1.3.2.1.4 j=3+1
od ;
1.3.2.2 1f disprime then
1.3.2.3 size := size + 1 ;
1.3.2.4 primes (size) := y
RO
1.3.2.5 yi=y+2

od

Fig. 9. Functional solution of primes problem.

The final expansion is the loop necessary to calculate isprime.

1.3.2.1  [isprime := isprime (y;,)]
1.3.2.1.1 isprime:=true;j:=2;
1.3.2.1.2 while j < size and isprime do

13.2.13 isprime := (y rem primes (j) # 0) ;
13214  j=j+1
od. (13)

The complete program with its intermediate functions as
documentation is given in Fig. 9. It should be noted that
this program is i<\1entica1 to the one given in Fig. 8.

IV. CoMPARISON BETWEEN THE Two MODELS

In what follows, some of the similarities and differences be-
tween the two models and their associated correctness and
derivation approaches are discussed.

A. Similarities

Formal Models of Individual Program Constructs: Both
approaches are based upon formal tractable mathematical
models for specific sets of program constructs in isolation
(not as operational models of the interrelationships of pro-
gram constructs at run time). The models for the individual
constructs give an indication of the complexity of the se-
mantics of the constructs and, thus, yield a good motivation
for the choice of a set of programming language constructs
for use in writing provably correct programs. They both deal
with partial ‘¢otrectness only; proof of termination is a sepa-
rate issue and identical techniques can be used in both models.

Stepwise Derivation and Correctness: Rules for derivation
and correctness are based on the application of the particular
constructs as they are decomposed in the development process



462

and composed in the abstraction process. Both techniques are
applicable in a stepwise manner, at various levels in the cor-
rectness and development process, dealing with only small
segments of code, and expanding subspecifications in a step-
by-step manner. In this way, they also make excellent docu-
mentation techniques, each subspecification being useful as a
high level comment about the code expanded below it.
Invention: As methodologies for proving correctness, both
approaches require some invention in the creation of the loop
~invariant and the intended loop function, respectively. If
these are not given, there is no practical way of generating
them which is guaranteed to succeed in a reasonable amount
of time. A great deal of work has been done on heuristics for
finding loop invariants (Wegbreit [12]). Some results have
recently been published in generating intended loop func-
tions (Blikle [1]).

B. Differences

Underlying Mathematics: The underlying mathematics of
each of the models is different. The axiomatic approach uses
the predicate calculus while the functional approach uses the
concepts of function composition and equivalence. Consider
the rules for correctness given in Section II. One set of rules
uses logical consequence and the logical operators of the pred-

_jcate calculus, while the other uses function composition (de-
composition for derivation) and function equivalence.

Statement of the Specification: The functional approach
states the specifications and subspecifications as functions
from the input value space to the output value space. It is
a mathematical function in the strict sense. The axiomatic
approach organizes the specifications and subspecifications
into Boolean functions represented by assertions on program
variables where the input assertion is a set of status relations
among the input program variables and the output assertion
yields true or false depending upon whether the output vari-
ables satisfy a specific relationship with the input variables.
In illustration, consider the followng simple program:

1:=1;
I:=1+1.

The format for the axiomatic and functional approaches are
given below:

{true } 1. [1:=2]
1:=1 1.1 [I:=1]
{1=1} 111 1:=1
[:=1+1 12 ([I:=La+1]
{1=2} 121 1:=1+1.

In the axiomatic approach, each assertion shows what is
true about the state of the variables at the particular point
in the program where the assertion appears. The assertion is
given in terms of a relationship between the variables involved,
e.g., {I=1}. In the functional approach, the function defines
the effect a particular set of statements has with respect to its
set of input and output values. Thus, the statement [ :=1+1
is defined by the function [I :=Iy + 1] (shorthand for the
normal function notation (I, I, + 1) € f) where I;;, represents
the first element of the tuple and I represents the second ele-
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ment. Thus, the functional specification is not in terms of the
variables at all but the values of the variables, i., Ii and 1
represent different values of the same program variable at
point of input and output of exit to the program segment
specified. The function gives the relationship between the
two value sets. ‘

In contrast, an assertion is a mapping from the current
values of the variables into [[true, false]]. Thus, the final
output assertion must somehow capture both the original
input values as well as the final output values in a single asser-
tion over the current values of the program variables. Two
approaches can be taken in the event that the program de-
stroys the values of the original input variables. One approach,
taken in Fig. 3, is to introduce artificial variables into the pro-
gram to hold those input values which are to be destroyed.
The other approach is to add free variables to the assertions
and add some conventions or rules for binding these variables
to their appropriate values. This latter approach would have
to be used for the program in Fig. 6. Both of these are un-
necessary in the functional model. See Fig. 10 for the speci-
fications for both programs. Note that the functional speci-
fications for the two programs are the same. This is because
only the final value of z is of interest.

In addition, the functional model is variable-free in that a
function abstracts from the specific program variables used.
In this sense, the assignment statements X:=X+1 and
I:=1+1 represent the same function, namely, f(Z)=Z+1.
In the axiomatic model the assertions refer specifically to
actual program variables. Although a specific output asser-
tion could be parameterized (in a manner analogous to the
axioms developed for procedures (Hoare [7]) so as to permit
the substitution of actual program variables for symbolic
parameters, such an approach would considerably complicate
proofs in the axiomatic model.

Scope of Specification: A functional specification defines
the state of affairs of only the program part for which it is the
intended function. For example, the function [I:=Ij, +1]
describes only the behavior of the statement I := I+1. How-
ever, in the axiomatic model, the assertion {I =2} depends
not only on the statement I :=I+ 1, but also on the previous
history of I.

Any change in a program not affecting a particular program
segment implies that the functional specification for the seg-
ment need not be changed and no new proof of functional cor-
rectness is required for that segment. In addition, 2 different
implementation of a functional specification can be substi-
tuted without changing any proofs of correctness in the re-
mainder of the program. For example, as shown in Fig. 10,
the two multiplication programs have the same functional
specification, and one program could be substituted for the
other in a larger program without reproving the larger program.

This is not true in practice for the axiomatic model. An as-
sertion about a variable usually depends on the history of the
use of that variable and on its interdependence on other vari-
ables. Consider the axiomatic specifications for the two multi-

plication programs. The specification for Fig. 6 is valid for

Fig. 3, but not vice versa. Because the value of the variable
B is set to zero in the program in Fig. 6, the output specifica-
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Functional Axiomatic
P Q
Fig. 3 [l (A,B) , A*B[A,B % 0]] AB %0 Z = A%B
Fig. 6 [{ (a,B) , aA*B|A,B 3 0]] AB 3 0,B"B  Z =M

Fig. 10. Specifications for the multiplication programs.

tion Z = A * B implies Z = 0- which is incorrect. For an out-
put assertion to be stable under program modification it re-
quires that the values of all input variables be bound to free
variables in the output assertion. Such an approach would
lead to significantly longer assertions and, thus, greatly com-
~ plicate the proofs of the resulting verification conditions.

Another way that the assertions in an axiomatic specifica-
tion are nonlocal is that they normally contain global informa-
tion about nonlocally affected variables. For example, if the
multiplication program was embedded in an exponentiation
program, all the assertions associated with the multiplication
portion of the program might be embedded in other relations
concealing the true function of the multiplication.

Bottom-Up Correctness: An added effect of this'difference
is that given a program without any functional specifications,
the intended function for any statement can be defined de-
pending only on the specific subhierarchy of the program, i.e.,
functional correctness can be approached bottom-up. Sup-
pose the functional correctness of the program in Fig. 11 is
to be proved bottom-up. The functional equivalent of the
loop body is

[I:=Iin+1]

and the proof is trivial. The functional equivalent of the loop
is

[1:=max (Ijn, Nin) ]
or

[I = Nin

= Iin

if Ijn <Njp
ifLin 2N 1.
The proof that the loop is equivalent to the above function re-

quires proving that the loop body is equivalent to its function.
Now consider the case for the axiomatic method; given

{P} I:=1I+1 {Q}

P and Q must be found. Given Q, P can be found from Q via
the assignment axiom Al. Unfortunately, there is no way
to determine Q; in a sense Q must contain a great deal of
historical information about the use of the variable I as well
as its relationship to the nonlocally referenced N. Suppose,
however, the straightforward approach adopted for the func-
tional method was tried:

{true} I:=I+1 {I=I,+1}.

However, given the invariant for the loop {I <N}, a proof of
correctness requires showing

{P,B} 1:=I+1 {P}
or
{ISKN,IKN} I:=I+1 {I<N}.
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{1 < N}
while T < N do

I = I+1
od

{1 = N}

Fig. 11. Program to compute I = N.

Thus, without considering the loop as a whole, there is no
practical way of determining the correct loop body postcon-
dition; that is, there is no practical way to assure that the
choice of the postcondition is sufficiently strong to be of
value in the proof of correctness of the loop body.

In the functional approach, any such bottom-up process is
guaranteed to be relevant to the larger construct. In fact, in
the program in Fig. 11, given the program as a whole, the in-
tended function of the loop is actually

[ I:= Nin iflin < Nin ]
Note that this is weaker than the one found in the bottom-up

~process. This is necessarily so, since the top-down process can

consider only the relevant input domain (N > 0) instead of
the entire input domain (N an integer).

Proof of correctness by subgoal induction (Morris [11])
provides a method of proving bottom-up correctness for
loops in the framework of the axiomatic model. This is
actually achieved by using a technique based on functional
correctness which dispenses with the need to find the loop
invariant and uses the intended function instead.

However, it should be noted that even in the functional
model top-down proofs are easier. Because the intended
function is more specific than the functional equivalent of
the program, the algebraic manipulations are greatly simplified
in proving the necessary functional equivalences. Consider the
multiplication programs defined earlier. If the development
were done bottom-up, the function computed for Fig. 3 would
be

[[(A,B,Y,Z), (A,B,0,A*B)) Aj,,B;, >0]]

since it would not be known whether A, B, and Y are relevant
outputs or required for input to another part of the program.
This can become pretty complicated; for example, consider
the problem of finding the intended function of a binary
search program bottom-up if it is not known that the input
array is sorted.

C. Interrelationship

There is an interesting connection between the two models.
The intended function of a loop may be easily converted to a
loop invariant; namely, f(x)=f(xj,) is the loop invariant
Mills [9], Misra [10]). In the multiplication example, the
functional specification for the loop is Z := Z;, + A;, * Bjp;
thus, the loop invariant is
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f(x)=f(xin)
Z+A*B=Z;, + Ajy *Bip
Z=Zin+Ain*Bin—A*B
Z=Zn+A*(Bjn- B),
Z=A=*(Bin-B),

since A = Ajqy

since Zi, =0 from the initial assertion and the composition
of the statements preceding the loop. In the program in
Fig. 3, the variable B plays the role of By, and the variable
Y plays the role of B.

It should be noted that

Z=Zin+A*(Bin"B)

is actually the loop invariant if one were to treat the loop in-
dependently of the prior statements in the program. That is,
in general, the loop assertion is simplified because one nor-
mally takes advantage of the variable environment in which
the current statement exists. The translation from the in-
tended function to the loop invariant always yields the most
general form of the loop invariant. The development of the
loop invariant from the intended function has been studied
independently and quite thoroughly (Misra [10]).

Given the inductive assertion, it has been shown by Morris
[11] that a relational form of the intended function can be
constructed. This demonstrates the theoretical duality of the
two approaches. However, when constructing the intended

_function from the loop invariant, two problems result. First,
the form of the function is a relation rather than a mapping
from inputs to outputs. The second problem is centered
around the fact that the normal loop invariant contains a
history of the prior usage of its variables. Thus, the intended
function derived from it reflects this history and does not
represent the intended function of the associated statement
independent of the rest of the program. For example, unless
the loop invariant

Z=Zin tA*(Bin-B)

rather than
Z=A*(B;, - B)

is used, the intended function
Z:=Zin + (Ain * Bin)

cannot be derived. Instead,
Z=Ajp *Bin

" which assumes Z;, = 0 would result.

V. CONCLUSION

It should be clear from the previous discussion that both
models yield a methodology of program derivation and cor-
rectness. The approaches have a great deal in common, but
they are different; the axiomatic approach emphasizes the
relations between the variatles, and the functional approach
emphasizes the independent variable-free functions performed
by the various program subpieces.

Is it not clear which approach is more effective in an opera-
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tional environment. It may, in fact, depend upon the particu-
lar environment and the problems that arsie. Enough is still
not known about the kinds of errors designers and program-
mers make in different environments. Certainly, one could
be used in formally deriving the program and the other could
be used as a commenting aid; e.g., use the functional approach
in the development to aid in the partitioning and modulariza-
tion of the independent program parts and use assertions as
comments to aid the programmer in understanding the rela-
tionships between the variables. In either case, the models ap-
pear to complement each other in the insight they provide to
the developer.
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