IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

299

A Controlled Experiment Quantitatively Comparing
Software Development Approaches

VICTOR R. BASILI anp ROBERT W. REITER, JR., MEMBER, IEEE

Abstract—A software engineering research study has been undertaken
to empirically analyze and compare various software development ap-
proaches; its fundamental features and initial findings are presented
in this paper. An experiment was designed and conducted to confirm
certain suppositions concerning the beneficial effects of a particular
disciplined methodology for software development. The disciplined
methodology consisted of programming teams employing certain tech-
niques and organizations commonly defined under the umbrella term
structured programming. Other programming teams and individual
programmers both served as control groups for comparison. The ex-
perimentally tested hypotheses involved a number of quantitative, ob-
jective, unobtrusive, and automatable measures of programming aspects
dealing with the software development process and the developed soft-
ware product. The experiment’s results revealed several programming
aspects for which statistically significant differences existed between
the disciplined methodology and the control groups. The results were
interpreted as confirmation of the original suppositions and evidence
in favor of the disciplined methodology. This paper describes the
specific features of the expetiment; outlines the investigative approach
used to plan, execute, and analyze it; reports its immediate results;
and interprets them according to intuitions regarding the disciplined
methodology.

Manuscript received June 30, 1979; revised January 15, 1980. This
work was supported in part by the Air Force Office of Scientific Re-
search under Grant AFSOR-77-3181A to the University of Maryland.
Computer time was supported in part through the facilities of the Com-
puter Science Center of the University of Maryland. At the time this
work was done, both authors were with the University of Maryland.

V. R. Basili is with the Department of Computer Science, University
of Maryland, College Park, MD 20742.

R. W. Reiter, Jr. was with the Department of Computer Science, Uni-
versity of Matyland, College Park, MD 20742. He is now with the Soft-
ware Engineering and Technology Department, IBM Federal Systems
Division, Bethesda, MD 20034.

Index Terms—Controlled experimentation, empirical study, pro-
gramming measurement, programming methodology, programming
teams, software development, software metrics, structured program-
ming practices.

I. INTRODUCTION

MUCH has been written about methodologies for devel-
oping computer software (e.g., [91, [11], [15], [17],
[201, [28]). Most of these methodologies are founded on
sound logical principles. Case studies have occasionally been
conducted to demonstrate their effectiveness (e.g., [1], [6]),
Their adoption within production (“real-world”) environ-
ments has generally been successful. Having practiced adapta-
tions of these methodologies, software designers and pro-
grammers have often asserted qualitatively that they got the
job done faster, made fewer errors, oOr produced a better
product (e.g., [12]). Unfortunately, solid empirical evidence
that comparatively and quantitatively assesses any particular
methodology is scarce (e.g., [18], [211], [23], [24]). This is
due partially to the cost and impracticality of a valid experi-
mental setup within a production environment.

Thus the question remains, are measurable benefits derived
from programming methodologies, with respect to either the
software development process or the developed software
product? Even if the perceived benefits are real, it is not
clear that they can be quantified or monitored, in order to
confirm the effectiveness of the methodologies. Software
development is still too artistic, in the aesthetic or sponta-

0098-5589/81/0500-0299$00.75 © 1981 IEEE

300

neous sense. In order to understand it more fully, manage
it more cost-effectively, and adapt it more readily to chal-
lenging applications or situations, software development must
become more scientific, in the engineered and deliberate
sense. More empirical study, data collection, and experi-
mental analysis are required to achieve this goal.

The purpose of the research reported in this paper is 1) to
quantitatively investigate the effect of methodologies and
programming environments on software development and 2)
to develop an investigative methodology based on scientific
experimentation and tailored to this particular application. It
involves the measurement and analysis of both the software
process and the software product in a manner which is mini-
mally obtrusive (to those developing the software), objective,
and automatable. The goal of the research was to verify the
effectiveness of a particular programming methodology and
to identify various quantifiable aspects that could demonstrate
such effectiveness.

To this end, a controlled experiment was conducted involv-
ing several replications of a specific software development task
under varying programming environments. The experiment
compared three distinct groupings of software developers: in-
dividual programmers, three-person programming teams, and
three-person programming teams using a disciplined method-
ology. The disciplined methodology consisted of an integrated
set of software development techniques and team organizations,
including top-down design, process design language, structured
programming, code reading, and chief programmer teams.

The study examines differences in the expectancy of soft-
ware development behavior under the programming environ-
ments represented by these groups. The basic premise is that
distinctions among the groups exist both in the process and in
the product. With respect to the software development pro-
cess, a disciplined team should have advantages over both an
individual and an ordinary team, displaying superior perfor-
mance on cost factors such as computer usage and number
of errors made. This is because of the discipline itself and be-
cause of the ability to use team members as resources for
validation. With respect to the developed software product,
it is believed that a disciplined team should approximate an
individual with regard to design and source code characteris-
tics (such as decision structure and global data accessibility)
and at the very least lie somewhere between an individual and
an ordinary team. This is because the disciplined methodology
should enable the team to act as a mentally cohesive unit
during the design, coding, and testing phases.

The study’s findings reveal several programming character-
istics for which statistically significant differences do exist
among the groups and tend to support these basic premises.

The investigation has been conducted in a laboratory or
proving-ground fashion, in order to achieve some statistical
significance and scientific respectability without sacrificing
production realism and professional applicability. By scaling
down a typical production environment while retaining its
important characteristics, the laboratory setting provides for
a reasonable compromise between the extremes of

1) “toy” experiments, which can afford elaborate experi-
mental designs and large sample sizes but often suffer from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

a basic task that is rather unrelated to production situations
or involve a context from which it is difficult to extrapolate
or scale up (e.g., introductory computer course students
taking multiple-choice quizzes based on 30-line programs),
and

2) “production” experiments, which offer a high degree of
realism by definition but incur prohibitively high costs even
for the simplest and weakest experimental designs (i.e., replica-
tion of a nontrivial programming project is clearly expensive).

The experiment in this study was conducted within an aca-
demic environment where it was possible to achieve an ade-
quate experimental design and still simulate key elements of
a production environment.

An initial phase of investigative effort has been completed
and its prominent features are presented in the remainder of
this paper. Section II gives details pertaining to the experi-
ment itself. Section III describes the investigative methodol-
ogy used to plan, execute, and analyze the experiment. Sec-
tions IV and V present the experiment’s findings, segregated
into empirical results (resulting from statistical analysis of
the measurements) and intuitive judgements (resulting from
interpretation of the empirical results), respectively. (Differ-
ent statistical analyses and additional interpretations of the
same experimental data have appeared in [5], [22] as ex-
plained below.) Section VI makes some concluding remarks
and mentions further work planned for the study. Appendices
I and IT explain concisely what programming aspects were
measured and contain the observed raw data scores.

It should be noted that the terms “methodology” and
“methodological” (in reference to software development) are
used herein to connote a comprehensive integrated set of de-
velopment techniques as well as team organizations, rather
than a particular technique or organization in isolation.

II. SPECIFICS
Experimental Design

The basic task involved in the experiment was the comple-
tion of a specific software development project. There were
19 replications of the basic task, each performed concurrently
and independently by. a separate software development “team.”
There were two experimental treatment factors (independent
variables): size of the development “team” and degree of meth-
odological discipline. For each factor, there were two experi-
mental treatment factor levels: for the size factor, a single in-
dividual and a three-person team; for the degree-of-discipline
factor, an ad hoc approach and a disciplined methodology.

The experiment was embedded within two academic courses,
and every student enrolled in those courses participated in
the experiment. Development “teams” were formed among
the subjects: in one course, the students were allowed to
choose between segregating themselves as individual pro-
grammers- or combining with two other classmates as three-
person programming teams; in the other course, the students
were assigned (by the researchers) into three-person teams.
The experiment was designed in this manner because the two
academic courses themselves provided the two levels of the
second experimental treatment factor. This scheme yielded
three groups of 6, 6, and 7 “teams,” designated AI, AT, and

BASILI AND REITER: CONTROLLED EXPERIMENT

DT, respectively. Each group was exposed to a particular com-
bined factor-level treatment according to the following partial
factorial arrangement:

(AJ) single individuals using an ad hoc approach,

(AT) three-person teams using an ad hoc approach, and

(DT) three-person teams using a particular disciplined
methodology.

A set of experimental observations (dependent variables),
composed of 35 programming aspects related to the develop-
ment process and the software product, had been identified
prior to conducting the experiment. The performance of each
development “team” was quantified according to each pro-
gramming aspect. The overall experiment thus technically
consisted of a series of simultaneous univariate experiments,
one for each observed programming aspect, all sharing a com-
mon experimental design and a common raw data sample.

Although this experimental design basically followed the
reductionist paradigm, in which most variables are controlled
so that the relationships among the remaining few can be
isolated, the ideal was only approximated. Specifically, there
were two variables which the design did not explicitly con-
trol: the personal ability/experience of the participants and
the amount of actual time/effort they devoted to the project.
These variables could only be allowed to vary among the
groups in what was assumed to be a random manner. How-
ever, information from a pretest questionnaire was used to
balance the personal ability/experience of the group DT
participants (only) across those seven teams. As a reason-
able measure of individual programmer skill levels, the par-
ticipants’ grades from a pertinent prerequisite course pro-
vided a post-experimental confirmation that programming
ability was fairly evenly distributed among the groups.

Software Development Methodologies

The disciplined methodology imposed on teams in group
DT consisted of an integrated set of state-of-the-art tech-
niques, including top-down design, process design language
(PDL), functional expansion, design and code reading, walk-
throughs, and chief programmer team organization. These
were taught as an integral part of the course that the subjects
were taking, and the course material was organized around
[2], [9], [17] as textbooks. Since the subjects were novices
in the methodology, they executed the techniques and or-
ganizations to varying degrees of thoroughness and were not
always as successful as seasoned users of the methodology
would be.

Specifically, the disciplined methodology prescribed the
use of a PDL for expressing the design of the problem solu-
tion. The design was expressed in a top-down manner, each
level representing a solution to the problem at a particular
level of abstraction and specifying the functions to be ex-
panded at the next level. The PDL consisted of a specific
set of structured control and data structures, plus an opei-
ended designer-defined set of operators and operands cor-
responding to the level of the solution and the particular
application. Design and code reading involved the critical
review of each team member’s PDL or code by at least one

301

other member of the team. Walk-throughs represented a more
formalized presentation of an individual’s work to the other
team members in which the PDL or code was explained step
by step. Under the chief programmer team organization, one
team member was responsible for designing and refining the
top-level solution to the problem in PDL, identifying system
components to be implemented, defining their interfaces, and
implementing the key code; the other team members were
each responsible for designing or coding various system com-
ponents, as assigned by the chief programmer. Responsibility
for librarian activities (entering or revising code stored on-line,
making test runs, etc.) was allocated among the three team
members in the manner most comfortable for them.

Each individual or team in groups Al and AT was allowed
to develop the software in a manner entirely of their own
choosing, which is herein referred to as an ad hoc approach.
No methodology was taught in the course these subjects were
taking. Informal observation by the researchers confirmed
that approaches used by the individuals and ad hoc teams
were indeed lacking in discipline and did not utilize the
key elements of the disciplined methodology (e.g., an in-
dividual working alone cannot practice code reading, and
it was evident that the ad hoc teams did not use a PDL or
formally do a top-down design).

Programming Environment

Several particulars of the experimental programming envi-
ronment contribute significantly to the context in which the
experiment’s results must be appraised. These include the
setting in which the experiment was conducted, the software
development project that served as the experimental task, the
people who participated as subjects, the computer system
access mode they used, and the computer programming lan-
guage in which the software was written.

The experiment was conducted during the Spring 1976
semester, January through May, within regular academic
courses given by the Department of Computer Science on
the College Park campus of the University of Maryland. Two
comparable advanced elective courses were utilized, each
with the same academic prerequisites. The experimental
task and treatments were built into the course material and
assignments. Everyone in the two classes participated in the
experiment; they were aware of being monitored, but had no
knowledge of what was being observed or why.

The programming application was a compiler for a small
high-level language and a simple stack machine; it involved
string processing and language translation (via scanning,
parsing, code generation, and symbol table management).
The total task was to design, implement, test, and debug
the complete computer software system from given specifica-
tions. The scope of the project excluded both extensive error
handling and user documentation. The project was of modest
but nonnegligible difficulty, requiring roughly a two man-
month effort and resulting in systems that averaged over 1200
lines of high-level-language source code. All facets of the
project itself were fixed and uniform across all development
“teams.” Each “team” worked independently to build its
own system, using the same specifications, computer resource

302

allocation, calendar time allotment, implementation language,
debugging tools, etc. The delivered systems each passed an
independent acceptance test.

The participants were advanced undergraduate and graduate
students in the Department of Computer Science, a few with
as much as three years’ professional programming experience.
Generally speaking, they were all familiar with both the imple-
mentation language and the host computer system, but inex-
perienced in team programming and the disciplined method-
ology. A reasonable degree of homogeneity seemed to exist
among the participants with respect to personal factors such
as ability/experience, motivation, time/effort devoted to the
project, etc. If anything, based on the researchers’ subjective
judgment, the participants in groups AI and AT seemed to
have a slight edge over those in group DT with respect to
native programming ability and formal training in the applica-
tion area.

The host computer system used by all “teams” was a Univac
1100 machine with the usual Exec operating system, sup-
porting both batch and interactive access. It was observed
that almost all “teams” consistently preferred the interactive
access mode; only one of Al “teams” used the batch access
mode extensively.

The implementation language was the high-level, structured-
programming language SIMPL-T [7], taught and used ex-
tensively in regular course work at the University. SIMPL.T
contains the following control constructs: sequence, ifthen,
ifthenelse, whiledo, case, exit from loop, and return from
routine (but no goto). SIMPL-T allows basically two levels
of data declaration scope, local to an individual routine or
global across several routines, but routines may not be nested.
The language adheres to a philosophy of “strong data typing”
and supports integer, character, and string data types and
single dimension array data structures. It provides the pro-
grammer with both recursion and string-processing capabilities
similar to PL/I.

Data Collection and Reduction

During the course of the experiment, while the software
projects were being developed, the computer activities of
each “team” were automatically and unobtrusively monitored.
Special module compilation and program execution processors
(invoked by very slight changes to the regular command lan-
guage) created an historical database, consisting of all source
code and test data accumulated throughout the project devel-
opment period, for each development “team.” The raw in-
formation in this database was subsequently reduced to ob-
tain the experimental observations. The final products were
isolated from the database and measured for various syntactic
and organizational aspects of the finished product source code.
Effort and cost measurements were also extracted -from the
database. The inputs to the analysis, in the form of scores
for the various programming aspects, reflect the quantitatively
measured character of the product and effort of the process.
(These raw data scores are presented in Appendix II.) Much
of this data reduction was done automatically within a spe-
cially instrumented compiler. The same collection and reduc-
tion mechanism was uniformally applied to all development

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

“teams,” ensuring the objectivity of the observations and
measurements.

Programming Aspects and Metrics

The dependent variables studied in this experiment are
called programming aspects. They represent specific isolat-
able and observable features of programming phenomena.
Furthermore, they are measured in a manner that may be
characterized as quantitative (on at least an interval scale
[10, pp. 65-67], objective (without inaccuracy due to human
subjectivity), unobtrusive (to those developing the software),
and automatable (not depending on human agency).

The variables fall into two categories: process aspects and
product aspects. Process aspects represent characteristics of
the development process itself, in particular, the cost and re-
quired effort as reflected in the number of computer job
steps (or runs) and the amount of textual revision of source
code during development. Product aspects represent charac-
teristics of the final product that was developed, in particular,
the syntactic content and organization of the symbolic source
code itself. Examples of product aspects are number of lines,
frequency of particular statement types, average size of data
variables’ scope, etc. For each programming aspect there
exists an associated metric, a specific algorithm which ulti-
mately defines that aspect and by which it is measured.

Table I lists the particular programming aspects examined
in this investigation. They appear grouped by category, with
indented qualifying phrases to specify particular variants of
certain general aspects. When referring to an individual aspect,
a concatenation of the heading line with the qualifying phrases
(separated by \ symbols) is used; for example, COMPUTER JOB
STEPS\MODULE COMPILATION\UNIQUE denotes the number
of COMPUTER JOB STEPS that were MODULE COMPILATIONS
in which the source code was UNIQUE from all other compiled
versions. Explanatory notes (keyed to the list in Table I)
about the programming aspects are given in Appendix I, with
definitions for the nontrivial or unfamiliar metrics. Technical
meanings for various system- or language-dependent terms
{e.g., module, segment) also appear there. Since computer
programming terminology is not particularly standardized,
the reader is cautioned against drawing inferences not based
on this paper’s definitions.

The programming aspects had been consciously planned in
advance of collecting and extracting data because intuition
suggested that they would serve well as quantitative indicators
of important qualitative characteristics of software develop-
ment phenomena. It was predicted a priori that these so-
called “confirmatory” aspects would verify the study’s basic
premises regarding the programming methodologies being
investigated.

The overall study also examined many so-called “explora-
tory” programming aspects: measurements which could be
collected and extracted cheaply (even as a natural by-product
sometimes) along with the “confirmatory” aspects, but for
which there was little serious expectation that they would
be useful indicators of differences among the groups. They
were included in the overall study with the intent of observing
as many aspects as possible on the off chance of discovering

BASILI AND REITER: CONTROLLED EXPERIMENT

any unexpected tendency or difference, thus combining ele-
ments of both confirmatory and exploratory data analysis
within one common experimental setting [27]. For these
“exploratory” programming aspects and their results, inter-
ested readers are referred to [5], [22].

III. APPROACH

The investigative methodology can be characterized as an
empirical study based on the “construction” paradigm in
which multiple subjects are closely monitored during actual
“production” experiences, each subject performing the same
task, with controlled variation in specific variables. It uses
scientific experimentation and statistical analysis based on a
“differentiation among groups by aspects” paradigm in which
possible differences among the groups, as indicated by differ-
ences in certain quantitatively measured aspects of the ob-
served phenomena, are the target of the analysis. This use of
“difference discrimination” as the analytical technique dic-
tates a model of homogeneity hypothesis testing that in-
fluences nearly every element (or step) of the methodology.

Fig. 1, the approach schematic, charts some of the relation-
ships among the various steps of the investigative method-
ology. The remainder of this section outlines the approach by
briefly defining each step and discussing how it was applied in
the research effort at hand.

Step 1—Questions of Interest: Several questions of interest
were initiated and refined so that answers could be given in
the form of statistical conclusions and research interpretations.
The final questions of interest culminated in the form “during
software development, what comparisons between the effects
of the three factor-level combinations a) single individuals,
b) ad hoc teams, and c) disciplined teams appear as differences
in the various quantitatively measurable aspects of the soft-
ware development process and product? Furthermore, what
kind of differences are exhibited and what is the direction of
these differences?”

Step 2—Research Hypotheses: Based upon the questions of
interest, precise research hypotheses were formulated as dis-
joint pairs designated null and alternative, to be supported
or refuted by the evidence.

A precise meaning was given to the notion “what kind of
difference.” In order to address the expectency of behavior
under the experimental treatments, the investigation focused
on differences in central tendency or average value of the
quantifiable programming aspects. These “location” com-
parisons and their results are the topic of this paper. The
overall study also addressed the predictability of behavior
under the experimental treatments by considering differ-
ences in variability around the central tendency of observed

~values of the programming aspects. For these “dispersion”
comparisons and their results, interested readers are referred
to [5], [22].

The schema for the research hypotheses may be stated as
follows. “In the context of a one-person do-able software
development project, there < is not | is > a difference in the
location of the measurements on programming aspect <X>
between individuals (AI), ad hoc teams (AT), and disciplined
teams (DT).” For each programming aspect “X” in the set

303

under consideration, this schema generates a pair of nondirec-
tional research hypotheses, depending upon the selection of
“is not” or “is” corresponding to the null and alternative
hypothesis.

Step 3—Statistical Model: The choice of a statistical model
makes explicit various assumptions regarding the experimental
design, the dependent variables, the underlying population dis-
tributions, etc. Because the study involves a homogeneity-of-
populations problem with shift alternative, the multisample
model used here requires the following criteria: independent
populations, independent and random sampling within each
population, continuous underlying distributions for each
population, homoscedasticity (equal variances) of underlying
distributions, and interval scale of measurement [10, pp.
65-67] for each programming aspect. Although random
sampling was not explicitly achieved in this study by rigorous
sampling procedures, it was nonetheless assumed on the
basis of the apparent representativeness of the subject pool
and the lack of obvious reasons to doubt otherwise. Due to
the small sample sizes and the unknown shape of the under-
lying distributions, a nonparametric statistical model was
used. ;

Whenever statistics is employed to “prove” that some sys-
tematic effect—in this case, a difference among the groups—
exists, it is important to measure the risk of error. This is
usually done by reporting a significance level a [10, p. 79],
which represents the probability of deciding that a systematic
effect exists when in fact it does not. In the model, the
hypothesis testing for each programming aspect was regarded
as a separate independent experiment. Consequently, the sig-
nificance level is controlled and reported experimentwise (i.e.,
per aspect). While the assumption of independence between
such experiments is not entirely supportable, this procedure
is valid as long as statistical inferences that couple two or
more of the programming aspects are avoided or properly
qualified.

Step 4—Statistical Hypotheses: The research hypotheses
must be translated into statistically tractable form, called
statistical hypotheses. In this study, the research hypotheses
are concerned with directional differences among three pro-
gramming environments. Since the corresponding mathe-
matical statements are not directly tractable, they were
broken down into the set of four statistical hypotheses pairs
shown below. The hypotheses pair '

null: AI=AT=DT alternative: ~ (Al=AT =DT)

addresses the existence of an overall difference among the
groups. The hypotheses pairs

null: AI = AT alternative: Al #AT or

Al < AT or AT < Al
null: AT=DT alternative: AT #DT or

AT < DT or DT < AT
null: Al =DT alternative: AI #DT or

Al <DT or DT < Al

address the existence and direction of pairwise differences be-
tween groups. The results of these pairwise comparisons were
used to explicate the overall comparison.

304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

Thus, for any particular programming aspect, the research
hypotheses pair corresponds to four different pairs (null and
alternative) of scientific hypotheses. The results of testing
each set of four hypotheses must be abstracted and organized
into one statistical conclusion using the first research frame-
work discussed in the next step.

Step 5—Research Frameworks: The research frameworks
provide the necessary organizational basis for abstracting and
conceptualizing the volume of statistical hypotheses (and
statistical results that follow) into a smaller and more intel-
lectually manageable set of conclusions. Two separate re-
search frameworks have been chosen: 1) the framework of
possible overall comparison outcomes for a given programming
aspect and 2) the framework of general beliefs regarding ex-
pected effects of the experimental treatments on the compari-
son outcomes for the entire set of programming aspects. The
first framework is employed in the statistical conclusions step
because it can be applied in a statistically tractable manner,
while the second framework is reserved for the research in-
terpretations step since it is not statistically tractable and
involves subjective judgment. :

Since a finite set of three different programming environ-
ments (the A, AT, and DT groups) are being compared, there
exists a finite set of nineteen possible overall comparison out-
comes for each aspect considered, as displayed in the follow-
ing chart:

three groups. The level-1 equations indicate a difference be-
tween the two extreme groups, with the third group (desig-
nated in lowercase letters within parentheses) lying in between.
The level-2 equations indicate that one group is different from
each of the other two, while the level-3 equations indicate that
all three groups are differentiated from one another. The
equations appearing in boxes provide a direction-free “sum-
mary” of the corresponding set of equations. These 19 pos-
sible overall comparison outcomes comprise the first research
framework and may be viewed as providing a complete “an-
swer space” for the questions of interest. This framework is
the basis for organizing and condensing the four statistical re-
sults into one statistical conclusion for each programming
aspect considered.

The design of. the experiments, the choice of treatment
factors, etc., were partially motivated by certain general
beliefs regarding software development, such as “disciplined
methodology reduces software development costs.” The im-
plications, relative to these beliefs, of the possible outcomes
of each aspect’s experiment provide a second research frame-
work. This framework is the basis for interpreting the study’s
findings in terms of evidence in favor of the general beliefs;
details are given in Section V, Interpretation.

The overall study also employed a third research framework,
based on abstracting what the study’s findings indicate about
certain higher level programming issues (such as data variable

level-0

level-1

level-2

' level-3

Al = AT = DT

AT < (ai) < DT
DT < (ai) < AT

AT #DT

Al < (at)<DT
DT < (at) < Al

Al #DT

Al < (dt) < AT
AT < (dt) < Al

Al # AT

Al <AT =DT
AT =DT < AI

AT<DT=AI
DT = Al <AT

DT <AI = AT
Al = AT<DT

Al #AT =DT

AT #DT = Al

DT #AI = AT

Al <ATDT
Al <DT<AT
AT <DT < Al
AT<AI <DT
DT < AI <AT
DT <AT <Al

Al # AT+#DT

The level number associated (in the chart) with each outcome

‘“equation”

is exactly the number of statistically significant

(pairwise) differences implied by or stated in that equation.
The level-O equation indicates no distinction among the

organization or intersegment communication). For this third
framework and the corresponding interpretation, interested
readers are referred to [S], [22].

Step 6—Experimental Design: The experimental design is

BASILI AND REITER: CONTROLLED EXPERIMENT

305

h\u&ar’e l

(ef30® questions
of interest N
N\
518%e \
gor™ N
N
research N
hypotheses ~ « N
~
\
jde =~ 08¢
66:90“ \l/ > cﬂ‘“slate S A \c\‘°
- K
- A
statistical - = _ _ . _ _ . _ > statistical research
model N o hypotheses JeD framework
N s’ ot® \
~ s I\ PLANNING
o Moo N e e e D S Ao
onst™” A ~ 7 / \ ANALYSIS
/
\ Sak
! \
experimental \ statistical / \
design \ test procedures /
PLANNING \ ¢e5°“e , \
................ \
EXECUTION \
i \ oefor™® / \
duet N / \
O’ (U“e“t B N
v L ' ~ o L / \
. ~ : v N
collected . statistical statistical > research
data o results 28 conclusions ot interpretations
‘ed\“‘-"‘ aecet“‘“‘ ore?® “\ce"-‘?t

EXECUTION . ANALYSIS

Fig. 1. Approach schematic.

the plan or setup according to which the experiment is actu-
ally conducted or executed. It is based upon the statistical
model, and deals with practical issues such as experimental
units, treatment factors and levels, experimental local con-
trol, etc. The experimental design employed for this study
has been discussed in Section II, Specifics.

Step 7—Collected Data: The pertinent data to carry out
the experimental design are collected and processed to yield
the information to which the statistical test procedures were
applied. Some details of this execution phase have been given
in Section II, Specifics. The data themselves are listed in
Appendix II.

Step 8-Statistical Test Procedures: As dictated by the
statistical model, the statistical tests used in the study were
nonparametric tests of homogeneity of populations against
shift alternatives for small samples. In particular, the standard
Kruskal-Wallis H-test [25, pp. 184-193] and Mann-Whitney
U-test [25, pp. 116-127] were employed in the statistical
results step. Ryan’s method of adjusted significance levels
[16, pp. 97, 495-497], a standard procedure for controlling
the experimentwise significance level when several tests are
performed on the same scores as one experiment, was also
employed in the statistical conclusions step. As part of
Ryan’s method, the rank means within the groups were
used a posteriori to determine the direction of significant
differences.

The critical level & [10, p. 81] is defined as the minimum
significance level at which the statistical test procedure would
allow the null hypothesis to be rejected (in favor of the
alternative) for the given sample data. It is a concise standard-
ized way to state the full result of any statistical test pro-

cedure. A decision to reject the null hypothesis and accept
the alternative is mandated if the critical level is low enough
to be tolerated; otherwise a decision to retain the nuil hy-
pothesis is made.

A different statistical analysis has been performed [5], [22],
which postulated directional alternative hypotheses (and used
one-tailed tests). Taking a slightly more conservative tack, this
present paper makes no @ priori assumptions regarding direc-
tion of observed differences (and uses two-tailed tests). It
should be noted that, since the study’s a priori general beliefs
(see Section V, Interpretation) did involve differences in par-
ticular directions, some justification exists for using one-
tailed tests in the statistical analysis. This would roughly
halve the critical levels shown throughout this paper. How-
ever, results based on two-tailed tests are presented herein in
order to avoid any objections concerning statistical technique.

Step 9—Statistical Results: For each pair of statistical hy-
potheses, there is one statistical result consisting of four com-
ponents: 1) the null hypothesis itself; 2) the alternative hy-
pothesis itself; 3) the critical level, stated as a probability value
between 0 and 1; and 4) a decision either to retain the null
hypothesis or to reject it in favor of (i.e., accept) the alterna-
tive hypothesis. v

By convention, the null hypothesis purports that no sys-
tematic difference appears to exist, and the alternative hypoth-
esis purports that some systematic difference seems to exist.
The critical level is associated with erroneously accepting the
alternative hypothesis (i.e., claiming a systematic difference
when none in fact exists). The decision to retain or reject is
reached on the basis of some tolerable level of significance,
with which the critical level is compared to see if it is low

306

enough. In cases where a null hypothesis is rejected, the ap-
propriate directional alternative hypothesis (if any) is given
to indicate the direction of the systematic difference.

Conventional practice is to fix an arbitrary significance
level (e.g., 0.05 or 0.01) in advance, to be used as the tolerable
level; critical levels then serve only as stepping-stones toward
reaching decisions and are not reported. For this study, it
was deemed more appropriate to fix a tolerable level only
for the purpose of a screening decision (simply to purge those
results with intolerably high critical levels) and to explicitly
retain a surviving critical level with each statistical result. The
tolerable level of significance used throughout this study to
screen critical levels was fixed at under 0.20. A critical level
of 0.20 means that the odds of obtaining test scores exhibiting
the same degree of difference, due to random chance fluctua-
tions alone, are one in five.

As an example, the four statistical results for the program-
ming aspect STATEMENT TYPE COUNTS\IF are shown below.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

spondence with the research hypotheses and provide concise
answers on a “per aspect” basis to the questions of interest.
Further details and complete listing of the statistical conclu-
sions for this study are presented in Section IV, Results.

Step 11—Research Interpretations: The final step in the
approach is to interpret the statistical conclusions in view of
any remaining research framework(s). These research inter-
pretations provide the opportunity to augment the objective
findings of the study with the researcher’s own subjective judg- -
ments and interpretations. The second research framework
mentioned above, namely, the general beliefs governing the
expected outcomes for the entire set of programming aspects,
was considered important. However, this particular research
framework can only be utilized for research interpretations,
since it is not amenable to rigorous manipulation. Nonethe-
less, within this framework which is based upon intuitive
understanding about the software development environments
under consideration, the study bears its most interesting re-

null alternative critical (screening)
hypothesis hypothesis level decision
AI=AT=DT ~(AI=AT=DT) 0.063 reject
Al = AT Al <AT 0.139 reject
Al = AT Al #DT >0.999 retain
AT =DT DT < AT 0.066 reject

Observe that the stated decisions reflect the application of the
0.20 tolerable level to the stated critical levels. Results under
more stringent levels of significance can easily be determined
by simply applying a lower tolerable level to form the deci-
sions, e.g., at the 0.10 significance level, oniy the Al = AT =
DT and AT = DT null hypothesis would be rejested.

Step 10-Statistical Conclusions: The volume of statistical
results are organized and condensed into statistical conclu-
sions according to the prearranged research framework(s).
Specifically, the first research framework mentioned above
was employed to reduce the four statistical results (with four
individual critical levels) for each programming aspect to a
single conclusion (with one overall critical level) for that
aspect. The statement portion of a statistical conclusion is
simply one of the nineteen possible overall comparison out-
comes. Each overall comparison outcome is associated with a
particular set of statistical results whose outcomes support the
overall comparison outcome in a natural way. For example,
the DT = AL < AT conclusion is associated with the follow-
ing results:

reject Al = AT = DT in favor of ~ (Al = AT = DT),
reject Al = AT in favor of Al < AT,

retain AI = DT, and

reject AT = DT in favor of DT < AT.

Continuing the example started in Step 9, the statistical re-
sults shown there for the STATEMENT TYPE COUNTS\IF as-
pect are reduced to the statistical conclusion DT = AI < AT
with 0.139 critical level overall. The four results match those
associated above with the DT = AI < AT outcome. Following
Ryan’s procedure, the corresponding critical levels for those
four results are adjusted to compute the overall critical level
associated with this conclusion.

Thus, the statistical conclusions are in one-to-one corre-

sults and implications. Further details and discussion of the
research interpretations of this study appear in Section V,
Interpretation.

IV. RESuULTS

The immediate results of the study are the statistical con-
clusions inferred from the experiment for each programming
aspect considered. They state any observed differences, and
the directions thereof, among the programming environments
represented by the three groups examined in the study: ad hoc
individuals (AI), ad hoc teams (AT), and disciplined teams
(DT). Each statistical conclusion is expressed in the concise
form of a three-way comparison outcome “equation.” The
equality AI=AT=DT expresses the null conclusion that
there is no systematic difference among the groups. An in-
equality, e.g., AT <(ai) <DT, AI<AT =DT, or DT<AIL
AT, expresses a nonnull (or alternative) conclusion that there
are certain systematic difference(s) among the groups in
stated direction(s). A critical level (or risk) value is also
associated with each nonnull (or alternative) conclusion, in-
dicating its individual reliability. This value is the probability
of having erroneously rejected the null conclusion in favor of
the alternative; it also provides a relative index of how pro-
nounced the differences were in the sample data.

Table I gives the complete set of statistical conclusions,
arranged by programming aspect. Instances of nonnull (or
alternative) conclusions, indicating some distinction among
the groups on the basis of a particular programming aspect,
are itemized in English prose form at the end of this section.

Examination of the table immediately indicates that roughly
half of the programming aspects (particularly product aspects),
which were all expected a priori to show some distinction
among the groups, failed in actuality to do so. However,
several of the null conclusions may indicate characteristics

BASILI AND REITER: CONTROLLED EXPERIMENT

inherent to the application itself. As one example, the basic
symbol-table/scanner/parser/code-generator nature of a com-
piler strongly influences the way the system is modularized
and thus practically determines the number of modules in the
final product (give or take some occasional slight variation due
to other design decisions).

Impact Evaluation

These statistical conclusions have a certain objective charac-
ter—since they are statistically inferred from empirical data—
and their collective impact may be objectively evaluated ac-
cording to the following statistical principle [27, p. 84-85].
Whenever a series of statistical tests (or experiments) are
made, all at a fixed level of significance (for example, 0.10),
a corresponding percentage (in the example, 10 percent) of
the tests are expected a priori to reject the null hypothesis
in the complete absence of any true effect (i.e., due to chance
alone). This expected rejection percentage provides a com-
parative index of the true impact of the test results as a whole
(in the example, a 25 percent actual rejection percentage
would indicate that a truely significant effect, other than
chance alone, was operative).

The details of this impact evaluation for the study’s ob-
jective results, broken down into appropriate categories, are
presented in the following table. The evaluation was per-
formed at the a=0.20 significance level used for screening
purposes, hence the expected rejection percentage for any
category was 20 percent. For each category of aspects, the
table gives the number of programming aspects, the expected
(rounded to whole numbers) and actual numbers of rejections
(of the null conclusion in favor of a directional alternative),
and the expected and actual rejection percentages. Strong
statistical impact is demonstrated by an actual rejection per-
centage well above the expected rejection percentage.

307

noticeably fewer computer job steps (i.e., module compila-
tions, program executions, and miscellaneous job steps) than
both the ad hoc individuals and the ad hoc teams. As metrics,
this aspect and its subclassifications directly represent machine
costs, in units of basic computer system operations, and in-
directly reflect human costs, since each operation necessitates
a certain expenditure of programmer time/effort.

2) This same difference was apparent in the total number of
module compilations, the number of unique (i.e., not an iden-
tical recompilation of a previously compiled module) module
compilations, the number of program executions, and the num-
ber of essential job steps (i.e., unique module compilations
plus program executions), according to the DT < AT = Al out-
comes on the COMPUTER JOB STEPS\MODULE COMPILATION,
COMPUTER JOB STEPS\MODULE COMPIL ATION \UNIQUE,
COMPUTER JOB STEPS\PROGRAM EXECUTION, and COMPUTER
JOB STEPS/ESSENTIAL [aspects, respectively.

3) According to the DT < Al = AT outcome on the PRO-
GRAM CHANGES aspect [13] the disciplined teams required
very noticeably fewer textural revisions to build and debug
the software than the ad hoc individuals and the ad hoc teams.
As a metric, this aspect has been shown to correlate well with
total number of error occurrences determined via human
inspection.

4) There was a definite trend for the ad hoc individuals and
disciplined teams to have produced fewer total symbolic lines
(including comments, compiler directives, statements, declara-
tions, etc.) than the ad hoc teams, according to the DT = AI <
AT outcome on the LINES aspect. There is evidence, as in-
dicated by the lower critical level, of a stronger pairwise dif-
ference between ad hoc individuals and ad hoc teams than
between disciplined teams and ad hoc teams. This aspect mea-
sures the size of the software product.

5) According to the AI <AT =DT outcome on the SEG-

number expected actual expected actual

of number of | number of | rejection | rejection

category aspects rejections | rejections .| percentage | percentage
“confirmatory” aspects 35 7 19 20.0 543
process aspects only 6 1 6 20.0 100.0
product aspects only 29 6 13 20.0 44.8

The table shows that the results do have strong statistical
impact. On the whole, process aspects have more impact
than product aspects, but all of the observed quantitative
distinctions among the three groups bear statistical impact.
‘They are better explained as consequences of some true effect
related to the experimental treatments, rather than as random
phenomena.

Individual Highlights

The purpose of this subsection is simply to highlight the in-
dividual differences observed in the study, by itemizing the
nonnull conclusions in English.

1) According to the DT < Al = AT outcome on the com-
PUTER JOB STEPS aspect, the disciplined teams used very

MENTS aspect, the ad hoc individuals organized their software
into noticeably fewer routines (i.e., functions or procedures)
than either the ad hoc teams or the disciplined teams. In
addition to measuring the size of the software product, this
aspect reflects its modularity.

6) The ad hoc individuals displayed a trend toward having
a greater number of executable statements per routine than
did the ad hoc teams, according to the AT < (dt) <Al out-
come on the AVERAGE STATEMENTS PER SEGMENT aspect.
As a metric, this aspect represents the length of a typical
routine in the delivered source code.

7) According to the DT = AI < AT outcomes on the STATE-
MENT TYPE COUNTS\IF and STATEMENT TYPE PERCENT-
AGE\IF aspects, both the ad hoc individuals and the disci-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

308

((29] = = ITHM on = = SINIWALVLS
6010 LV >@®> 1d
700 v >0p)> 1v
€1 LST°0 1a >@®> 1v asvo) 601°0 v >Iv= 1da SANIT
$50°0 v >@®)> 1a 6010 1a >0e> 1v
L6110 LV >0p)> 1V LLOO v >0p)> IV
@n L61°0 v >1vV = 1d E ® 6010 ILd =1vV> IV SLNIWOES
an : SIOVINEO¥Ad FdAL INTWHLVLS (3] = = STINAON
LY0'0 v >@®)> 1a spadsy jonpoid feurg
651°0 v >0p)> IV
oD 651°0 v >1v=1ad . NYNLTY
* €000 1LV >(®)> 1d
9000 v >08)> La
©) 900°0 v =Iv> 1d SAONVHD WVHYDOUd
(49)] = = uxd
L0070 Lv >(®)> 1a
€000 v >0e)> 1Ld
©) L00°0 1lv =1Iv> 1d TVLLNASSH
(49) = = TIHM
150°0 LV >(®)> 1a
1100 Iv >08)> 1La
@) 1$0°0 v =1v> 1d : NOLLAOAXE WV Y00ud
€0 = = asvo
v00'0 LV >(®)> 1a
0700 IV >08)> 1ad
) 0700 v =1v> 1d 4N0INA
9900 LV >(®)> 1a $00°0 v >@®> 1a
6€1°0 v >0p)> 1Iv w00 v >08> 1d
@n 6£1°0 1lv >1v = 1d Al @ 7500 v =1IvV> 1d NOILVTIdWOD TTNAOW
€000 Lv >@®)> 1d
9000 Iv >08)> 1d
an : SINNOD 3JAL INSWHLVLS o 900°0 1v =1v> 1d SdELS €90f YILOAWOD
spadsy yonpoid [eurg spadsy ssa001d usmdopasq
[9A97] swonny . wadsy Sutwmreiforg [PAaT awosn) Padsy Surmweidoig
[eany uosuedwo) [eon) uosuredwo)
uones0] uonesoy
“I191N[d AIeSsaoauun proAe 03 1 = 1V = [V swoono [jnu ay) jo 2oeld ui sieadde (= =)

sudis [enba jo sed ojduns v T xipuaddy ur sajou Kzojeue(dxa oY) 03 19§01 WSU 3Y) 0) s1aquInu pazisayiuated oyl g'N

SNOISN'TONOD) TVOILSILYLS ANV S1O3dSY ONINWVIOOEJ
I 319VL

309

@0 = = 201
(%4] FOVINIOYAd FAILVIIA @ €ro 1v >GP)> 1v HALANVAV
G4 610 IV >0P> IV IS0 @ §800 LV >0p)> IV Voo
€4 : SINNOD 3d0JS TTEVIIVA VIVA
((Y4) TVOLOV
*0) : SONIGNIE VLVA (INEWOES “IVEOTO ‘LNIWOFS) (oz) = = ANGWGLVLS M3d SNIAOL JOVHIAY
((%4] 4OVINIOUAd FALLVIZY UIVd 39vsa (1VE0TO ‘LNAWOAHS) L% = = SNEIOL
990°0 Iv >0e)> 1d
L61°0 Iv >0p)> LV 61 060°0 v >0e)> 1d SNoISIDEa
@ L61°0 IV >1d= 1V 1001
@n = = THAGT ONILSAN INTWALVLS GDVHIAV
@ o v >0m> 1V HILANVAVL
w@n 6€1°0 Iv >0p)> 1V INWOTS Ydd SINIWELVLS FOVIIAV
@) = = V401D
(9] = = NANLIH
ao : SAOVINEOWHd 3d00S TIEVIMVA VIVA
(30] = = 1ixd
s10adsy 1onpoid [eul spoadsy jonpoid [eurg
[9A9] w0 adsy Surwweidold [PAd] awonnQ padsy SurmwerSoid
reonu)) uosuedwo) [onL)) uosuedwo))
uonedo] uoneso]

BASILI AND REITER: CONTROLLED EXPERIMENT

(qanNuINoD) T ATEV.L

310

plined teams coded noticeably fewer IF statements than the
ad hoc teams, in terms of both total number and percentage
of total statements. In both cases, it should be noted that the
more significant pairwise difference lies between disciplined
teams and ad hoc teams. These aspects are two of the earliest
proposed and more commonly accepted measures of program
complexity.

8) According to the DT < (ai) < AT outcome on the DE-
CISIONS aspect, the disciplined teams tended to code fewer
decisions (i.e., IF, WHILE, or CASE statements) than the ad
hoc teams. As a metric, this aspect represents control flow
complexity; it is closely associated with a recently proposed
graph theoretic complexity measure [19].

9) The disciplined teams and the ad hoc individuals both
coded fewer RETURN statements than the ad hoc teams, ac-
cording to the DT = Al <AT outcome on the STATEMENT
TYPE COUNTS\RETURN aspect, with the stronger pairwise
difference separating disciplined teams and ad hoc teams.
This aspect reflects a degree of deviation from rigorously
structured code.

10) The disciplined teams coded a higher percentage of
CASE statements than the ad hoc teams, according to the
AT < (ai) < DT outcome on the STATEMENT TYPE PERCENT-
AGES\CASE aspect. This aspect reflects the organization of
low-level tests into a more concise control structure.

11) The ad hoc individuals tended to use fewer global vari-
ables than the ad hoc teams, according to the AT <(dt) <AT
outcome on the DATA VARIABLE SCOPE COUNTS\GLOBAL
aspect. As metrics, this aspect and the others dealing with
scope reflect the organization and accessibility of data within
a program.

12) The ad hoc individuals also tended to use fewer param-

eter variables than the ad hoc teams, in terms of both total -

number and percentage of declared data variables, according
to the AI<(dt)<AT outcomes on the DATA VARIABLE
SCOPE COUNTS\PARAMETER and DATA VARIABLE SCOPE
PERCENTAGES\PARAMETER aspects.

13) According to the AT = DT < Al outcome on the DATA
VARIABLE SCOPE PERCENTAGES\LOCAL aspect, the ad hoc
individuals had a larger percentage of local variables compared
to the total number of declared data variables than either the
ad hoc teams or the disciplined teams. The stronger pairwise
differentiation lies between disciplined teams and ad hoc
individuals.

14) There was a slight trend for the ad hoc individuals to
have fewer potential data bindings [26] (i.e., occurrences of
the situation where a global variable could be modified by one
segment and accessed by another due to the software’s modu-
larization) than the ad hoc teams, according to the AI <(dt) <
AT outcome on the (SEG, GLOBAL,SEG) DATA BINDINGS\POS-
SIBLE aspect. As a metric, this aspect represents the potential
number of unique communication paths via globals between
pairs of segments.

V. INTERPRETATION

The study’s derived results, called research interpretations,
consist of an evaluation of the statistical conclusions pre-
sented in Section IV, based upon a set of general beliefs re-
garding software development. These beliefs were formulated
by the researchers prior to conducting the experiment. Per-

taining to both the process and product of software develop-
ment, the beliefs are

(B1) that methodological discipline is a key influence on the
general efficiency of the software process;

(B2) that the disciplined methodology reduces the cost and
complication of the process;

(B3) that the preferred direction of differences on process
aspects is clear and undebatable, due to the tangibleness of
the process aspects themselves and the direct applicability of
expected values in terms of average cost estimates;

(B4) that “mental cohesiveness” (or conceptual integrity
[9, pp. 41-50]) is a key influence on the general quality of
the software product;

(B5) that a programming team is naturally burdened (rela-
tive to an individual programmer) by the organizational over-
head and risk of error-prone misunderstanding inherent in
coordinating and interfacing the thoughts and efforts of those
on the team;

(B6) that the disciplined methodology induces an effective
mental cohesiveness, enabling a programming team to behave
more like an individual programmer with respect to conceptual
control over the program, its design, its structure, etc., because
of the discipline’s antiregressive, complexity-controlling ef-
fects that compensate for the inherent organization overhead
of a team; and

(B7) that the preferred direction of differences on product
aspects is not always clear (occasionally even subject to di-

- verging viewpoints), due to the intangibleness of many of the

product aspects.

In relation to these general beliefs, each possible comparison
outcome acquires additional meaning, either substantiating or
contravening some subset of the beliefs. For process aspects
and beliefs (B1)-(B3)

a) the level-2 outcome DT < Al = AT is directly supportive
of these beliefs;

b) the level-3 outcomes DT < AT < AT and DT <AT <Al
and the level-1 outcomes DT < (ai) < AT and DT < (at) <Al
are indirectly supportive of these beliefs;

¢) the level-0 outcome AI=AT =DT may discredit these
beliefs, or it may be considered neutral for anyone of several
possible reasons [1) the critical level for a nonnull outcome
is just not low enough, so the aspect defaults to the null out-
come; 2) the aspect simply reflects something characteristic
of the application itself (or another factor common to all the
groups in the experiment); or 3) the aspect actually measures
something fundamental to software development phenomena
in general and would always result in the null outcome]; and

d) all other outcomes discredit these beliefs.

For product aspects and beliefs (B4)-(B7)

a) the level-2 outcome AT # DT = Al, which is equivalent
to AT<DT = Al or DT = AI < AT, is directly supportive of
these beliefs;

b1) the level-3 outcomes AI<DT < AT and AT<DT <
Al may be ¢onsidered as approximations to the “preferred”
level-2 outcome in a) above [DT is distinct from AT but falls
short of Al, due to lack of experience or maturity in the
disciplined methodology.];

b2) the level-1 ontromes AT # DT and Al # AT may also

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

g

BASILI AND REITER: CONTROLLED EXPERIMENT

be considered as approximations to the “preferred” level-2
outcome in a) above [Al# AT, which is equivalent to Al <
(dt) < AT or AT < (dt) < Al supports the beliefs (B4), (BS)
that mental cohesiveness influences the quality of a product
and that an ad hoc team is burdened by its organizational
overhead. DT # AT, which is equivalent to DT <(ai) <AT
or AT < (ai) < DT, supports the belief (B6) that the disci-
plined methodology affects the behavior of a team.];

c) the level-0 outcome Al = AT =DT may discredit these
beliefs, or it may be considered neutral for anyone of several
possible reasons [as given in c) above]; and

d) all other outcomes discredit one-or more of these beliefs.

The study’s interpretation therefore consists of a general
assessment of how well the research conclusions have borne
out the general beliefs. On the whole, the study’s findings do
support the general beliefs presented above, although a few
conclusions exist which are inconsistent with them.

Overwhelming support comes in the category of comparisons
on process aspects, in which the research conclusions are dis-
tinguished by their low critical levels and by their unanimous
DT < Al = AT outcome. Fairly strong support also comes in
the category of comparisons on product aspects, for which the
only negative evidence (besides the neutral Al = AT = DT out-
comes) appeared in the form of two Al # AT = DT outcomes.
These indicate some areas in which the disciplined method-
ology was apparently ineffective in modifying a team’s be-
havior toward that of an individual, possibly due to a lack of
fully developed training/experience with the methodology.

Thus, according to this interpretation, the study’s findings
strongly substantiate the claims

(C1) that methodological discipline is a key influence on
the general efficiency of the software development process,and

(C2) that the disciplined methodology significantly reduces
the material costs of software development.

The claims

(C3) that mental cohesiveness is a key influence on the gen-
eral quality of the software development product,

(C4) that, relative to an individual programmer, an ad hoc
programming team is mentally burdened by its organizational
overhead, and

(C5) that the disciplined methodology offsets the mental
burden of organizational overhead and enables a disciplined
programming team to behave more like an individual pro-
grammer relative to the developed software product

are moderately substantiated by the study’s findings. ,

It should be noted that there is a simpler (albeit weaker)
interpretive model that covers all of the experimental results.
With the beliefs that a disciplined methodology provides for
the minimum process cost and results in a product which in
some aspects approximates the product of an individual and
at worst approximates the product developed by an ad hoc
team, the suppositions are DT < Al and DT < AT ‘with re-
spect to process and AIS DT < AT or AT < DT < Al with
respect to product. The study’s statistical conclusions fit this
model without exception.

The interpretations presented here are neither exhaustive
nor unique. They express the researchers’ own estimation of
the study’s implications and general import, according to their

311

professional intuitions about programming and software. It
is anticipated that the reader and other researchers might
formulate - additional or alternative interpretations of the
study’s empirical results, using their own intuitive judgments.
Other interpretations may be found in [5], [22].

VI. CoNCLUSION

A practical methodology was designed and developed for
experimentally and quantitatively investigating software
development phenomena. It was employed to compare three
particular software development environments and to evaluate
the relative impact of a particular disciplined methodology
(made up of so-called structured programming practices). The
experiments were successful in measuring differences among
programming environments and the results support the claim
that disciplined methodology effectively improves both the
process and product of software development. It must be
remembered, however, that the results and interpretation of
this study are derived from a limited subject population and a
set of measures assumed to be associated with software cost
and quality. Further studies replicating these experiments in
other environments should be performed.

One way to substantiate the claim for improved process is to
measure the effectiveness of the particular programming meth-
odology via the number of bugs initially in the system (i.e., in
the initial source code) and the amount of effort required to
remove them. These measures are assumed to be associated
with process aspects considered in the study, namely, PRO-
GRAM CHANGES and COMPUTER JOB STEPS/ESSENTIAL,
respectively. The statistical conclusions for both these aspects
affirmed DT < AI= AT outcomes at very low (<0.01) signifi-
cance levels, indicating that on the average the disciplined
programming teams “scored” lower than either the ad hoc
individual programmers or the ad hoc programming teams,
which both “scored” about the same. Thus, the evidence col-
lected in this study confirms the effectiveness of the disciplined
methodology in building reliable software efficiently.

The second claim, that the product of a disciplined team
should closely resemble that of a single individual since the
disciplined methodology assures a semblence of conceptual
integrity within a programming team, was partially substan-
tiated. In many of this study’s product aspects, the products
developed using the disciplined methodology were either
similar to or tended toward the products developed by the
individuals. In no case did any of the measures show the
disciplined teams’ products to be worse than those developed
by the ad hoc teams. The superficiality of many of the
product measures, together with the small sample sizes, may
be largely responsible for the lack of stronger support for this
second claim. The need for product measures with increased
sensitivity to critical characteristics of software is very evident.

It is important that quantitative evidence be gathered to
evaluate software methods and tools. The results of these
experiments are being used to guide further experiments and
will ‘act as a basis for analysis of software development prod-
ucts and processes in the Software Engineering Laboratory at
NASA/GSFC [8]. This type of research is being pursued [3],
[4], extending the study to include more sophisticated and
promising aspects, such as Halstead’s software science quan-
tities [14] and other software complexity metrics [19].

312

APPENDIX 1

EXPLANATORY NOTES FOR THE PROGRAMMING ASPECTS

The following numbered paragraphs, keyed to the list of
aspects in Table I and in Appendix II, describe each of the
programming aspects considered in the study. Various system-
or language-dependent terms (e.g., module, segment) are also
defined here.

(1) A computer job step is a single indivisible activity per-
formed on a computer at the operating system command level
which is nonincidental to the development effort and involves
a nontrivial expenditure of computer or human resources.
Only module compilations and program executions are counted
as COMPUTER JOB STEPS.

(2) A module compilation is an invocation of the implemen-
tation language processor on the source code of an individual
module. Only compilations of modules comprising the final
software product (or logical predecessors thereof) are counted
as COMPUTER JOB STEPS\MODULE COMPILATION.

(3) A unique module compilation is one in which the source
code compiled is textually distinct from that of any previous
comipilation. ‘

(4) A program execution is an invocation of a complete
programmer-developed program (after the necessary compila-
tion(s) and collection or link-editing) upon some test data.

(5) An essential job step is a computer job step that in-
volves the final software product (or logical predecessors
thereof) and could not have been avoided (by off-line com-
putation or by on-line storage of previous compilations or
results). ’

(6) The program changes metric [13] is defined in terms
of textual revisions made to the source code of a module
during the development period, from the time that module
is first presented to the computer system, to the completion
of the project. The rules for counting program changes are
such that one program change should represent approximately
one conceptual change to the program.

(7) A module is a separately compiled portion of the com-
plete software system. In the implementation language SIMPL-
T, a typical module is a collection of the declarations of sev-
eral giobal variables and the definitions of several segments.

(8) A segment is a collection of source code statements,
together with declarations for the formal parameters and local
variables manipulated by those statements, that may be invoked
as an operational unit. In the implementation language
SIMPL-T, a segment is either a value-returning function (invoked
via reference in an expression) or else a non-value-returning
procedure (invoked via the cALL statement); recursive seg-
ments are allowed and fully supported. Thesegment, function,
and procedure of SIMPL-T correspond to the (sub)program,
function, and subroutine of Fortran, respectively.

(9) The LINES aspect counts every textual line in the
source code of the complete program, including comments,
compiler directives, variable declarations, executable state-
ments, etc.

(10) The STATEMENTS aspect counts only the executable
constructs in the source code of the complete program. These
are high-level, structured-programming statements, including
simple statements—such as assignment and procedure call—as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, SE-7, NO. 3, MAY 1981

well as compound statements—such as ifthenelse and whiledo—
which have other statements nested within them. The imple-
mentation language SIMPL-T allows exactly seven different
statement types (referred to by their distinguishing keyword
or symbol) covering .assignment (:=), alternation-selection
(IF, CASE), iteration (WHILE, EXIT), and procedure invoca-
tion ‘(CALL, KETURN). Input-output operations are accom-
plished via calls to certain intrinsic procedures.

(11) The group of aspects named STATEMENT TYPE COUNTS,
etc., gives the absolute number of executable statements of
certain types. The group of aspects named STATEMENT TYPE
PERCENTAGES, etc., gives the relative percentage of certain
types of statements, compared with the total number of ex-
ecutable statements.

(12) Both ifthen and ifthenelse constructs are counted as
IF statements.

(13) The cask statement provides for selection from several
alternatives, depending upon the value of an expression. A case
construct with n alternatives is logically and semantically equiv-
alent to a certain pattern of n nested ifthenelse constructs.

(14) The WHILE statement is the only iteration or looping
construct provided by the implementation language SIMPL-T.

(15) The ExIT statement allows the abnormal termination
of iteration loops by unconditional transfer of control to the
statement immediately following the WHILE statement. Thus
it is a very restricted form of goto.

(16) The RETURN statement allows the abnormal termina-
tion of the current segment by unconditional resumption of
the previously executing segment. Thus, it is another very re-
stricted form of goto.

(17) The AVERAGE STATEMENTS PER SEGMENT aspect
provides a way of normalizing the number of statements rela-
tive to their natural enclosure in a program, the segment.

(18) In the implementation language SIMPL-T, both simple
(e.g., assignment) and compound (e.g., ifthenelse) statements
may be nested inside other compound statements. A particu-
lar nesting level is associated with each statement, starting at
1 for a statement at the outermost level of each segment and
increasing by 1 for successively nested statements.

(19) The pECISIONS aspect simply counts the total number
of 1F, CASE, and WHILE statements within the complete source
code.

(20) Tokens are the basic syntactic entities—such as key-
words, operators, parentheses, identifiers, etc.—that occur in
a program statement.

(21) A data variable is an individually named scalar or array
of scalars. In the implementation language SIMPL-T, there are
three data types for scalars: integer, character, and (varying
length) string; there is one kind of data structure (besides
scalar): single dimensional array, with zero-origin subscript
range; and there are several levels of scope for data variables
(as explained in note (22) below). In addition, all data vari-
ables in a SIMPL-T program must be explicitly declared,
with attributes fully specified. The total number of data vari-
ables includes each data variable declared in the complete
program once, regardless of its type, structure, or scope. Note
that each array is counted as a single data variable.

The group of aspects named DATA VARIABLE SCOPE COUNTS,

BASILI AND REITER: CONTROLLED EXPERIMENT

etc., gives the absolute number of declared data variables ac-
cording to each level of scope. The group of aspects named
DATA VARIABLE SCOPE PERCENTAGES, etc., gives the relative
percentage of variables at each scope level, compared with
the total number of declared variables.

(22) In the implementation language SIMPL-T, data vari-
ables can have any one of three levels of scope—global, param-
eter, and local-depending on where and how they are declared
in the program. Note that the notion of scope deals only with
static accessibility by name; the effective accessibility of any
variable can always be extended by passing it as a parameter
between segments. Global variables are accessible by name
to each of the segments in the module(s) in which they are
declared, and their values are usually manipulated by several
segments. Formal parameters are accessible by name only
within the enclosing (called) segment, but their values are
not completely unrelated to the calling segment (since param-
eters are passed either by value or by reference). Locals are
accessible by name only within the enclosing segment, and
their values are completely isolated from any other segment.

(23) A segment-global usage pair (p,r) is an instance of a
global variable r being used by a segment p (i.e., the global is
either modified (set) or accessed (fetched) at least once within
the statements of the segment). Each usage pair represents a
unique “use connection” between a global and a segment.

The actual usage pair count is the absolute number of true
usage pairs (p, r): the global variable r is actually used by seg-
ment p. The possible usage pair count is the absolute number
of potential usage pairs (p, r), given the program’s global vari-
ables and their declared scope: if the scope of global variable
r contains segment p, then p could potentially modify or
access r. The count of possible usage pairs is computed as
the sum of the number of segments in each global variable’s
scope. The (SEG,GLOBAL) USAGE RELATIVE PERCENTAGE
count is a way of normalizing the number of usage pairs since
it is simply the ratio (expressed as a percentage) of actual
usage pairs to possible usage pairs.

(24) A segment-global-segment data binding (p,r,q) [26]

COMPUTER JOB STEPS

(1)
DTQ2) = 44
DT(6) = 58
DT(1) = 67
DT(3) = 68
DT(4) = 79
AL(6) = 87
DT(5) = 90
DT(7) = 123
AT(5) = 150
AI(3) = 151
AI(1) = 159
AT(6) = 164
AT(4) = 173
AL(S5) = 176
Al (4) = 183
AT(1) = 216
AT(3) = 266
AT(2) = 357
AT(2) = 372

is an occurrence of the following arrangement in a program:
a segment p modifies (sets) a global variable r which is also
accessed (fetched) by a segment g, with segment p different
from segment q. The binding (p, r, p) is different from the
binding (q, r, p) which may also exist; occurrences such as
(p, r, q) are not counted as data bindings.

(25) In this study, segment-global-segment data bindings
were counted in three different ways. First, the ACTUAL
count is the absolute number of true data bindings (p, r, Q):
the global variable r is actually modified by segment p and
actually accessed by segment q. Second, the POSSIBLE count
is the absolute number of potential data bindings (p.t, q),
given the program’s global variables and their declared scope:
the scope of global variable r simply contains both segment
p and segment g, so that segment p could potentially modify
r and segment q could potentially access r. This count of
possiBLE data bindings is computed as the sum of terms
s*(s - 1) for each global, where s is the number of segments
in that global’s scope; thus, it is fairly sensitive (numerically
speaking) to the total number of SEGMENTS in a program.
Third, the RELATIVE PERCENTAGE is a way of normalizing
the number of data bindings since it is simply the quotient
(expressed as a percentage) of the actual data bindings divided
by the possible data bindings.

AppENDIX [T
RAW DATA FOR THE PROGRAMMING ASPECTS

For each measured programming aspect considered in the
study and reported in this paper, the observed raw data scores
are listed below in ascending order and identified both as to
the type of programming environment—ad hoc individuals
(AI), ad hoc teams (AT), or disciplined teams (DT)—and as
to the particular numbered subject (an individual or a team)
within that environment. For example, “AT(4)” identifies
the fourth ad hoc team participating in the experiment.

N.B.: The parenthesized numbers to the right of the pro-
gramming aspect labels refer to the explanatory notes in
Appendix I.

COMPUTER JOB STEPS \
MODULE COMPILATION

(1), ()
DT(2) = 32
AL (6) = 34
DT(1) = 34
DT(6) = 38
DT(5) = 49
DT(3) = 51
DT(4) = 52
DT(7) = 70
AT@4) = 74
AI(1) = 83
AI(3) = 87
AT(S) = 104
AI(5) = 110
Al (4) = 123
AT(6) = 133
AT(1) = 147
AT(3) = 162
Al(2) = 176
AT(2) = 199

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

COMPUTER JOB STEPS \ COMPUTER JOB STEPS \
MODULE COMPILATION \UNIQUE PROGRAM EXECUTION
(1),(2),(3) (1), 4)
DT(2) = 25 DT(2) = 12
DT(1) = 27 DT(3) = 16
DT(3) = 30 DT(6) = 20
AL(6) = 31 DT(4) = 23
DT(5) = 33 AT(6) = 29
DT(6) = 35 DT(1) = 33 -
DT(4) = 42 DT(5) = 39
DT(7) = 59 AT(5) = 42
AT(4) = 62 AI(3) = 49
Al(4) = 170 ’ AI(6) = 52
AT(6) = 73 Al (4) = 53
Al(1) = 79 DT(7) = 53 ;
AI(3) = 79 AI(5) = 63
AT(5) = 98 : - AT(1) = 64
AI(5) = 100 AL Q1) = 76
AT(1) = 118 AT(3) = 90
AI(2) = 129 AT(4) = 96
AT(3) = 140 AI(Q2) = 163
AT(2) = 159 ATQ2) = 173
COMPUTER JOB STEPS \ PROGRAM CHANGES
ESSENTIAL '
(1), (5) (6)
DT(2) = 37 DT(4) = 111
DT(3) = 46 DT(7) = 114
DT(6) = 55 DT(2) = 120
DT(1) = 60 DT(3) = 136 ‘
DT(4) = 65 DT(6) = 159 |
DT(5) = 72 AI(6) = 187
AI(6) = 83 DT(1) = 223
AT(6) = 102 DT(5) = 251
DT(7) = 112 AI(3) = 270
Al (4) = 123 AI(2) = 281
AI(3) = 128 AT(6) = 287
AT(5) = 140 AT(1) = 301
AI(1) = 155 Al(4) = 316
AT(4) = 158 AT@4) = 394
AI(5) = 163 AT(5) = 493
AT(1) = 182 AI(5) = 525
AT(3) = 230 : AI(1) = 539
AL(2) = 292 AT(3) = 554
AT(2) = 332 AT(2) = 1107
MODULES SEGMENTS
)] (8)
AT(1) = 1 AL (2) = 21
AT(2) = 1 Al (1) = 24
AI(l) = 2 AL(6) = 25
AL(5) = 2 Al(5) = 33
AI(6) = 2 DT(2) = 33
AT@) = 2 DT(6) = 33
DT(1) = 2 AI(3) = 34
AI(2)= 3 AT(2) = 38
DT(2) = 3 DT(3) = 38
DT(5) = 3 AT(3) = 39
DT(7) = 3 AT(6) = 42
AL (4) = 4 DT(4) = 42
AT(3) = 4 DT(7) = 42
DT(6) = 5 AT(1) = 45
DT(4) = 6 Al (4) = 47
DT@3) = 8 AT(4) = 48
AT(S) = 9 DT(1) = 52
AI(3)= 10 DT(5) = 52
AT(6) = 15 AT(5) = 74

BASILI AND REITER: CONTROLLED EXPERIMENT

LINES
®
Al (6) = 579
AI(1) = 836
DT(2) = 894
AI(2) = 944
DT(@3) = 1083
AI(5) = 1087
AT(1) = 1138
Al (4) = 1155
DT(7) = 1235
DT(4) = 1267
DT(5) = 1269
AT(3) = 1394
Al (3) = 1559
DT(1) = 1579
AT(2) = 1588
DT(6) = 1600
AT(6) = 1675
AT(5) = 2078
AT(4) = 2186
STATEMENT TYPE COUNTS \
IF
(11),(12)
Al (6) = 27
DT(7) = 38
Al (2) = 43
DT(3) = 44
Al (1) = 49
DT(2) = 62
DT(4) = 63
AT@) = 78
Al (4) = 80
DT(1) = 83
AT(1) = 88
DT(5) = 89
DT(6) = 90
AT@() = 97
AI(5) = 100
AI(3) = 110
AT(5) = 114
AT(2) = 116
AT(6) = 124
STATEMENT TYPE COUNTS \
WHILE
(1D, (14)
DT(4) = 17
Al (6) = 18
Al(1) = 19
AI(5) = 21
AT(4) = 21
DT(6) = 21
DT@3) = 22
DT(5) = 22
AT(2) = 24
AT(6) = 24
DT(2) = 24
DT(7) = 25
AT(5) = 28
AI(2) = 29
Al (4) = 30
AT(1) = 31
Al (3) = 34
DT(1) = 34
AT(3) = 35

STATEMENTS

Al (6)
Al (1)
DT(3)
DT(7)
DT(2)
AI(2)
AT(4)
DT(4)
AI(5)
AT(1)
DT(5)
DT(6)
Al (4)
AT(2)
AT(6)
AT(3)
AI(3)
AT(5)
DT(1)

TR TN VIR | [T T | V1 1 1 I

STATEMENT TYPE COUNTS \

CASE

AI(5)
AT(1)
AT(2)
AT(6)
DT(2)
DT(3)
DT(7)
AI(3)
Al (6)
AT(4)
AT(5)
AL (D)
DT(4)
DT(6)
AT(3)
Al (2)
Al (4)
DT(5)
DT(1)

TR T VA [[(T T (T T T T L A O

STATEMENT TYPE COUNTS \

EXIT

Al (6)
AT(1)
AT(2)
AT(3)
AT(4)
DT(1)
DT(2)
DT(3)
DT(4) "
DT(5)
AI(1)
Al (2)
DT(7)
Al (4)
DT(6)
AT(6)
AI(5)
AT(S)
AI(3)

[T VL [L [(| T S VI 1 N (R

378
432
456
499
502
556
590
617
629
631
640
643
647
654
681
691
738
798
800

—
PR IR Y- N~ N N~ N SO N NI O N

— e et
DO = =

14

[oNeNaNeNoleNoja)

NWOANAWWN=—=OO

——

(10)

(11), (13)

(11),(15)

315

316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

STATEMENT TYPE COUNTS \ STATEMENT TYPE PERCENTAGES \
RETURN IF
(11}, (16) (11),(12)
AI(6) = 36 Al (6) = 7.1
Al (2) = 47 DT(7) = 7.6
AI(3) = 47 Al (2) = 7.7
DT(2) = 47 DT(@3) = 9.6
DT(3) = 47 DT{4) = 10.2
DT(4) = 48 DT(1) = 10.4
DT(6) = 48 Al (1) = 11.3
AT(4) = 50 Al 4) = 12.4
DT(7) = 50 DT(2) = 12.4
Al(l) = 53 ATH4) = 13.2
AT(2) = 53 AT(1) = 13.9
DT(1) = 54 DT(5) = 13.9
Al (5) = 59 AT@33) = 14.0
Al (4) = 60 DT(6) = 14.0
AT@3) = 64 AT(5) = 14.3
DT(5) = 65 Al (3) = 14.9
AT(1) = 99 AlI(5) = 15.9
AT(6) = 109~ " e ATT(2) = 17.7
AT(5) = 118 AT(6) = 18.2
STATEMENT TYPE PERCENTAGES \. . .STATEMENT TYPE PERCENTAGES \
CASE WHILE LT
(11), (13) (11), (14)
Al (5) = 0.2 DT(4) = 2.8
AT(1) = 0.2 Al (5) = 3.3
AT(2) = 0.6 DT(6) = 3.3
AT(6) = 0.6 DT(5) = 34
AI(3) = 0.8 AT(5) = 3.5
AT(5) = 0.8 AT(6) = 3.5
DT(2) = 0.8 AT(4) = 3.6
DT(7) = 0.8 AT(Q2) = 3.7
DT(3) = 0.9 DT(1) = 4.3
AT(4) = 1.0 Al(1l) = 4.4
DT4) = 1.1 Al (3) = 4.6
DT(6) = 1.1 Al (4) = 4.6
AT(3) = 14 Al (6) = 4.8
Al(l) = 1.6 DT(2) = 4.8
Al (6) = 1.6 DT(3) = 4.8
Al (4) = 1.7 AT(1) = 4.9
DT(1) = 1.8 DT(7) = 5.0
DT(5) = 1.9 AT(3) = 5.1
Al (2) = 2.0 AT(Q2) = 5.2
STATEMENT TYPE PERCENTAGES \ STATEMENT TYPE PERCENTAGES \
EXIT RETURN
(1), (15) (11), (16)
AL (6) = 0 AI(3) = 6.4
AT(1) = 0.0 DT(1) = 6.8
AT(2) = 0.0 DT(6) = 7.5
AT@3) = 0.0 DT(4) = 7.8
AT@4) = 0.0 AT(Q2) = 8.1
DT(1) = 0.0 Al(2) = 8.5
DT(2) = 0.0 AT@4) = 8.5
DT@3) = 0.0 Al (4) = 9.3
DT(4) = 0.0 AT(@3) = 9.3
DT(5) = 0.0 AI(5) = 9.4
Al(1) = 0.2 DT(2) = 94
Al (2) = 0.2 Al (6) = 9.5
DT(7) = 0.4 DT(7) = 10.0
Al (4) = 0.5 DT(5) = 10.2
DT(6) = 0.5 DT(3) = 10.3
AT(6) = 0.9 Al (1) = 12.3
AI(5) = 1.3 AT(5) = 14.8
AT(5) = 1.6 AT(1) = 15.7
AI(3) = 2.0 AT(6) = 16.0

BASILI AND REITER: CONTROLLED EXPERIMENT

AVERAGE STATEMENTS PER SEGMENT AVERAGE STATEMENT NESTING LEVEL
a17) (18)
AT(5) = 10.8 AT(1) = 1.9
DT(7) = 119 AT(5) = 1.9
DT(3) = 12.0 AT#4) = 2.0
AT@4) = 123 DT(2) = 2.0
DT(5) = 123 DT@3) = 2.0
Al (4) = 138 DT(7) = 2.0
AT(1) = 140 AL (6) = 2.1
DT4) = 14.7 DT(4) = 2.1
AL(6) = 15.1 . Al @) = 2.2
DT(2) = 15.2 : DT(5) = 2.2
DT(1) = 154 AL(5) = 2.3
AT(6) = 16.2 AT(2) = 2.3
ATQ2) = 172 AT(3) = 2.3
AT(3) = 177 DT(1) = 2.3
AI(l) = 18.0 AI Q1) = 2.4
AL(5) = 191 ALQ2) = 2.4
DT(6) = 19.5 DT(6) = 2.4
AI(3) = 217 AL (3) = 2.6
AI(2) = 265 AT(6) = 2.7
DECISIONS TOKENS
(19) (20)
AL(6) = 51 Al(6) = 1878
DT(7) = 67 DT(7) = 2113
DT(3) = 170 DT(3) = 2268
Al(l) = 75 AI(1) = 2313
AIl(2) = 83 DT(2) = 2348
DT(4) = 87 AT(4) = 2976
DT(2) = 90 AL(5) = 3270
AT4) = 105 Al (2) = 3277
DT(6) = 118 AT(6) = 3508
AT(1) = 120 AT() = 3622
Al (4) = 121 AT(2) = 3669
AI(5) = 122 DT(5) = 3777
DT(5) = 123 Al(4) = 3792
DT(1) = 131 DT(6) = 3792
AT(3) = 142 AL (3) = 3907
AT(2) = 144 DT(4) = 4016
AT(5) = 148 AT(5) = 4198
AIL(3) = 150 AT@(3) = 4269
AT(6) = 152 DT(1) = 4471
AVERAGE TOKENS PER STATEMENT DATA VARIABLE SCOPE COUNTS\
GLOBAL
(20) 21), (22)
DT(7) = 4.2 Al (6) = 15
DT(2) = 4.7 DTQ3) = 21
Al (6) = 5.0 AL (2) = 23
AT(4) = 5.0 AL(5) = 23
DT@3) = 5.0 ATQ2) = 24
AL(5) = 52 DT(5) = 24
AT(6) = 5.2 DT(1) = 26
AL(3) = 5.3 AIQ1) = 28
AT(5) = 5.3 AL (3) = 29
AI(1) = 5.4 Al (4) = 30
AT(Q2) = 5.6 AT4) = 32
DT(1) = 5.6 DT(7) = 33
AT(1) = 5.7 AT(6) = 35
AI(2) = 59 AT(5) = 37
Al(4) = 5.9 AT@3) = 38
DT(5) = 5.9 DT(6) = 38
DT(6) = 5.9 AT(1) = 46
AT(3) = 6.2 DT4) = 86
DT(4) = 6.5 DT(2) = 91

318

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

DATA VARIABLE SCOPE COUNTS \

PARAMETER

AL (5)
AI(6)
DT(2)
DT(7)
AI(1)
AI(2)
AT(6)
AI(3)
AT(2)

LI L I | N (T [O O O T T |

DATA VARIABLE SCOPE PERCENTAGES \

GLOBAL

DT(1)
DT(5)
Al (4)
AT(2)
DT(3)
AT(S)
Al (2)
AT(4)

DATA VARIABLE SCOPE PERCENTAGES \

LOCAL

DT(2)
DT(4)

LU (1 [I 1 1 R A

4
4
6
8

10

11

13

15

20

24

26

31

33

34

38

41

51

54
54

19.5
24.0
26.5
27.9
29.2
30.1
30.3
31.7
35.8
36.2
37.2
38.4
395
443
45.9
47.8
49.4
53.5
75.8

19.2
19.5
25.0
28.3
34.7
35.6
36.6

(1), (22)

(21),(22)

(21), (22)

372

374
37.7
39.2
394
39.8
40.6
43.4
43.6

. 48.8

50.0
553

DATA VARIABLE SCOPE COUNTS \

LOCAL

AI(5)
AL (6)
AI(1)
DT(2)
DT(3)
DT(5)
DT(7)

53

(21), (22)

DATA VARIABLE SCOPE PERCENTAGES \

PARAMETER

DT(2)
AL (S)
AL (6)
DT(7)
AI(2)
AI(1)
AT(6)
AI(3)
AT(2)
DT(6)
AT(1)
Al (4)
DT(4)
AT(4)
AT(5)
AT(3)
DT(3)
DT(1)
DT(5)

51.0

(21),(22)

(SEGMENT,GLOBAL) USAGE PAIR

RELATIVE PERCENTAGE

AT(1)
AT(5)
AT(4)
DT(7)
AT(2)
DT(1)
AL(1)
DT(2)
DT(4)
Al (4)
DT(5)

T AIL(S)
AL (6)
AT(3)

_ DT(6)
"AT(6)
AL (3)
AI(2) 3
DT(3)

7.8

9.6
11.4
13.0
14.7
15.6
15.7
17.6
18.3
214
25.0
25.8
26.8
27.2
27.6

T

37.1
43.2

(23)

BASILI AND REITER: CONTROLLED EXPERIMENT

(SEGMENT, GLOBAL, SEGMENT) DATA

BINDINGS \ ACTUAL
24), (25)
DT@3) = 121
DT(2) = 154
DT(4) = 164
AT(3) = 184
DT(7) = 210
AI(6) = 214
AT(2) = 221
Al (1) = 244
DT(6) = 260
AI(3) = 280"
AI(2) = 302
AT(6) = 310
AT(5) = 360
AT@4) = 398
Al (4) = 438
AI(5) = 590
AT(1) = 1087
DT(1) = 1104
DT(5) = 1337

(SEGMENT, GLOBAL, SEGMENT) DATA
BINDINGS \ RELATIVE PERCENTAGE
(24), (25)

e
W

NOQAPLWLWLLLWNDRODNNDODNOOO
Prowununv~aUvRRDR, RGN

—

ACKNOWLEDGMENT

It is a pleasure to acknowledge colleagues Dr. J. D. Gannon
(University of Maryland) and Dr. H. E. Dunsmore (Purdue
University) for the constructive criticism and insightful dis-
cussion they provided throughout this study. The authors are
indebted to Mr. W. D. Brooks (IBM Federal Systems Division)
for his technical assistance regarding the statistical data analy-
sis. The authors also thank the referees for their helpful sug-
gestions on improving the presentation of this paper.

REFERENCES

[1] F. T. Baker, “Structured programming in a production program-
ming environment,” IEEE Trans. Software Eng., vol. SE-1, pp.
241-252, June 1975.

[2] V. R. Basili and F. T. Baker, Tutorial of Structured Program-
ming, Tutorial from the 11th IEEE Comput. Soc. Conf. (COMP-
CON 75 Fall), IEEE Cat. 75CH1049-6, revised 1977.

319

(SEGMENT, GLOBAL, SEGMENT) DATA

(3]

(4]

(5]

161

(71
(8]

91
(10]

BINDINGS \ POSSIBLE
(24), (25)

DT(3) = 2812
AlI(2) = 3588
AT(3) = 5164
AI(6) = 6612
DT(1) = 7166
DT(2) = 7434
DT(4) = 7500
AI(3) = 8922
AT(6) = 8974
AI(1) = 9798
DT(6) = 10834
AI(5) = 15852
DT(5) = 17008
Al (4) = 21309
DT(7) = 31704
AT(2) = 33744
AT(1) = 41500)
AT(4) = 49782
AT(5) = 115182

V. R. Basili and D. H. Hutchens, “A study of a family of struc-
tural complexity metrics,” in Proc. 19th Annu. ACM/NBS Tech.
Symp., Pathways to System Integrity. Washington, DC, June
1980, pp. 13~15.

V. R. Basili and R. W. Reiter, Jr., “Evaluating automatable mea-
sures of software development,” in Proc. IEEE [Poly Workshop on
Quantitative Software Models for Reliability, Complexity, and
Cost, Kiameshia Lake, NY, Oct. 1979, IEEE Cat. TH0067-9,
pp. 107-116.

——, “An investigation of human factors in software develop-
ment,” Computer, vol. 12, pp. 21-38, Dec. 1979.

V. R. Basili and A. J. Turner, “Iterative enhancement: A prac-
tical technique for software development,” IEEE Trans. Software
Eng., vol. SE-1, pp. 390-396, Dec. 1975.

V. R. Basili and A. J. Turner, SIMPL-T, A Structured Program-
ming Language. Geneva, IL: Paladin House, 1976.

V. R. Basili and M. V. Zelkowitz, “Analyzing medium-scale
software development,” in Proc. 3rd Int. Conf. Software Eng.,
Atlanta, GA, May 1978, IEEE Cat. 78CH1317-7C, pp. 116-123.
F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA:
Addison-Wesley, 1975.

W. J. Conover, Practical Nonparametric Statistics. New York:
Wiley, 1971.

[14]
[15]
[16]
(17]
[18]
[19]
[20]
[21]

[22]

(23]

[24]

[25]
{26]
{27]
[28]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

O.-]. Dahl, E. W. Dijkstra, and C.A.R. Hoare, Structured Pro-
gramming. New York: Academic, 1972.

E. B. Daley, “Management of software development,” IEEE
Trans. Software Eng., vol. SE-3, pp. 229-242, May 1977.

H. E. Dunsmore and J. D. Gannon, “Experimental investigation
of programming complexity,” in Proc. 16th Annu. ACM/NBS
Tech. Symp., Systems and Software. Washington, DC, June
1977, pp. 117-125.

M. Halstead, Elements of Software Science. New York: Elsevier,
1977.

M. A. Jackson, Principles of Program Design. New York: Aca-
demic, 1975.

R. E. Kirk, Experimental Design: Procedures for the Behavioral
Sciences. Belmont, CA: Wadsworth, 1968.

R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979.

H. C. Lucas and R. B. Kaplan, “A structured programming ex-
periment,” Comput. J., vol. 19, pp. 136-138, May 1976.

T. J. McCabe, “A complexity measure,” IEEE Trans. Software
Eng., vol. SE-2, pp. 308~320, Dec. 1976.

G. J. Myers, Reliable Software through Composite Design. New
York: Petrocelli/Charter, 1975.

G. J. Myers, “A controlled experiment in program testing and
code walkthroughs/inspections,” Commun. Ass. Comput. Mach.,
vol. 21, pp. 760~768, Sept. 1978.

R. W. Reiter, Jr., “An experimental investigation of computer
program development approaches and computer programming
metrics,” Ph.D. dissertation (308), Dep. Comput. Sci,, Univ.
Maryland, Dec. 1979 (forthcoming as Tech. Rep. TR-853).

S. B. Sheppard, B. Curtis, P. Milliman, and T. Love, “Modern
coding practices and programmer performance,” Computer,
vol. 12, pp. 41-49, Dec. 1979.

B. Shneiderman, R. Mayer, D. McKay, and P. Heller, “Experi-
mental investigations of the utility of detailed flowcharts in pro-
gramming,” Commun. Ass. Comput. Mach., vol. 20, pp. 373~
381, June 1977.

S. Siegel, Nonparametric Statistics: For the Behavioral Sciences.
New York: McGraw-Hill, 1956.

W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured
design,” IBM Syst. J., vol. 13, no. 2, pp. 115-139, 1974.

J. W. Tukey, “Analyzing data: Sanctification or detective work?,”
Amer. Psychol., vol. 24, pp. 83-91, Feb. 1969.

N. Wirth, “Program development by stepwise refinement,”
Commun. Ass. Comput. Mach.,vol. 14, pp. 221-227, Apr. 1971.

Victor R. Basili received the Ph.D. degree in
computer science from the University of
Texas, Austin.

He is currently an Associate Professor of
Computer Science at the University of Mary-
land, College Park, where he has been since
1970. He has been involved in the design and
development of several software projects, in-
cluding the SIMPL family of structured pro-
gramming languages and is currently involved
in the measurement and evaluation of software
development at the NASA/Goddard Space Flight Center. His interests
lie in software development methodology and the quantitative analysis
and evaluation of the software development process and product. This
includes such specialized areas as cost modeling, error analysis, and com-
plexity. He has consulted for several government agencies and indus-
trial organizations, including IBM, GE, CSC, NRL, NSWC, and NASA.
He has been program chairman for several conferences and has served
on several editorial boards.

Dr. Basili is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Robert W. Reiter, Jr. (S’°79-M’79) was born in
Baltimore, MD, on June 7, 1950. He received
the S.B. degree in mathematics from the
Massachusetts Institute of Technology, Cam-
bridge, in 1972 and the M.S. and Ph.D. de-
grees in computer science from the University
of Maryland, College Park, in 1976 and 1979,
respectively.

During the course of his graduate studies in
the Department of Computer Science, Uni-
versity of Maryland, he contributed to the

.enhancement of the SIMPL family of transportable extendable com-

pilers and to the initial formation of the Software Engineering Labora-
tory at NASA Goddard Space Flight Center, Greenbelt, MD. Since
1980 he has been a staff programmer in the Software Engineering and
Technology Department of the IBM Federal Systems Division. His
current research interests cover empirical study in software engineering,
software development and maintenance methodology, and software
metrics.

Dr. Reiter is a member of the Association for Computing Machinery
and the IEEE Computer Society.

