
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 1606–1618
Packaging experiences for improving testing technique selection

Sira Vegas a,*, Natalia Juristo a, Victor Basili b

a Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660, Boadilla del Monte, Madrid, Spain
b Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Received 22 December 2004; received in revised form 24 February 2006; accepted 28 February 2006
Available online 21 April 2006
Abstract

One of the major problems within the software testing area is how to get a suitable set of cases to test a software system. A good set of
test cases should assure maximum effectiveness with as few cases as possible. There are now numerous testing techniques available for
generating test cases. However, many are never used, while just a few are used over and over again. Testers use little (if any) information
about the available techniques, their usefulness and, generally, how suited they are to the project at hand, upon which to base their deci-
sion on which testing techniques to use. Using a characterisation schema is one solution for improving testing techniques selection. The
schema helps to choose the best-suited techniques for a given project based on relevant information for the purpose of selection, assuring
that testers’ selections are systematic. However, a characterisation schema is only part of the solution. We have found that a critical
aspect for making a good selection is the availability of the necessary information and the sources of information that have to be con-
sulted to access this information. Any organisation wishing to use characterisation schemas to select SE techniques needs to first address
the issue of packaging the information that the schema contains.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Software testing; Testing techniques; Technique selection; Packaging experiences
1. Introduction

As Harrold (2000) claims, evaluation is a highly impor-
tant process, as it is directed at assuring software quality.
According to Beizer (1990), testing is considered as one of
the most costly development processes, sometimes exceed-
ing fifty per cent of total development costs. Software con-
sumers and organisations incur approximately US$50B in
losses from defective software each year (RTI, 2000). This
estimate suggests an industry-wide deficiency in testing.

One of the factors that influence the quality of testing is
the set of test cases used. The generation of test cases is clo-
sely linked to the selection of testing techniques. When
applied, each technique generates a set of test cases, which
will differ from one technique to another since different tech-
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.02.049

* Corresponding author. Tel.: +34 91 336 6929; fax: +34 91 336 6917.
E-mail addresses: svegas@fi.upm.es (S. Vegas), natalia@fi.upm.es (N.

Juristo), basili@cs.umd.edu (V. Basili).
niques follow different strategies to generate test cases.
Accordingly, a sound selection of testing techniques will
mean that a good set of test cases is generated to properly
test the software. Therefore, the selection of testing tech-
niques is a critical activity, as the selection of the right tech-
niques for a given project implies carrying out effective
testing at a reasonable cost.

The question of which are the right techniques to get the
best set of test cases for a given system is a question testers
face every time they test a system. How is it answered at
present? Testers actually make the selection on the basis
of their particular perception of the techniques and situa-
tions, which is not necessarily incorrect, but partial (and
therefore incomplete). In other engineering disciplines,
however, any selection is accompanied by a detailed and
complete analysis of the fitness of candidate techniques
for the situation in which they are to be applied. For exam-
ple, the technique to be used to surface a road will be chosen
depending on parameters such as the climate in the region

mailto:svegas@fi.upm.es
mailto:natalia@fi.upm.es
mailto:basili@cs.umd.edu

S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618 1607
or what type of and how much traffic will use it. Alterna-
tively, the technique to be used to lay the foundations for
a house will be chosen depending on what type of land it
is sited and how many floors the building is to have, among
others. This, unfortunately, does not apply in software engi-
neering (SE) in general, and software testing in particular.

In Vegas et al. (2003), we proposed a solution to improve
testers’ selections. The proposed approach consists of a list
of the relevant parameters (a characterisation schema) to
match the testing techniques to the testing situation. The
approach is based on the hypothesis that formalising the
parameters for testing technique selection would help tes-
ters to take into account all the relevant parameters for their
selections, as well as a wide variety of techniques and the
information concerning the selection parameters for this
set of techniques.

Nevertheless, the use of the proposed schema in a real
environment has revealed that the selection problem in
SE is more complex than we actually thought. Whereas
at first the problem appeared to be that the relevant param-
eters for testing techniques selection were not known, expe-
riences in using the characterisation schema have shown
that this problem masked another: the availability of the
information for some of the selection parameters.

This article deals with the problem that surfaced after
several organisations adopted the characterisation schema
as a practice for selecting testing techniques. These prob-
lems revolve around the search for the information needed
to be able to select testing techniques using the proposed
schema; the generation of this information, when it is not
available; and as its storage. We also deal with other issues
related to the generation and storage of information for a
characterisation schema: the changes that we had to make
to the schema that we proposed originally to tailor it to the
setting where information is missing, and the establishment
of formal procedures for schema use and maintenance.

The article has been organised as follows. Section 2 pre-
sents testing techniques selection in the ideal case where all
the information is available. Sections 3–5 discuss testing
techniques selection where there are limitations on the
information, as is the case in the real world. More specifi-
cally, Section 3 presents the results of industrial partners
applying the original characterisation schema. Section 4
focuses on the sources of information for characterising
testing techniques. Section 5 presents the characterisation
schema use and maintenance procedures. Finally, Section
6 discusses our conclusions.

2. Selecting testing techniques with full information

When we set out to address the problem of systematising
testing techniques selection, the most pressing problem was
to identify the parameters (items of information) that the
characterisation schema should contain. However, it was
not that easy to identify these parameters. The principal
stumbling block that we encountered during the construc-
tion of the testing techniques characterisation schema was
therefore how to get such a list of parameters. For want
of a testing technique theory to establish what the relevant
information for testing techniques selection is, we opted for
the approach of accumulating experience. That is, we put
together the characterisation schema based not only on
what we thought was important information, but also on
what information a sizeable number of testers and research-
ers would like to use to make tuned selections. Our inten-
tion is to complete the partial view developers have of the
selection problem. The set of parameters was put together
in a two-step process:

• An initial set of parameters was gathered by accumulat-
ing practitioners’ and testing researchers’ experiences in
the selection of testing techniques. For this purpose, we
surveyed a series of testing researchers and practitioners,
who were asked what information they thought was rel-
evant for selecting a testing technique. Each new charac-
teristic suggested by an individual that was not yet in the
schema was added.

At the same time as information was gathered, we ran
a stability analysis of the set of parameters to decide
when to stop gathering information. When the schema
remained stable and no new information appeared after
interviewing several more individuals, we considered
that the set of information gathered was representative
enough of the view held generally by practitioners and
researchers.

• After this, experts in the testing area inspected the gen-
erated set of parameters. Their opinions included issuing
judgements about: the suitability of the organisation, the
names used to label the set of parameters, the existence
of possible redundancies, missing information, etc.

Table 1 shows the final schema we developed, which is
detailed in Vegas et al. (2003). To ease practitioners’ under-
standing of the characterisation schema, the parameters
have been organised around nine groups, named elements.
Similarly, these parameters are organised around three
major groups, named levels. The groups and elements
make it easier to locate any parameter within the schema,
as they represent the concept to which each parameter
refers. The levels, elements and parameters appear in the
first three columns of Table 1, respectively. The meaning
of each parameter, marked with the letter D, and its per-
mitted values, specified by letter V, appears in the descrip-
tion/value column.

We can see from Table 1 that the tactical level, related to
what is to be tested, consists of these two elements: the pur-
pose or Objective of the test and the Scope of the test. The
operational level, related to technique operation consists of
five elements: features of the actual Technique; results of
applying the technique, this is, Test cases; the software
(Object) features on which the technique is to be applied;
the Tools available for improving technique application;
and what characteristics the subject (Agents) should have
to be considered as qualified to use the technique. Finally,

Table 1
Characterisation schema for testing technique selection

Level Element Parameter Description/values

Tactical Objective Purpose D: Type of evaluation and quality attribute to be tested in the system
V: Two values: find defects, assess software

Type of defects D: Defect types detected in the system
V: (control, assignation, initialisation, etc.)

Effectiveness D: What capability the set of cases should have to detect defects
V: Percentage

Scope Element D: Elements of the system on which the test acts
V: (function, procedure, system, subsystem, etc.)

Aspect D: Functionality of the system to be tested
V: (communications, database, GUI’s, etc.)

Operational Technique Comprehensibility D: Extent to which the technique is easy to understand
V: (high, medium, low)

Cost of application D: How much effort it takes to apply the technique
V: (high, medium, low)

Inputs D: Inputs required to apply the technique
V: (requirements, code, design, etc.)

Adequacy criterion D: Test case generation and stopping rule
V: family (data flow, flow control, etc.) and technique (sentence coverage, etc.)

Test data cost D: Cost of identifying the test data
V: (high, medium, low)

Dependencies D: Relationships of one technique with another
V: Two values: [technique] and dependency type (should be applied before,
after, should never be used with, etc.)

Repeatability D: Whether two people generate the same test cases
V: (yes, no)

Sources of information D: Where to find information about the technique
V: (a person, a book, an article, an experiment, etc.)

Test cases Completeness D: Coverage of the adequacy criterion provided by the set of cases
V: Percentage

Precision D: How many repeated test cases the technique generates
V: Percentage

Number of generated cases D: Number of cases generated per software size unit
V: Formula

Object Software type D: Type of software that can be tested using the technique
V: (real time, batch, iterative, expert system, etc.)

Software architecture D: Development paradigm to which it is linked
V: (call and return, OO, etc.)

Programming language D: Programming language with which the technique can be used
V: (structured, functional, logical, real time, concurrent, etc.)

Development method D: Development method or life cycle to which it is linked
V: (prototyping, reuse, waterfall, knowledge-based system, etc.)

Size D: Size that the software should have to be able to use the technique
V: (number in KLOC)

Tools Identifier D: Name of the tool and the manufacturer
V: Two values: [tool name] and [company name]

Automation D: Part of the technique automated by the tool
V: (flow chart, mutant generation, test case generation, etc.)

Cost D: Cost of tool purchase and maintenance
V: Two values: [purchase cost] and [maintenance]

Environment D: Platform (sw and hw) and programming language with which the tool operates
V: Three values: [SW requirements], [HW requirements] and [programming language]

Support D: Support provided by the tool manufacturer
V: (24-hour hotline, technical assistance, etc.)

Agents Experience D: Knowledge required to be able to apply the technique
V: (cyclomatic complexity, flow charts, etc.)

Knowledge D: Experience required to be able to apply the technique
V: (tool understanding, etc.)

1608 S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618

Table 1 (continued)

Level Element Parameter Description/values

Historical Project Reference projects D: Earlier projects in which the technique has been used
V: [project name]

Tools used D: Tools used in earlier projects
V: [tool name]

Personnel D: Personnel who worked on earlier projects
V: [people’s names]

Satisfaction Opinion D: General opinion about the technique after having used it
V: [sentence or paragraph explaining the opinion]

Benefits D: Benefits of using the technique
V: [sentence or paragraph explaining the benefits of the technique]

Problems D: Problems with using the technique
V: [sentence or paragraph explaining the drawbacks of the technique]

S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618 1609
the historical level, related to experience in using the tech-
nique, consists of two elements: earlier Projects in which
the technique was used and opinion (Satisfaction) the tech-
nique merits among people who have used it before.

After the schema had been developed, it was evaluated,
as detailed in Vegas and Basili (2005). The schema was
evaluated by means of an experiment conducted with stu-
dents from the Technical University of Madrid to check
that the schema can be used to make better selections than
would be achieved if it were not used.

Appendix A shows an example of three testing techniques
instantiated for the developed schema. Ten more instanti-
ated techniques are illustrated in Vegas et al. (2003). The
techniques described here are: boundary value analysis
and random testing from the family of functional tech-
niques; sentence coverage, decision coverage, path coverage
and threads coverage from the family of control-flow
techniques; all-c-uses, all-p-uses, all-uses, all-du-paths and
all-possible-rendezvous, from the family of data-flow
techniques; and standard mutation and selective mutation
from the family of mutation techniques.

3. Selecting testing techniques with real information

Having built and run a preliminary evaluation of the
characterisation schema, it was applied in practice. A num-
ber of software development organisations agreed to incor-
porate the characterisation schema into routine practice.
This was a two-phase experience. During the first phase,
the industrial partners instantiated the schema for the test-
ing techniques in which they were interested. In a second
phase, they used the schema and the set of instantiated tech-
niques to support selection. At the end of each phase, a
meeting was held with each organisation, during which we
gathered feedback and discussed possible solutions for the
shortcomings that were found after using the schema in real
practice.

Because the schema was developed with input from prac-
titioners, we expected practitioners (although they were not
the same professionals as interviewed to generate the
schema) to be satisfied with the schema. One of the primary
difficulties that we came across was that the information the
practitioners would like to have to support the selection does
not necessarily match the information that they have access

to. During the construction of the characterisation schema,
we did not notice that when someone suggested that a piece
of information should be taken into account for selection,
this did not necessarily mean that this information was
accessible. The real world has shown this approach to be
naı̈ve. At the end of the industrial evaluation, all practitio-
ners complained about how difficult it was to instantiate the
techniques, to find the information needed to fill in the
schema and asked us where they could access the informa-
tion concerning the selection parameters. When we deliv-
ered the schema to them, they had assumed that an
experienced tester’s knowledge of a technique would be
quite enough to fill in all the information about this
technique.

This new problem led us to analyse, for each schema
parameter, what type of knowledge is needed to get its
value, what the level of maturity of this knowledge is, as well
as what sources of information can be consulted to gather
this knowledge and how the knowledge can be extracted
from these sources. This study is presented in Section 4.

This information accessibility analysis led us to slightly
remodel the characterisation schema presented in Section
2. These changes primarily involve the deletion of those
parameters whose value we are unable to generate at the
present time. Fig. 1 summarises the changes made to the
characterisation schema.

• The purpose parameter belonging to the objective ele-
ment at the tactical level is removed. For the time being,
the schema is being used only for testing techniques,
which implies that they all have the same purpose,
namely, software defect detection. This means that this
is not a selective parameter. Its inclusion will be recon-
sidered in the future when techniques for evaluating
other software quality attributes, like usability or reli-
ability, are added.

• The completeness and precision parameters belonging to
the test cases element of the operational level have been
removed from the schema. They are deleted because,
due to the maturity level of testing today, they cannot

LEVEL ELEMENT PARAMETER
Comprehensibility
Cost of application
Inputs
Adequacy criterion
Test data cost
Dependencies
Repeatability

TECHNIQUE

Sources of information
Number of generated cases
Effectiveness TEST CASES
Type of defects
Software type
Programming language
Size
Aspect

OBJECT

Element
Identifier
Automation
Cost
Environment

TOOLS

Support
Experience

OPERATIONAL

AGENTS
Knowledge
Reference projects
Tools used PROJECT
Personnel
Opinion
Benefits

HISTORICAL

SATISFACTION
Problems

LEVEL ELEMENT PARAMETER
Pur ose

OBJECTIVE
TACTICAL

SCOPE

Comprehensibility
Cost of application
Inputs
Adequacy criterion
Test data cost
Dependencies
Repeatability

TECHNIQUE

Sources of information
Completeness
Precision TEST CASES
Number of generated cases
Software type
Software architecture
Programming language
Development method

OBJECT

Size
Identifier
Automation
Cost
Environment

TOOLS

Support
Experience

OPERATIONAL

AGENTS
Knowledge
Reference projects
Tools used PROJECT
Personnel
Opinion
Benefits

HISTORICAL

SATISFACTION
Problems

LEVEL ELEMENT PARAMETER
Comprehensibility
Cost of application
Inputs
Adequacy criterion
Test data cost
Dependencies
Repeatability

TECHNIQUE

Sources of information
Number of generated cases
Effectiveness TEST CASES
Type of defects
Software type
Programming language
Size
Aspect

OBJECT

Element
Identifier
Automation
Cost
Environment

TOOLS

Support
Experience

OPERATIONAL

AGENTS
Knowledge
Reference projects
Tools used PROJECT
Personnel
Opinion
Benefits

HISTORICAL

SATISFACTION
Problems

LEVEL ELEMENT PARAMETER
Pur ose

OBJECTIVE
TACTICAL

SCOPE

Comprehensibility
Cost of application
Inputs
Adequacy criterion
Test data cost
Dependencies
Repeatability

TECHNIQUE

Sources of information
Completeness
Precision TEST CASES
Number of generated cases
Software type
Software architecture
Programming language
Development method

OBJECT

Size
Identifier
Automation
Cost
Environment

TOOLS

Support
Experience

OPERATIONAL

AGENTS
Knowledge
Reference projects
Tools used PROJECT
Personnel
Opinion
Benefits

HISTORICAL

SATISFACTION
Problems

Fig. 1. Evolution of the characterisation schema.

1610 S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618
be assigned a value. This information is not known at
present; neither textbooks nor research papers provide
information on the precision and completeness of the
testing techniques. Additionally, there is no research
under way to find values for these factors. To be able
to gain access to this, new knowledge needs to be discov-
ered on testing techniques. Furthermore, there is not
even any information on how to calculate these para-
meters. Therefore, they are useless (at least for the time
being) for selection in real situations. Although complete-

ness can be ascertained for a few techniques, such as, for
example, white-box techniques, there are other tech-
niques, like mutation, whose completeness cannot be
ascertained. We may want to generate test cases to kill
100% of the generated mutants. However, sometimes this
is not possible. This means that the completeness of the
generated test cases is not 100%, but it is not possible
to anticipate when this will happen or what it depends on.

• The software architecture parameter belonging to the
object element of operational level has been removed,
as, from the industrial evaluation, we realised that it
has no impact on selection, that is, it is not selective.

• The development method parameter belonging to the
object element of the operational level has been deleted,
as we realised from the industrial evaluation that the
information it provides is redundant with the software
type element. Therefore, this is a redundancy that the
experts in evaluation that built the preliminary schema
did not detect.

As regards the structural changes of the schema:

• The type of defects and effectiveness elements belonging
to the objective element of the tactical level are trans-
ferred to the test cases element of the operational level,
as the practitioners who applied the schema appear to
prefer them to be there. Analysing this preference, we
realised that both elements really do refer to the set of
test cases generated by the technique and, therefore,
should be placed as parameters of this element.

• The element and aspect parameters of the scope element
of tactical level have been transferred to the object ele-
ment of the operational level, as the practitioners who
applied the schema appeared to prefer them to be there.
Analysing this preference we realised that both elements
refer to the software object that they are designed to test
and, therefore, should be placed as parameters of this
element.

• As a consequence of the above changes, the objective and
scope elements of the tactical level have been removed
from the schema, as has the tactical level, because they
no longer have any parameters.

S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618 1611
4. Knowledge types and sources of information for

characterising testing techniques

Identifying the information for instantiating a technique
is also an important part of the selection problem. The dif-
ficulties related to the selection problem lie not only in
knowing what is the right information on which to base
selection and the most comprehensive universe of tech-
niques but also in finding and generating this information.
Table 2 lists, for each characterisation schema parameter,
the type of knowledge to which it refers, its maturity level,
the source of information from which it can be gathered,
and the procedure to be followed to generate the value.

The knowledge type column reflects what kind of knowl-
edge the parameter involves. We have identified two types
of knowledge: intrinsic to the technique and gained by
experience. Intrinsic knowledge represents a feature that is
inherent to the technique. For example, the inputs para-
meter is a characteristic proper to the technique and which
distinguishes it from other techniques. On the other hand,
as its very name indicates, the experience-type knowledge
represents knowledge gained by experience after having
used the technique in real projects, as in the case of tools

used to apply a given technique to a project.
Intrinsic knowledge about a technique can be found at

two maturity levels: known and reliable, and unknown
but under study.1 The known and reliable maturity level
means that the parameter value is known (can be found
in testing books) and has a reliable value. This is the case
of technique comprehensibility or the test data cost. The
unknown but under study maturity level implies that,
although textbooks provide a value, this value is not reli-
able and researchers are still working on finding out its real
value. This is the case, for example, of the number of gener-

ated test cases. The unknown but under study values are
not generally accepted, but they are being researched and
values proposed.2

Knowledge with the known and reliable maturity level
can be gathered from several sources of information: testing
books, technique application exercises or advertising on
testing tools. Information can be gathered from testing
books in two different ways: either directly, as in the case
of information that explicitly appears in testing books,
such as technique inputs, or by deducing it from the infor-
mation that appears in the testing books, in which case the
information can be deduced from the book contents,
although it does not appear explicitly in the text. For exam-
ple, technique comprehensibility is deduced from the expla-
nations of how to apply the technique. When exercises on
technique application are the source, the information is
1 Notice that it could also have the unknown and not under study value,
but all the parameters with this maturity level have been removed from the
schema, as discussed in Section 3.

2 Maturity is even lower in the case of the disregarded parameters, where
there is practically no research into the parameter values, and values
cannot even be suggested.
gathered from technique application, not necessarily in real
projects, but simply by means of an exercise, like the ones
that are set in testing books. This applies, for example, to
cost of application. Finally, this type of knowledge can also
be gathered from advertising on testing tools. In this case,
the information will be gathered directly from this advertis-
ing. This would be the case of tool identifier or cost.

As regards unknown but under study knowledge, that is,
knowledge that can now be found in testing books, but
whose value is not reliable, values can be assigned in differ-
ent ways depending on the required reliability level. The
simplest way is to use the value provided in textbooks, even
though this information is not accurate for these parame-
ters. The next step up is to use values provided by research-
ers, for which purpose the literature on the subject matter
needs to be surveyed. Finally, the third possibility is to
use the organisation’s in-house data, but organisations
need to be highly mature, because they need to systemati-
cally collect and later analyse data about each finished pro-
ject to find these values. It should be noted that this means
filing information on the application of testing techniques
within the organisation. The ideal thing would be for these
data to be recorded globally rather than at the organisa-
tional level, but, bearing in mind how far away we are from
the global solution, even starting with a part solution is an
improvement on the current state of affairs.

Our recommendation for organisations that do not have
the resources to invest in data collection and analysis or in
searching research papers for information is that they
should do without these parameters, as the information
available in the literature is not accurate and could impair
the selection. On the other hand, we advise organisations
that can afford to spend time keeping up with the latest
research findings to use the values given in research articles.
Finally, organisations that actively collect project data
and research these data will have access to the results of ear-
lier projects and be able to calculate the value of these
parameters for themselves. Specifically, the values for each
parameter of this type listed in Fig. 1 can be calculated as
follows:

• Number of generated cases: The value of this parameter
is calculated by means of a formula, which, depending
on the technique, will link the number of generated test
cases to certain code characteristics, like the number of
sentences (sentence coverage technique), number of
decisions (decision coverage technique), input domain
complexity (equivalence class partitioning technique),
etc. To calculate this value, practitioners should count
the number of test cases generated by the technique
and relate this to any of the above-mentioned code
characteristics.

• Effectiveness: To calculate this value, practitioners
should record the number of software defects detected
by each technique used. The effectiveness of each tech-
nique will be output by calculating the percentage of
defects found using each technique over the total

Table 2
Where to find the information for testing techniques selection

Level Element Parameter Knowledge Source How to get it

Type Maturity level

Operational Technique Comprehensibility Intrinsic Known and reliable Books Deducible
Cost of application Intrinsic Known and reliable Exercise Deducible
Inputs Intrinsic Known and reliable Books Direct
Adequacy criterion Intrinsic Known and reliable Books Direct
Test data cost Intrinsic Known and reliable Exercise Deducible
Dependencies Intrinsic Unknown but under study Books or projects Deducible Calculated
Repeatability Intrinsic Known and reliable Exercise Deducible
Sources of information Intrinsic Known and reliable Books Direct

Test cases Number of generated cases Intrinsic Unknown but under study Books or projects
or papers

Direct, calculated or
researched

Effectiveness Intrinsic Unknown but under study Projects or papers Calculated or researched
Type of defects Intrinsic Unknown but under study Projects or papers Calculated or researched

Object Software type Intrinsic Known and reliable Books Deducible
Programming language Intrinsic Known and reliable Books Deducible
Size Intrinsic Known and reliable Books Deducible
Aspect Intrinsic Known and reliable Books Deducible
Element Intrinsic Known and reliable Books Deducible

Tools Identifier Intrinsic Known and reliable Advertising Direct
Automation Intrinsic Known and reliable Advertising Direct
Cost Intrinsic Known and reliable Advertising Direct
Environment Intrinsic Known and reliable Advertising Direct
Support Intrinsic Known and reliable Advertising Direct

Agents Experience Intrinsic Known and reliable Books Deducible
Knowledge Intrinsic Known and reliable Books Deducible

Historical Project Reference projects Experience Amount of historic data Projects Direct
Tools used Experience Amount of historic data Projects Direct
Personnel Experience Amount of historic data Projects Direct

Satisfaction Opinion Experience Amount of historic data Projects Deducible
Benefits Experience Amount of historic data Projects Deducible
Problems Experience Amount of historic data Projects Deducible

1612 S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618
number of defects detected in the software. The total
number of defects is calculated by adding the number
of defects reported by users during maintenance to the
number of defects found during the testing phase.

• Defect type: To find out this value, practitioners have to
have defined a defect classification. The type of defects
that the technique can find is calculated by recording,
for each defect detected by the technique, its type.

• Dependencies: Practitioners can find out this value by
examining the type of defects that each technique detects.
They will then be compared to decide which are comple-
mentary and which overlap.

On the other hand, experience-type knowledge will not
have a fixed maturity level. It will vary depending on how

many historical data the organisation has gathered. Obvi-
ously, the more historical data there are, the more reliable
the value of this type of parameters will be. From its defini-
tion, it follows that the source for this type of parameters is
historical information on projects gathered within the orga-
nisation. This information can be gathered in two different
ways: either directly, from the historical data on projects
that the organisation has, such as the people who have used
the technique in the company before, or can be deduced

from the use of the technique in real projects, through the
feedback provided by practitioners after having used the
technique on real projects, such as what they think about
the technique.

Like unknown but under study knowledge, experience-
type knowledge calls for some degree of organisational
maturity. In this case, it implies systematically recording
the experience gained in each finished project. Again like
unknown but under study information, the problem with
this type of knowledge is that today’s organisations do
not have access to a global record of experiences, which
means that, for all intents and purposes, this knowledge
cannot be used in real selections unless the organisation
systematically collects its own experiences. This means that
not all organisations will have this knowledge for use dur-
ing selection.

Our recommendation is for organisations to try to
make the effort to gather these values, as they are neces-

Table 3
Project description and constraints

3 However, care should be taken to examine the dependencies between
techniques. As discussed in Section 4, this parameter has an unknown but
under study maturity level, and therefore its value is not reliable.

S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618 1613
sary for making tuned selections. On the other hand, as we
have already seen, this type of knowledge refers to infor-
mation that will not be available for the first selection,
because it is in one way or another based on earlier appli-
cations of the technique in the organisation’s projects. This
means that the solution proposed here will not achieve an
optimal selection the first time round, but selections will
gradually improve with time, as this type of information
is learned.

5. Technique selection assisted by a characterisation schema

5.1. Mechanics of selection

Testers use the characterisation schema proposed here
to select testing techniques in a structured and objective
rather than a disorganised and subjective manner: match-
ing the attributes of the testing techniques to certain rele-
vant characteristics of the situation or project. More
specifically, the selection process would be:

1. Identification of project characteristics. First, the situa-
tion in which the techniques to be selected are to be
applied has to be described. A project descriptor is used
for this purpose. The project descriptor is one part of
the proposed characterisation that instantiates the
parameters that describe the project characteristics by
entering the appropriate values. That is, the developer
will describe in this step the relevant characteristics of
the project in which the techniques are to be applied.
This will be done by assigning values to the criteria
belonging to the elements: test cases, object, tools and
agents. For example, for agent, whose parameters are
experience and knowledge, the tester will describe what
experience and what knowledge the testers who are to
apply the technique have. Ideally, a value should be
entered for all these parameters in the project descrip-
tor. The more characterised the project is the better,
because the match between the technique and situation
will be finer tuned. However, if the information is miss-
ing, project description parameters can be left blank in
the descriptor. The project description rows of Table 3
show the list of parameters making up the project
descriptor.

2. Identification of constraints. If constraints are to be
placed on the use of techniques, for example, if we want
to apply techniques that are easy to use or that have
already been used at the company, the project descriptor
should be added to, specifying values for the schema
parameters that match the constraints to be imposed.
The constraints rows of Table 3 show the list of param-
eters for project constraints. Note that the sum of the
description plus the constraint parameters outputs the
complete schema.

3. Identification of the best-suited techniques. Values are
compared for the criteria that appear in the project
descriptor (both description and constraint parameters)
with the values that are available for the techniques.
This will yield the techniques that match the project
conditions.

4. Analysis of the set of preselected techniques. When
analysing the set of preselected techniques, it may appear
that:
(a) It is empty. This means that there is at present no
technique in the selection universe used that meets
the stipulations in the project descriptor. In this case,
the value of one or more parameters that appear
in the project descriptor should be relaxed and you
should return to step 3.

(b) It contains just one technique. In this case, this will be
the technique applied.

(c) It contains several techniques. This means that there
are several techniques in the selection universe that
meet the project constraints. It will suffice to select
one of the techniques that appear, unless the depen-
dencies parameter value says otherwise, in which case
the techniques should be applied following the speci-
fied dependencies.3 The choice, if there are no depen-
dencies, will be based on the personal preferences of
the selector.

1614 S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618
5.2. Example of selection

Now that we have presented the selection process, let us
give an example using the characterisation schema. For this
purpose, the set of techniques mentioned in Section 2 will
be used as the selection universe, alongside the respective
information on the specified techniques.

The problem is stated as follows:

A car park management system (concurrent system) is
to be built. At this stage of the project, the QA team
has identified the key quality attributes of this software
system. These were obtained by examining the charac-
teristics of the software under development, as well as
its application domain. In this particular case, the essen-
tial attributes are: correctness, security and timing.
The project situation is as follows: the system is to be
coded in Ada, the development team is fairly experi-
enced in developing similar systems, and almost all the
Table 4
Sample project descriptor

Table 5
Matching technique/project characteristics

Parameter Project Mutation

Effectiveness >50% Detects approx. 72% of the fau

Software type Real time Any

Programming language Ada (concurrent) Structured, OO, real time and c

Size Medium Medium

Aspect Any Any
errors they make are found to be typical of concurrent
programming. The testing team is also experienced in
testing this type of systems.

It is solved as follows.

1. Identification of project characteristics. Only some of the
project descriptor parameters are known, as shown in
Table 4.

2. Identification of project restrictions. No additional con-
straints are identified for this project, as shown in Table 4.

3. Identification of the best-suited techniques. If the values
identified in the previous steps are compared with the
three techniques described in Appendix A, we get Table 5.
The parameters whose value matches the project are
shown in bold. From Table 5, we find that two of the
three techniques taken into account match the stipula-
tions of the project descriptor (all the cells entries in
the column are in bold), whereas one of them does not
(there is one cell entries in the column that is not in bold).
This will lead us to disregard this technique because it
does not satisfy all the characteristics imposed by the
project descriptor.

If we extend the match to the full selection universe of
the 13 techniques mentioned in Section 2, the techniques
selected after situation/technique matching are: bound-

ary value analysis, random, path coverage, all-possible-

rendezvous, all-c-uses, all-p-uses, all-uses, all-du-paths,
standard mutation and selective mutation. The sentence

coverage and decision coverage techniques will be rejected
because their effectiveness is low, and the technique
threads coverage will be discarded because it is for
object-oriented software.

4. Analysis of the set of preselected techniques. Of the
preselected techniques, there is one that is specific for
Ada-style programming languages. Although there are
general-purpose techniques that are more effective, the
technique that is specific for concurrent software appears
to detect the faults proper to concurrency better than the
other techniques. Furthermore, the path coverage tech-
nique states that when used with concurrent and real-time
systems, a dynamic analyser cannot be used as a tool.
Additionally, the techniques all-c-uses, all-p-uses, all-

uses, all-du-paths, standard mutation and selective muta-

tion cannot be used without a tool (which is not available
in the situation under consideration). Therefore, the all-
Decision coverage Boundary value analysis

lts Prob. detecting a fault: 48% Finds 55% of defects

Any Any

oncurrent Any Any

Medium Any

Any Any

Table 6
Characterisation schema for immature organisations

Level Element Parameter

Operational Technique Comprehensibility
Cost of application
Inputs
Adequacy criterion
Test data cost
Repeatability
Sources of information

Object Software type
Programming language
Size
Aspect
Element

Tools Identifier
Automation
Cost
Environment
Support

Agents Experience
Knowledge

S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618 1615
possible-rendezvous techniques will be selected. However,
the dependency attribute states that the technique should
be supplemented with a black-box technique. Observing
the black-box techniques in the preselected set (boundary

value analysis and random), it is found that the random

testing technique is useful for people with experience in
the type of tests to be run and will, therefore, also be
selected.

5.3. Organisation maturity and schema uses

During the industrial evaluation described in Section 3,
we found that not all the practitioners reported the same
number of problems when using the schema. In some cases,
the schema had worked better than in others. It was found
that the number and type of the problems reported was
directly related to the company’s maturity level, and that
companies with a higher maturity level had fewer problems
than those with a lower maturity level. Our goal is for all
types of organisations and not just those with a high
maturity level to be able to take advantage of the schema,
although they would gain fewer benefits. Therefore, we have
defined two different schema uses, based on the characteris-
tics of the organisation all set to use the schema.

Working with unknown but under study and experience

parameters calls for some organisational maturity in terms
of both data collection and testing. Mature organisations
collect data from their projects and have a collection of
testing techniques described according to the characterisa-
tion schema, which is used to compare techniques. On the
other hand, immature organisations have no such collec-
tion, nor do they collect data of any kind. These two use
contexts are described in more detail below.

In the selection of testing techniques by immature
organisations, the practitioner uses the parameters con-
tained in the characterisation schema merely as a guide
to selection. The proposed schema helps testers by provid-
ing support for making a more systematic selection, insofar
as testers will always use the same parameters in selection.
The schema is used like a guideline or checklist that points
developers to what information they should consider to
compare the testing techniques. The parameters that will
be used here will be the known and reliable maturity level
parameters from Table 2 that are listed in Table 6. We
understand that, unless the organisation has a mature expe-
rience recording process, it is not storing any other type of
information, and therefore these organisations are not
acquainted with the unknown but under study and experi-

ence parameters.
However, when the characterisation schema is used by

immature organisations, the only selection problem solved
is related to the selection parameter subjectivity, as this
will be governed not by testers’ tastes but by a series of
objective parameters that have been proven to be suitable.
But it does not solve the other selection problems, such as
missing information needed for selection purposes and
possibly unknown testing techniques that could be relevant
for selection.

The use of the characterisation schema by mature
organisations is a more advanced and better use of a char-
acterisation schema of the type proposed here. To use the
schema this way, the organisation needs to record its expe-
rience and have a description of the techniques in line with
the characterisation schema. This way of using the schema
involves the organisation systematically recording data and
experiences from their projects so that they can assess the
parameters of the schema based on their experience.

The testing techniques will be characterised (or described)
incrementally. This means that when a technique is
described for the first time, it does not necessarily have to
be fully instantiated. It will not be until after the technique
has been used several times and information has been
recorded that the technique will be able to be fully instanti-
ated. This applies to the experience parameters (and,
depending on the company’s maturity level, possibly to the
unknown but under study parameters), as the technique needs
to have been used before in some of the organisation’s pro-
jects to find out what projects the technique has been used in,
the opinion it merits or how effective it is. The knowledge of
this information will make the selections more precise and
better tailored to the organisation using the techniques.
Additionally, the testers will provide feedback on the char-
acterisation values of any techniques that they use. This will
add to the available information about the techniques, at the
same time as making it more reliable. This selection mode
solves the selection problems related to the subjectivity of
the selection, unknown techniques that could be relevant
for selection purposes or missing information needed for
selection purposes.

Another step further towards easing selection for testers
is automation as a characterisation software tool that

Table 7
Schema maintenance policy

Maintenance type Activating event Activating actor

Add a new technique Ex officio Tester
Add information to a partially

instantiated technique
After use Tester

Update information on a (partially
or fully) instantiated technique

After use Tester

1616 S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618
contains the organisation of the testing techniques. The
benefit of such automation would be that selection would
no longer be made manually, because the tool would imple-
ment the evaluation function, and the selection would be
done automatically after entering the project description
and constraints.4
5.4. Schema maintenance

A crucial aspect related to the use of the schema by
mature organisations is the maintenance of the testing tech-
niques information stored, as the information referred to
experience-type parameters or intrinsic parameters whose
maturity level is classed as unknown but under study could
change over time. Furthermore, as the knowledge on test-
ing techniques advances, previously unknown information
may become available. All this means that it will be neces-
sary to establish a maintenance policy to safeguard the
coherence of the stored information. This policy will
involve defining possible maintenance types. Additionally,
for each of these types, the event and the actors who acti-
vate the policy will be specified. The policy is outlined in
Table 7.

The identified maintenance types refer to:

• Instantiating the schema for new techniques.
• Adding information not currently available about a par-

tially instantiated technique.
• Updating information already available about some

technique.

The actor triggering any maintenance action will be a
tester in all cases, whereas the events activating each of
these three types of maintenance are:

• Ex officio by any tester. The tester gets to know a new
technique and thinks it would be of interest to add it
to the set of available techniques.

• After using a technique, post-mortem information is
gathered about the technique.

Because the sources of any change are wide ranging
(potentially all testers), a figure needs to be created to take
4 A prototype of this type of tool is available at www.ls.fi.upm.es/udis/
miembros/sira/tt_tool.
responsibility for preserving the consistency of the stored
information. This figure would be the librarian. The librar-
ian is the only person who is entitled to update or add to
the available information, always upon demand from
testers.

At this point, the cost of creating and maintaining the
information infrastructure associated with schema use by
mature organisations also needs to be weighed up. This
may, in principle, appear to be a high-cost activity, as
organisations would have to meet the costs not only of
updating the schema, but also of searching, collecting
and then analysing the data needed to fill in the schema.
However, the cost can be considered not to be high,
because the data collection and analysis costs should be
charged not to the schema, but to the data collection
and analysis process that any mature organisation should
have in place. This applies because schema use for the
systematic selection of testing techniques falls within
the Decision Analysis and Resolution area of CMMI
Level 3 (CMMI, 2002), whereas data collection and anal-
ysis falls within the Measurement and Analysis area of
CMMI Level 2. This means that the use of the schema
by mature organisations will always mean that this orga-
nisation has already deployed a data collection and anal-
ysis process. The cost of data collection and analysis will,
therefore, be defrayed by the Measurement and Analysis

area.
6. Conclusions

The main problem that software developers face when
choosing the best suited testing techniques for a software
project is the availability of information. This article pre-
sents the results of using a systematic testing techniques
selection process (called characterisation process) pre-
sented earlier.

The use of this approach has led to a study of the type of
knowledge needed for testing technique selection, as well as
its current maturity level, the sources of information that
can be used to find the information required for testing
technique selection and how these sources are to be used.

At this point, we found that there is information of
interest for selection that is not currently available. Infor-
mation about whose values we are clueless has been left
out of the schema. However, immature information has
been included as unknown but under study information.
Despite its immaturity, we have tried to give recommenda-
tions about what these parameters should be used for.

The mechanics of selection using the characterisation
schema varies with respect to how testing techniques are
selected. Depending on the organisation’s level of experi-
ence accumulation, there are two possible contexts of
schema use, each one having its pros and cons.

Finally, we have analysed what maintenance is necessary
to support a structure of the type proposed here, including
its costs.

http://www.ls.fi.upm.es/udis/miembros/sira/tt_tool
http://www.ls.fi.upm.es/udis/miembros/sira/tt_tool

Appendix A. Instantiation of three testing techniques

Level Element Parameter Mutation Decision coverage Boundary value analysis

Tactical Objective Purpose Defect detection Defect detection Defect detection
Type of defects Any Control Control
Effectiveness Detects approx.

72% of the faults
Prob. detecting
a fault: 48%

Finds 55% of defects

Scope Element Unit Unit Any
Aspect Any Any Any

Operational Technique Comprehensibility High High High
Cost of application Low Low Low
Inputs Source code Source code Code specification
Adequacy criterion Mutation Control flow:

decision coverage
Functional: boundary
value analysis

Test data cost Medium/high High (less with tools) Low
Dependencies – Should be completed

with techniques that
find processing errors

When applied with
black-box the
effectiveness
may rise to 75%

Repeatability Yes No No
Sources of
information

Frankl et al. (1997),
Offut and Lee (1994),
Offut et al. (1996),
Wong and
Mathur (1995)

Beizer (1990), Myers
(1970), Pfleeger (1999),
Sommerville (1998),
Frankl and Iakounenko
(1998), Frankl and
Weiss (1993), Hutchins
et al., 1994, Wood
et al. (1997)

Beizer, 1990, Myers
(1970), Pfleeger (1999),
Sommerville (1998),
Basili and Selby (1987),
Kamsties and
Lott (1995),
Wood et al. (1997)

Test Cases Completeness ?? Decision ??
Precision ?? ?? ??
of generated
cases

A + b * n + c * n2,
with n = no of
lines of code

Rises exponentially
with the number of
decisions in the code

Depends on the
complexity
of the input domain

Object Software type Any Any Any
Software
architecture

Any Any Any

Programming
language

Structured, OO, real
time and concurrent

Any Any

Development
method

Any Any Any

Size Medium Medium Any

Tools Identifier Mothra LOGISCOPE –
Automation Generates mutants

automatically
Obtain paths –

Cost Free. Academic tool Between € 3.000
and € 6.000

–

Environment Windows/UNIX;
Any; Pascal, C

Windows; Any;
Ada, C/C++

–

Support Information
available in
tool’s web
page

24 Hot-line –

Agents Experience None None None
Knowledge None Flow graphs (when

tool is not used)
None

(continued on next page)

S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618 1617

Appendix A (continued)

Level Element Parameter Mutation Decision coverage Boundary value analysis

Historical Project Reference projects ?? ?? ??
Tools used ?? ?? ??
Personnel ?? ?? ??

Satisfaction Opinion It is easier to use than it
seems

It is okay, but should be
completed with others

??

Benefits Finds a lot of defects.
Easy to use

It is easy to apply ??

Problems Should not be used
without a tool

If used with real time and
concurrent sw, the use of
the dynamic analyser
should be avoided, as it
instruments the code and
might change timing
constraints

??

1618 S. Vegas et al. / The Journal of Systems and Software 79 (2006) 1606–1618
References

Basili, V.R., Selby, R.W., 1987. Comparing the effectiveness of software
testing strategies. IEEE Transactions on Software Engineering SE-13
(12), 1278–1296.

Beizer, B., 1990. Software Testing Techniques, second ed. International
Thomson Computer Press.

CMMI Product Team, 2002. CMMISM for Software Engineering
(CMMI-SW, V1.1) Continuous Representation. Capability Maturity
Model� Integration (CMMISM), Version 1.1. CMU/SEI-2002-TR-
028. ESC-TR-2002-028, August.

Frankl, P., Iakounenko, O., 1998. Further empirical studies of test
effectiveness. In: Proceedings of the ACM SIGSOFT International
Symposium on Foundations on Software Engineering, Lake Buena
Vista, Florida, USA, pp. 153–162.

Frankl, P.G., Weiss, S.N., 1993. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE Transac-
tions on Software Engineering 19 (8), 774–787.

Frankl, P.G., Weiss, S.N., Hu, C., 1997. All-uses vs mutation testing: an
experimental comparison of effectiveness. Journal of Systems and
Software 38 (September), 235–253.

Harrold, M.J., 2000. Testing: A roadmap. In: Proceedings of the 22nd
International Conference on the Future of Software Engineering,
Limerick, Ireland, pp. 63–72.

Hutchins, M., Foster, H., Goradia, T., Ostrand, T., 1994. Experiments on
the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In: Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy. IEEE, pp. 191–200.

Kamsties, E., Lott, C.M., 1995. An empirical evaluation of three defect-
detection techniques. In: Proceedings of the Fifth European Software
Engineering Conference, Sitges, Spain.

Myers, G.J., 1970. The Art of Software Testing. Wiley-Interscience.
Offut, A.J., Lee, S.D., 1994. An empirical evaluation of weak mutation.

IEEE Transactions on Software Engineering 20 (5), 337–344.
Offut, A.J., Lee, A., Rothermel, G., Untch, RH., Zapf, C., 1996. An

experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology 5 (2), 99–118.

Pfleeger, S.L., 1999. Software Engineering: Theory and Practice. Mc-Graw
Hill.

RTI, 2000. The Economic Impact of Inadequate Infrastructure for
Software Testing. Planning Report 02–3, National Institute of Stan-
dards and Technology.

Sommerville, I., 1998. Software Engineering, fifth ed. Pearson Education.
Vegas, S., Basili, V.R., 2005. A characterisation schema for software

testing techniques. Empirical Software Engineering 10 (4), 437–466.
Vegas, S., Juristo, N., Basili, V.R., 2003. Identifying Relevant Informa-
tion for Testing Technique Selection. An Instantiated Characterisa-
tion Schema. Kluwer Academia Publishers, Boston, ISBN 1-4020-
7435-2.

Wong, E., Mathur, A.P., 1995. Fault detection effectiveness of mutation
and data-flow testing. Software Quality Journal 4, 69–83.

Wood, M., Roper, M., Brooks, A., Miller J., 1997. Comparing and
combining software defect detection techniques: a replicated empirical
study. In: Proceedings of the Sixth European Software Engineering
Conference, Zurich, Switzerland.

Sira Vegas is assistant professor of Computer Science at the Universidad
Politécnica de Madrid in Spain. She had a summer student grant at the
European Centre for Nuclear Research (Geneva) in 1995. In 1997, she
worked at GMV (Madrid) on the ENVISAT project for the European
Space Agency. She was a regular visiting scholar at the University of
Maryland from 1998 to 2000. Sira has a BS and PhD in computer science
from the Universidad Politécnica de Madrid. She is a member of IEEE
Computer Society and ACM.

Natalia Juristo is full professor of Computer Science at the Universidad
Politécnica de Madrid in Spain. She is the Head of the Universidad
Politécnica de Madrid’s Master of Software Engineering degree pro-
gramme. Natalia has worked at the European Centre for Nuclear
Research (Geneva) and at the European Space Agency (Rome). In 1992
she was Resident Affiliate at the Software Engineering Institute (Pitts-
burgh) on a NATO Fellowship. Natalia has a BS and PhD in computer
science from the Universidad Politécnica de Madrid. She served as
Member of the Editorial Board of the IEEE Software Magazine from 1997
to 2001. She is a senior member of IEEE Computer Society and member
of ACM, AAAS and NYAS.

Victor R. Basili is a Professor of Computer Science at the University of
Maryland. He was founding director of the Fraunhofer Center for
Experimental Software Engineering, Maryland, and one of the founders of
the Software Engineering Laboratory (SEL) at NASA/GSFC. He received
a B.S. from Fordham College, an M.S. from Syracuse University, and a
PhD in Computer Science from the University of Texas at Austin. He has
been working on measuring, evaluating, and improving the software
development process and product for over 30 years. Methods for
improving software quality include the Goal Question Metric Approach,
the Quality Improvement Paradigm, and the Experience Factory
organization.

	Packaging experiences for improving testing technique selection
	Introduction
	Selecting testing techniques with full information
	Selecting testing techniques with real information
	Knowledge types and sources of information for characterising testing techniques
	Technique selection assisted by a characterisation schema
	Mechanics of selection
	Example of selection
	Organisation maturity and schema uses
	Schema maintenance

	Conclusions
	Instantiation of three testing techniques

	References

