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Introduction
 

High performance computing, as a field, involves a great deal of interdisciplinary coop-
eration. Researchers in computer science work to push the boundaries of computational power, 
while computational scientists use those advances to achieve increasingly detailed and accurate 
simulations and analysis. Staff at shared resource centers enable broad access to cutting edge 
systems while maintaining high system utilization. 

Attempts to evaluate the productivity of an HPC system require understanding of what 
productivity means to all its users. While each of the above groups use HPC resources, their 
differing needs and experiences affect their definition of productivity. This, in turn, affects 
decisions about research directions and policies. Because so much is at stake, measuring and 
comparing productivity is not to be taken lightly. There have been many attempts to define pro-
ductivity quantitatively, for example, see Kuck1 for a definition of user productivity and Kepner2 
for a definition of the productivity of a system.   

Our approach avoids the problems involved in trying to quantify productivity and instead 
defines the productivity of a system in terms of how well that system fulfills its intended purpose. 
Certainly the intended purpose of an HPC system is not just to stay busy all the time, but instead 
to deliver scientific results. Working with the San Diego Supercomputer Center (SDSC) and 
its user community, we have analyzed data from a variety of sources, including SDSC support 
tickets, system logs, HPC developer interviews, and productivity surveys distributed to HPC 
users. In order to better understand exactly how HPC systems are being used, and where the best 
opportunities for productivity improvements are, we have compiled a list of conjectures about 
HPC system usage and productivity (each originally suggested by experienced researchers in 
HPC) and have compared these to the usage patterns and attitudes of actual users through four 
studies. The seven conjectures are as follows:

 
• HPC users all have similar concerns and difficulties with productivity. 
• Users with the largest allocations and the most expertise tend to be the most productive. 
• Computational performance is usually the limiting factor for productivity on HPC systems. 
• Lack of publicity and education is the main roadblock to adoption of performance and 

parallel debugging tools. 
• HPC programmers would require dramatic performance improvements to consider making 

major structural changes to their code. 
• A computer science background is crucial to success in performance optimization.
• Visualization is not on the critical path to productivity in HPC in most cases. 

In the discussion that follows, we evaluate each of the conjectures. After summarizing the 
data sources we used and how we collected them, we present our findings and try to clarify how 
well each of these beliefs actually stands up to the evidence. 
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Procedure 

In this study we address the above conjectures by evaluating consult tickets and job logs and 
further verifying the preliminary assessments, based on the previously mentioned means, with 
user surveys and by personal interviews of developers using current TeraGrid Sites. More in 
depth explanation of the studies conducted can be found at SDSC’s Performance Modeling and 
Characterization (PMaC) web site.3 

The initial assessment, to quantify and qualify HPC productivity, was derived from evalu-
ating the user-submitted help tickets. The ticket sampling included all help tickets submitted to 
the SDSC help desk from March 2004 to March 2006. These tickets span numerous architec-
tures. The consulting tickets enabled the identification of possible HPC resources productivity 
bottlenecks.

 Because only 307 of the 920 registered users submitted support tickets during the time span 
we investigated, it was clear that ticket analysis alone did not account for all users. Attempting 
to include a broader set of users, we looked at system job logs of the SDSC DataStar supercom-
puter,4 a 2,368-processor IBM Power4 system. We evaluated high-level trends for all 59,030 jobs 
run on the DataStar P655 nodes at SDSC from January 2003 to April 2006. The jobs ranged in 
size from 1 to 128 eight-processor nodes. 

To further address some of these questions raised in the previous two studies we embarked 
upon a survey and interviewing campaign. We developed an interview strategy based on 
available references5 and examples6 to avoid common pitfalls in design. The questions included 
a general background and experience section, a development section, and a development prac-
tices and process section. The full interview script is available on the SDSC PMaC web site.3 This 
strategy was extended to create a user survey. The survey had two goals; first, to get answers 
from questions similar to the interview script from a larger sample size, and second, to find 
potential future interview subjects for further investigation. The full survey is also available on 
the PMaC web site.3

Analysis 

The studies above identified some system and usage trends. This section draws conclusions 
about the conjectures made in the introduction section of this paper, and discusses how the 
studies influenced our understanding of, and the implications for, HPC centers and users. 

Conjecture 1: HPC users all have similar concerns and difficulties with productivity.

 While it is clear that users have a wide range of system demands, as seen in the variety of 
allocation and job sizes, it is not uncommon to assume that as long as users share a system, they 
share the same challenges staying productive. However, as details of individual usage patterns 
emerged, we found that not all users experienced the same problems with the same systems and 
tools, and some problems affected some users more than others. 

Three distinct classes of users emerged based on HPC resources utilization, project scale, 
and the problems encountered. While these classes are clearly related to allocation size, they are 
defined by characteristics of their system usage. 
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3 PMaC web site for productivity study materials. 
PMaC Publications. http://www.sdsc.edu/PMaC/
HPCS/hpcs_ productivity.html. Aug. 2006.

4 SDSC User Services. SDSC DataStar user guide: 
http://www.sdsc.edu/user_services/datastar/

5 Robson, C. “Tactics -the Methods of Data Collection” 
in Real World Research, Blackwell Publishing, 2002.
6 Cook, C., Pancake, C. “What users need in parallel 
tool support: Survey results and analysis,” IEEE 
Computer Society Press, pages 40– 47, May 1994.
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Marquee Users: Marquee users run at very large scale, often using the full system and 
stressing the site policies and system resources. For these reasons they will be the most affected 
by node failures and are generally unable to use the interactive nodes to debug or benefit from 
backfill opportunities to the queue. We have named this group “Marquee” users because such 
projects are often used to publicize HPC centers. 

Marquee users often have a consultant, or are the consultant, working on the application 
to improve the performance, to port to a new system or scale to larger numbers of processors. 
The marquee users are generally represented in our study through the job logs and personal 
interviews. 

Normal Users: The largest class, “Normal” users, tend to run jobs using between 128 and 
512 processors. Their problem size is not necessarily limited by the available resources of the 
systems they use. This greater flexibility in their resource usage, allows them the ability to run 
on smaller systems that may not be as heavily loaded. Normal users are less likely to have been 
forced to tune for performance optimization, or to have used performance tools. Normal users 
are generally represented in our study in the form of user surveys and job logs. 

Small Users: Small users have a minor impact on system resources, do not tend to use 
large allocations, and generally run jobs with fewer than 16 processors, which are often started 
quickly by backfilling schedulers. In general, small users are learning parallel programming, 
and their productivity challenges are more likely due to unfamiliarity with the concepts of HPC 
computing. “Small” users are generally represented in our study in the form of help tickets and 
job logs. 

Clear examples of the differences between the normal and marquee users can be seen in 
the different responses from the verbal interviews and the survey results. In some cases the 
interviewees and survey respondents were using the same systems and the same software, but 
due to different processor counts and memory requirements, their opinions of the productivity 
impact of system traits were very different. 

The interviews with SDSC performance consultants showed that memory or I/O was the 
primary bottleneck for their codes. However, 8 out of 12 of our survey respondents believed that 
processor floating-point performance was their top bottleneck. Since some survey respondents 
were using the same code as our interview subjects, we attribute this discrepancy to the scale at 
which the marquee users run. In many cases performance bottlenecks will only become apparent 
when the system resources are stressed. The survey respondents, representing our normal users, 
report standard production runs requesting 256-512 processors, while interview subjects often 
use more than 1,024 processors. 

The interactive running capabilities of a system provide another opportunity to distinguish 
user classes. Most survey respondents were able to successfully debug their codes on 1-8 pro-
cessors running for less than one hour, which is feasible on current interactive nodes. Marquee 
users, on the other hand, must submit to the batch queue and are subject to long wait times to 
run very short jobs to reproduce bugs and test fixes. The marquee users expressed their frus-
tration with the lack of on-demand computing for a large number of processors, specifically for 
debugging purposes. 

This implies that different system policies are appropriate for different users. For example, 
in various phases of a project, resource demands may vary. When major development and 
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tuning has ceased and production has begun, a policy that would allow the entire system to be 
reserved could be a major improvement to productivity. One marquee user gave the example 
that it would take a week running around the clock to get one simulation completed and that 
repeatedly waiting in the queue is wasteful and can extend this process by at least factor of four. 
In contrast, another researcher was uncomfortable with having dedicated time due to the risk 
of wasting allocation while fixing problems, preferring a high-priority queue reservation policy 
instead. System design and site policies should reflect the different types of users and stages of 
development. 

Conjecture 2: Users with the largest allocations and most experience are the most pro-
ductive. 

A common policy of HPC centers is to give preference in queue priority to jobs with higher 
node requirements, which encourages users to make full use of rare high capacity systems. 
Large users may also receive more personal attention, even to the point of having a dedicated 
consultant working on their programs. Does this conclusively imply that larger users are the 
most productive? 

Through our interviews it emerged that productivity, in terms of generating scientific results, 
is just as difficult to achieve for large users, if not more so, than for smaller users. Queue wait 
time, reliability and porting issues all cause major problems for large users. Large-scale pro-
grams often push the limits of systems and therefore run into problems not often seen at lower 
scale, such as system and code performance degradation and system reliability problems. 

Evaluating the queue based on job logs can be complicated. There are a number of factors 
that could affect queue priority. Some of the most influential variables are length of runtime, 
processor count requested, the size of a user’s unspent allocation, as well as site administrators’ 
ability to change the priority of individual jobs directly. 

Processor Count Average Median Maximum Minimum

8 8.87 0.06 858.93 0.00

64 12.64 0.45 792.33 0.00

128 24.12 2.56 752.67 0.00

256 21.13 3.51 415.69 0.00

512 19.79 3.81 266.44 0.00

1024 23.99 9.07 205.49 0.00

Table 1. Wait time of jobs 2003-06 on DataStar, in hours.

Processor Count Average Median Maximum Minimum

8 2.43 0.52 624.89 0.00

64 2.49 0.69 49.42 0.00

128 3.84 0.63 105.01 0.00

256 3.33 0.46 100.06 0.00

512 3.13 0.40 19.44 0.02

1024 2.60 0.31 18.01 0.03

Table 2. Run time of jobs 2003-06 on DataStar, in hours.
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Processor Count Average Median Maximum Minimum

8 8.02 1.15 22666.83 1.00

64 19.22 1.66 11826 1.00

128 68.71 3.31 5137.17 1.00

256 44.42 5.35 3809.40 1.00

512 53.53 6.00 3924.50 1.00

1024 90.69 11.68 2800.39 1.00

Table 3. Expansion factor for jobs 2003-06 on DataStar.

Figure 1. Run timedistribution, grouped by job size.

Figure 2. Wait time distribution, grouped by job size.
 
In support of our initial statement, Table 1 displays some trends that are not surprising. 

On average small jobs have shorter wait times. The average wait time for jobs requesting only 
one node was nine hours while the average wait time for 128 nodes (1024 processors) was 
approximately 24 hours. In contrast, the inverse trend is evident in maximum wait times; as the 
number of nodes increased, the maximum wait time decreased. The maximum wait time for a 
128 node job was 17 days and the maximum wait time for one node was 71 days. The median 
tells us a similar story to the average. The trends in run time and wait time are also visible in the 
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histograms shown in Figure 1 and Figure 2, grouped by job size. Table 2 shows statistics for the 
job run time. 

The expansion factor ((waittime + runtime) / runtime) data in Table 3 reinforces the trends 
established by the wait times and also displays how the queue favors large allocations. The 
average expansion factor increases as the number of nodes increases up to 256 processors, where 
there is a dip in the expansion factor curve. This appears to show a preference for large jobs in 
the scheduler beginning at 256 processors. On closer inspection, the trend was influenced by a 
single high priority account with a large allocation, running many jobs on 256 processors. The 
actual priority increase for “large” jobs begins at 512 processors or more. Also note the high 
expansion factor for 1024 processor runs. While it would seem to show that users running 
on large portions of the system are not very productive, we see that this effect is due to a large 
number of such jobs with very short run time. 632 of the 839 jobs that ran on 128 nodes (1024 
processors) ran for less than two hours, and most of those jobs were part of a benchmarking 
effort. The average expansion factor for jobs that were not benchmarking was 9.58, and the 
median was 10.05, which more clearly shows the scheduler favoring large jobs as intended. 

Although the analysis above does show that marquee users receive priority for using large 
portions of the system and are therefore not disproportionately hurt by queue wait time, they do 
face a serious productivity bottle-neck in the inability to get a large-enough allocation on one 
system, or on the right system for their task. Due to site policies, single-site allocations often 
have a limit. In some cases, users were forced to port codes to several systems due to allocation 
limits, resource constraints, or system and support software compatibility issues. One developer 
told us of having to port one program to four different systems during the period of one project.  
Another told us of having to port to at least two systems for an individual run to be able to 
capitalize on the different features supplied on different systems. 

Porting itself can be time consuming and difficult. We heard about the time required to com-
plete a port, ranging from less than an hour to many days, and in some cases the successful port 
was never achieved. Once the code is ported, these multi-platform scenarios tend to require 
tedious manual effort from the user to move data files around, convert formats, and contend 
with the problems of working on many sites with different policies, support, and capabilities.

Conjecture 3: Time to solution is the limiting factor for productivity on HPC systems. 

While the initial migration of a project to HPC systems is certainly due to expanding resource 
requirements, we found across all four studies that the HPC users represented in our samples 
treat performance as a constraint rather than a goal to be maximized. Code performance is very 
important to them only until it is “good enough” to sustain productivity with the allocation they 
have, and then it is no longer a priority. In economics literature, this is called satisficing,7 and 
while it is not surprising in retrospect, it is important to keep this distinction in mind when 
thinking about what motivates HPC users. The in-depth system log evaluation showed most 
users not taking advantage of the parallel capacity available to them. Out of 2,681 jobs run in 
May 2004, 2,261 executed on one eight-processor node. This accounted for 41% of all the CPU 
hours utilized on the system. Furthermore, the job logs show that in between 2004 and 2006, 
1,706 jobs out of 59,030 jobs on DataStar were removed from the batch nodes for exceeding the 
maximum job time limit of 18 hours. Of these jobs, 50% were running on fewer than eight pro-
cessors. Given access to a resource with thousands of processors, the majority of users choose 
to reduce the priority of performance tuning as soon as possible, indicating that they have likely 
found a point at which they feel they can be productive. 
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7 Simon, H. “Rational choice and the structure of the 
environment,” Psychological Review, Volume 63: 2002. 
pp. 129–138. 
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The support ticket evaluation tells a similar story. Many users requested longer run times, 
and fewer than ten users requested anything related to performance. Furthermore, some of the 
users requesting longer run times did not have checkpoint restart capabilities in their code, and 
many were running serial jobs. 

While performance is certainly the original reason for moving to an HPC platform, the atti-
tudes and statements of our interview subjects reinforces the assertion that it is not a primary 
goal of theirs. When asked about productivity problems, performance was generally taken for 
granted while other issues such as reliability, file system capacity and storage policies, as well as 
queue policies and congestion, were discussed in depth. Performance problems are just one of 
many barriers to productivity, and focus on performance at the expense of other improvements 
should be avoided. 

Conjecture 4: Lack of publicity is the main roadblock to adoption of performance and par-
allel debugging tools. 

While it is true that many users are unfamiliar with the breadth of performance tools available, 
a significant portion of users simply prefer not to use them. Reasons given by interviewees 
included problems scaling tools to large number of processors, unfamiliar and inefficient GUI 
interfaces, steep learning curves, or the overwhelming detail provided in the displayed results. 

Unsurprisingly, the performance optimization consultants were the most likely to use tools. 
However even they often opted for the seemingly more tedious path of inserting print state-
ments with timing calls and recompiling rather than learning to use performance tools. 

The situation for parallel debuggers was no more encouraging. Only one interviewee used 
readily available parallel debugging tools. However, other developers indicated that if the 
debugging tools were consistent and easy to use at scales of up to hundreds of processors, they 
would have been used. In their current state, parallel debugging tools are considered difficult or 
impossible to use by the interviewees who had tried them. 

It is clear that there is a long way to go before common HPC programming practice embraces 
the powerful tools that the research community has built. Certainly there is a lack of motivation 
on the part of many HPC programmers to learn new tools that will help them with the task 
of performance optimization, which is not always their main priority. Aside from the obvious 
issue of acceptable performance at large scale, it seems that continuing to strive for tools that 
are easier to learn and use is important for improved adoption. As discussed by Pancake,8 it 
is important to design tools from a user’s perspective and with early user involvement in the 
design process for the design to be effective. 

Conjecture 5: HPC programmers would demand dramatic performance improvements to 
consider major structural changes to their code. 

Programmers we surveyed showed a surprising indifference to the risks involved in rewriting 
often very large code bases in a new language or changing a communication model. Although 
many successful projects last for tens of years without making significant changes, eight of the 
12 Summer Institute attendees responded that they were willing to make major code changes for 
surprisingly small system performance improvements or policy changes. 

8 Pancake, C. “Can Users Play an Effective Role in 
Parallel Tool Research?” in Tools and Environments for 
Parallel Scientific Computing, SIAM, 1996.
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Many of the codes discussed were larger than 100,000 lines of code (LOC). Though all eight 
codes over 10,000 LOC had checkpoint restart capabilities, three users were willing to rewrite 
code for the ability to run a single job longer, two requesting only a factor of two job runtime 
limit extension. The respondents were likely unaware that most sites will allow such small excep-
tions on a temporary basis. Of the three respondents with more than 100,000 lines of code, only 
one considered such a major change, requesting in return a factor of ten improvement in either 
processor speed or job time limits. The results imply that although performance, judged by time 
to solution, is not always the main goal of HPC users, users would be very receptive to work for 
guaranteed system and policy changes. 

While we see some conflicting responses, it might be possible for HPC centers to capitalize 
on these attitudes to get users to use profiling tools and spend some effort to improve individual 
code performance, and ultimately queue wait times, by giving minor compensation to coop-
erative users. Also, in some cases, it would seem that there is a gap between what users want and 
what they think they can get. This gap could be bridged with improved communication with 
users regarding site policies and resource options. 

Conjecture 6: A computer science background is crucial to success in performance optimi-
zation. 

It may seem straightforward to say that if you want to improve your code performance you 
should take it to a computer scientist or software engineer.  However, of the developers on suc-
cessful projects interviewed, only one had a formal computer science background. In fact, many 
of these successful projects are operating at very large scale without any personnel with a formal 
computer science or software engineering background. 

There was a general consensus among interviewees that without competence in the domain 
science, changes to the project are destined for failure. Two subjects actually contracted out 
serious code bugs and made use of library abstractions to avoid in depth knowledge of parallel 
programming. One such library was written by a computer scientist, and once it matured, users 
were able to achieve high performance using it without a parallel computing background. 

HPC centers and software developers should keep in mind that their target audience is not 
computer scientists, but rather physical scientists with a primary focus on scientific results. 

Conjecture 7: Visualization is not on the critical path to productivity in HPC. 

Every interview subject and all but three survey respondents used visualization regularly 
to validate the results of runs. For those projects, any problems and productivity bottlenecks 
that affect visualization have as much impact on overall productivity as poor computational 
performance during a run. 

Such bottlenecks can include problems with available visualization and image conversion 
software and with finding capable resources for post-processing and visualization rendering. As 
evidence, one interviewee stated a desire for a large head node with a large amount of RAM to 
handle rendering. This implies that users’ productivity could be greatly enhanced by a dedicated 
visualization node that shared a file system with computation nodes. 

What’s Working in HPC: Investigating HPC User Behavior and Productivity
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Conclusion 

In performance tuning, it is common to hear advice to profile before attempting an opti-
mization, because often the true bottleneck is a surprise.  In this paper, we have attempted to 
find where the true bottlenecks in HPC productivity are by investigating general trends in user 
behavior and by asking users directly. 

Our analysis shows that, in general, HPC user needs are heterogeneous with respect to 
HPC resource usage patterns, requirements, problems experienced and general background 
knowledge. These factors combined dictate how individual productivity is viewed and clarifies 
the motivations for focusing on performance. Our research also gave us insight into the tools 
and techniques currently available and to what extent they have been embraced in the com-
munity. 

Future research will evaluate the effectiveness of some of the techniques discussed by users. 
Based on our findings, we will continue to evaluate HPC community feedback to build a general 
consensus on the problems that affect productivity and where research time and system money 
can best be spent to allow these systems to live up to their promise and continue to support 
leading-edge research. 
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