An experimental-design language gives evidence that software design

may benefit from the same formal techniques programmers are using.

S Special Feature: | R
The Flex Software Design System:
Designers Need Languages, Too

Stephén A. Sutton, Digital Technology [nco;pomteci
_Victor R. Basili, University of Maryland

First, there were programmers. They wrote programs
that told computers what to do and how to do it. As pro-
gramming systems grew to fill ballooning machine capa-

city, they became unwieldy, disorganized, and expensive. '

It became easier to rebuild a program from scratch than
to change it. Some people began to seek a means of con-
trolling these systems in their upper, abstract representa-
tions. These people became known as software system
designers. _ . _

Designers needed and developed their own special
tools for expressing and inanipulating system structure.

Just as programmers had developed programming :

languages, designers sought = “‘design languages.”’
However, while a programmer communicates with the
computer, a designer communicates with people:
managers, programmers, other designers, and himself.
The language requirements are therefore different.

D&igﬂ languages: a design tool. A design limguagé cap-
tures the essential elements of a software design in a form

that can easily be understood. Jensen and Tonies! givean .

excellent definition, which we paraphrase: -

Design languages are a clear, concise cominunication
mediuin. Their purpose ‘is ‘twofold: (1) to help
designers communicate - by identifying commonly
understood terms and concepts, and (2) to capture the

November 1981

3

-

design decisions in a machine-processable form (as
distinguished from a machine-execitable form).

Once the. software design has been expressed in a
machine-processable form, many programs can .be
created to provide information about it or manipulate
it. These programs can: (1) generate design documents
in special formats, (2) ensure that the design follows
certain design principles, (3) automatically test and/or
" evaluate the design by simulating its execution, and (4)

_ manage the components of the design as they advance

through the development process.

Several existing programmir;g tools could be classified

as design languages. They bear a variety of names and
embody varying philosophies of system design. Some are
based on existing programming languages; others are on-
ly remotely -related to programming languages. Some
give detailed descriptions of procedures, while others
yield only the global structure of a software design.

At their simplest, design languages are loosely defined,
‘Informal, and not automated. In this form they are often.

called pseudocode, metacode;. pencil-and-paper
language, or pidgin English. At their most ambitious

level, they have the detail of a programming 'language- -

and employ processors that are miuch like modern com-
pilers. At this level they have cofne to be known as pro-
cess (or program) design languages, or PDLs.2% Systems
that support the specification of software systems’? have
much in common with design languages. :

0018-9162/81/1100-0095500.75 © 1981 1EEE

95

A PDL should have the following traits:

* Multilevel application. It should be useful at all
levels of design, from early conception to detailed
procedural description.

¢ Naturalness. Its form and substance should be
familiar to designers and programmers. It should
include a language element for stating an action or

condition in some other formal notauon, or m_

. “*plain Englisk.”” =’
¢ Flexibility. It should be adapted to the software en-
vironment--not vice versa.
¢ Currency. It should support the latest software

methodology.

* Open-endedness. It should accept new concepts and A

serve as a testbed for them.

e Automated support. The design should exist in a
machine-readable form. The design system should
include not only the PDL but.a processor to check
the PDL representation of the design for consisten-
cy and the utilities necessary to support the design
effort. If not automated, the design of a software
system can suffer the same problems as the design

process itself: inconsistency in person-to-person

communication.
e Management aid and control function. Finally, the

design-language system should allow managers to :
control and evaluate both the design and the design

activity.

Programming languages are not for design. In general,
modern programming languages do not have these
features. Although many-could be used as pencil-and-
paper design languages, their compilers are created for
translation to machine code—they do not support the

pure design effort. Except for.some *‘extensible’’

features, they are based on a standard syntax, not an
adaptable one. K
The concepts in the newer programming languages,

.however, are important to design languages Modularity,
type abstraction, and ‘‘structured’” control statements-

all originated in programming languages. The diffusion
of these concepts through the programming community
can be slow, simply because access to the computers on
which the new languages run is limited. Design languages

_are far more portable and can more readily promote such

new ideas.’

Winograd'? believes that advanced programming-'

systems should do far more than those of the past. The
systems he describes have much in common with. design

_systems: ““The main goal of a programming system
should be to provide a uniform framework for the infor-.

mation that now appears in the declarations, assertions,
and documentation. The detailed specification of ex-
ecutable instructions is a secondary dctivity, and the

.. language should not be distorted to emphasfze it. The

system should provide a set of tools for generating,
manipulating, and integrating - descriptions of both

- results and processes. The activity that we think of as

‘writing a program’ is only one part of the overall activity
that the system must support, and emphasis should be
given to understanding rather than creating programs.”

\

" Flex: the PDL generator

The Flex design system is a design language and its pro-
cessor. It combines features found in PDLs with those of
modern programming languages into a system that can
be adapted to'many design environments. There is by no
means a. consensus of opinion on what a PDL should
look like. Flex was designed as an experimental tool that

- can be of practical use in real software development

situations and whose form may change in response to ex-
perience and new ideas. Flex was developed on the Prime
400 computer system at the Naval Research Laboratory
in ‘Washington, DC. It is being installed on the Univac
1108 system at the University of Maryland and on a VAX
11/780 system. .

A flexible language. In both form and function, the
Flex language has much in common with modern pro-
gramming languages.''* It-is modular, extensible, and
strongly typed. Flex is more adaptable to particular
design environments than are programming languages;
the form of the basic Flex language is easily extended,
Trestricted, or changed. Its features include

»- Control of element interaction: who can do what to
which other parts of the design. .

* Local name scopes: design groups -can-use their
own internal identifiers without confhctmg with
those of other groups.

* Definable types: stacks, lists, queues, associative

_ memories, etc. .

- » Fully generic routines: routines that perform a
- common function for several data types, such as
INITIALIZE and PRINT.

* . o Definable operators: arithmetic, boolean, string,

" etc.
* *“Stuctured’’ statements and expressions.

Flex is more . detalled and - more automated than
previous PDLs. It can be configured to look and perform
like a number of simpler, less flexible design languages.
The full' Flex language has a detailed syntax, and its
documentation!3-'¢- can -overwhelm the casual user..
However, the language can be condensed to simpler
forms. For example, it could be configured as a strucured
Fortran processor whose form would be readily under-
stood and translated by Fortran programmers. It could
have the standard Fortran data types and subroutine
structure but offer interface type checking, controlled
access to common, structured statements, etc.

A language overview

A programming system is the solution to a particular
software design problem. It is complete in that every ele-
ment (data base, routine, etc.) referenced from within
the system is also contained in the system.

The programming system consists of a set of modules,
each of which in turn is made up of a set of segments.
There are three kinds of segments: data segments, defini-
tion segments, and routines. The module is the principal
scoping conceptin Flex. It provides a local, protected at-

" COMPUTER

mosphere for its segments. It can be used to encapsulate

a data base or a type definition, or simply to provide a
logical partition of the programming system. Data
segments contain shared data that can be accessed by
routines. Definition segments contain type and operator
definitions.

There are two kinds of generic, recursive routines:
functions, which are value-returning, and procedures,
which are not. In addition, there are two special types of
functions: access fuctions, which return by reference (as
opposed to return by value), and iteration functions,
which define the manner in which the elements of a
defined data structure are to be traversed during an itera-
tion loop. Routines are not block structured; they cannot
be nested as they can in many Algol-based languages. In-
stead, they follow a modular structure similar to that of
CLU™ and Simpl."”

Access to data. Routines can request access to data
residing in data segments in the programming system but
not to internal data in other routines. They can promise
not to change the data segment (FIX access) or may
declare their intention to alter it (ALT access).

Data segments may include other data segments as if
they were a part of themselves. This gives rise to an access
tree in which access to the data segment at any node aiso

allows access to all of its descendants. Routines and data

segments can also gain access to definition segments in
order to declare variables of the types defined wuhm the
segments.

Routines may be declared as FIX, ALT, or CLOSED
to determine the manner in which they interact with their
environment. ALT routines are free to alter any data to
which they have ALT access. FIX routines may alter only
their own internal data. CLOSED routines may alter no
permanent data and therefore have no history depen-
dence—their action depends only upon their parameters.

. Comments and escapes. Comments and escapes are
the natural language element in Flex. Comments are used
as in programming languages; they provide commentary
on the surrounding text. Escapes are similar in form, but
are used in place of statements, expressions, type

specifications, etc. They are the major vehicle for top-.

down design, where the natural language description of
the early design is successively replaced by more concrete
ones until a detailed, procedural description is reached.

Types and operators. The language provides few
types. Users define new types with the parameterized
type macro, which is similar to that found in other type-
abstraction languages.)* The module can be used to en-
capsulate a type definition: all routines that are allowed
to ““see’’ the internal structure of variables defined to be
of a certain type are placed.in the same module as the
type definition. The user must also define all infix and
prefix operators and the routines they represent. Flex is
extensible in that selected modules containing these
definitions can be made global to the programming
system. Their information is automatically available to
each segment in the design and looks as if it were built in-
to the language.

November 1981

Structured statements. Flex has a small set of struc-
tured statements that can be modified or extended. In
particular, the iteration (loop) statements are modular

and can quickly be configured for a particular design en- ’

vironment, according to the tastes of the designers.

Global checking. The processor maintains a global
view of the programming system and can therefore en-
sure consistency among remotely separated elements of
the design. The design can be processed at all levels. The
early design may be largely in natural language (escapes),
and the processor will mainly check access restrictions
{who has what kind of access to what). As concrete parts
of the design appear—-that is, as escapes are replaced by
detailed statements—they: can be checked immediately
for consistency. Errors can be detected and corrected
before the design is expanded any further.

A hierarchy of users
There are three cooperating users of the Flex system:

the caretaker, the administrator, and the designer. Each
defines the environment for the ones ‘‘below’” him—the

caretaker for the administrator and designer, the ad-

ministrator for the designer. Figure'1 shows how each of
these users modifies the basic language. The programmer
translates the design solution into machine-executable

. -code.

The caretaker builds the skeleton. The caretaker is the
custodian of the processor software, controiling the syn-
tax and semantics of the language: The carctaker may be
called upon to implement the following typical features,
which range from easy to moderate in difficuity (a few
manhours to a few manweeks):

FLEX BASIC LANGUAGE

" "PROGRAMMING
T00LS

[REAL-WORLD
PROBLEM

#] EFFICIENCY COMPUTER,
“| & PROGRAM LANGUAGE

Figure 1. A hierarchy of users.

97

* New reserved words, or simple syntax changes,
¢ Special-purpose, natural language declarations in

modules or segments—for example:

“PURPOSE: [text])’’ to state its purpose.

“TARGET DATE: {[text)’’ to project a com-
pletion date.

“PROGRESS: ftext]’* to briefly state its

progress.

¢ New statements, such as one of the many iteration
loops that have been proposed in the open

literature,

¢ Special software metrics, such as measures of com-

plexity,

e Restrictions on the way segments interact,
e Assertions—boolean statements that must be true

over regions of a routine,
¢ Exception handling, and

¢ Routine-valued variables, with type checking.

1 closed proc FIND (fix TARGET, fix TABLE, alt LOC) .
2 form TARGET string [[string to be found]] -
3 form TABLE list (string) [[a table of strings}]

3

form LOC int . [[tocation of TARGET in TABLE,

or 0 if not found]]

4 [search tor and return the first occurrence
5 of TARGET in the list TABLE]

6 corp

Figure 2. A procedure in the basic Flex language.

1 procedure FIND

2 purposé: [[Find the position of a string in-a list]]

' 3 attrib: . closed

4 input: TARGET string - {[string 10 be found]] _

5 © . TABLE list (string)- [[tist to be searched]]

6 output: LOC integer ~ [{position of TARGET in TABLE,

7 : . or 0 if not found]]

8 atexit: " ((LOC ge 0) and (LOC le LENGTH (TABLE))) and

9 (if LOC = 0 then

10 foreach X in TABLE

11 not {TABLE (X) = TARGET)

12) endforeach

13 . else

14 . TABLE (LOC) = TARGET

15 fi))
- 16 note: « {[finds only first occurrence of TARGET]]

17 i [[lower case chars are not = to upper case]}

18 {{if TARGET is the null string,
: LOC will be nonzero only it
i TABLE contains the null string])
19 method: [[simple linear search from front of TABLEﬂ :
20 body: [(filed in later]]

21 end procedure

Figure 3. Revised FIND procedure.

98

The caretaker can influence or even define the design
philosophy by adding features that enforce certain design
practices. He can encourage the use of top-down design
techniques by creating different versions of the language
for the different stages of the design. For example, he
may not allow statements within routines in the early
stages, or the changing of interface definitions in later

. ones.

The administrator fills in the flesh. The administrator
uses the extensible features of the language version from
the caretaker to build a set of programming tools for the
designer. The administrator will usually provide the
following language features:

e Arithmetic and boolean operations and their

operators, '
_ * Relational " functions, equivalence and their

operators,

o The assignment procedure and its operator,

e Common data- structures and their operations: .
stacks, lists, strings, arrays, etc., and

e Jteration functions for these data structures.

The Flex language is strongly type checked, but the

generic routine structure allows certain automatic type
conversions to be defined. For example, the adminis-
trator must define equivalence and assignment. He must
decide whether to require the operands to be the same
type, or to allow certain implicit conversions—for exam-
ple, real to integer.
- Common operations created by the administrator can
apply to'several data structures. Assignment and equiva-
lence could be defined for any two data structures of the
same type; addition could be defined for arrays or lists.

Generic routines can appear to the designer as though
they were built into the language. A procedure “INIT”
could be created toindicate that a data object of any type
is to be set to'some initial state (set integers and reals to
zero, stacks-and queues to empty, etc.). A procedure
PRINT could indicate that a‘data object of any type is to
be printed to some I/0 device according to some format.

Designers use the result. The designer uses a language
that may have been tailored to his particular application.

. Like the administrator, he may be able to further extend

the language, or he may have been restricted by the
caretaker to an inflexible language. The designer’s
language may look like a particular programming
language to ease the translation into that language.

Examples-
-In the examples that follow, escapes and comments are

enclosed in single and double brackets, respec_tively. The
boxes around the examples and the line numbers to the

left are for reference; they are not part of the language.

Changing the form. Figure 2 shows a procedure written
in the basic Flex language. It accepts a TARGET string
and a TABLE (list) of strings, and returns the position of
the target string in the table.

COMPUTER

The basic Flex form is succinct, and, as in program-
ming languages, little is required that is solely for human
understanding. The emphasis is on automated consisten-
cy checking. This form may be unappealing to some
users. The caretaker could devise an alternate form (Fig-
ure 3) with little change to the meaning of the routine.

The alternate form resembles statements in a
specification language. It includes special clauses to en-
courage the designer to state how the routine works and
the assumptions it makes. The detailed procedural
description is of little interest, at least at this level of
design. The only added substance is the *“at exit:’” clause
(line 8). This is a boolean expression that couid be

checked at run time just before exit from the routine or

that could be used in formal proofs.

Information hiding. Parnas!® introduced the term *‘in-
formation hiding’’ to describe the process of limiting the
knowledge of the internal representation of a process.or
structure to a special group of routines. Type abstrac-
tion and encapsulation are examples of information
hiding. The caretaker could modify the rules of the basic
Flex language to enforce mformatlon hiding in specxal
modules.

In Figure 4, a symbol table that might he found ina
language translator is hidden in a special table module

with a set of routines that alone are allowed to access it.

The following restrictions are to-be imposed on a table
module:

(1) Data segments cannot be exported; no one out-
side the module may reference its data.

(2) The data segment that holds the main data must
have the same name as the module as an aid to the
reader.

(3) Routines within the module cannot depend upon
shared data outside the module.

To fulfill the last condition, the caretaker must add a new
language feature: the MCLOSED routine. This is similar
to a CLOSED routine except that it may depend on (i.e.,
read or write) shared data inside its own module but not
on shared data outside its module. This ensures that any
values it returns will depend only on. the parameters it is
passed and on data stored inside the module.

Defining assignment. In Flex, assignment is simply a
procedure with two parameters. A symbolic operator
(e.g., ‘“:="") can be defined to'call the procedure. Figure
5 is typical of the way the administrator may define
assignment. This definition will usually be made global
to the programming system, as if it were built into the
language. The definition segment defines the assignment
operator. Whenever a statement is encountered of the
form -

X:=Y :
the processor will issue a cail to ASGMOD:ASSIGN, as
if the statement had been given as

call ASGMOD:ASSIGN (alt X, fix ¥)

The types of the formal parameters (lines 8 and 9) state

November 1981

that the type of the first can be any type at all, but the sec-
ond must be of the same type; assignment is allowed
between any two objects of the same type. The procedure
is CLOSED to ensure that the assignment depends only
upon the parameters and that it cannot be influenced by
anything else.

Other assignment-like procedures could be defined—
for example, an ‘‘exchange’’ statement where the follow-
ing statement causes two data objects to exchange values:

X::Y

The administrator may decide to allow integer types to be

assigned to real types, and vice versa. Figure 6 shows a

revised assignment procedure.

Routines in Flex may have several cases. The first that
matches the interface types in a particular call is the one
activated. The first case in Figure 6 (lines 2-14) handles
the assignment of real td integer types, the second

- handles assignment of integers to reais in similar fashion,
and the third case will “catch” all other assignment

types.
In this exampile, the admmlstrator explicitly stated the
actions to be taken when the value of the real variable ex-

1 .table mod SYMTAB
2 export FIND, APPEND [[lét outsiders call these]]

data SYMTAB
[{all data of the symbol table]]
atad

(&, 0 N}

mciosed func FIND (NAME)
use fix SYMTAB [[must read the symbol table}]
{find a named entry in the symbol table}
cnuf

@~ o»

9 mclosed proc APPEND (NAME, VALUE)
10 ~ use alt SYMTAB [fmust write to symbot table]!

11 {append a new -name/value pair to the table]
12 corp
13 dom

Figure 4. A “‘Table” module for information hiding.

mod ASGMOD .

-

2 export fix ASSIGN__OP -
-3 export ASSIGN

[[let outsiders use ": =
[[let outsiders call ASSIGN])

' operation]}

4 def ASSIGN_.OP [{def symbolic infix operation]]
5 infix ': =" = proc ASGMOD:ASSIGN
6 fed :
7 closed proc ASSIGN (ait DEST, fix SORC) :
. 8 form DEST unbound [{destination of the assagnment]]
9 form-SORC typeof (DEST) [[the source}]
10° {copy SORC into DEST]
11 corp
12 dom

Figure 5. Typical definition of an assignment procedure.

99

—

closed proc ASSIGN (ait DEST, fix SORC)

2 case
3 form DEST int
4 form SORC reai
5 if [SORC is larger than max integer] then
6 [set DEST to largest integer value)
7 [send a warning to user}
8 elseif [SORC is smaller than smaHest neg int] then
9 {set DEST to smallest (largest negative) integer]
10 [send a warning to user]
11 else ’
12 [round off SORC and assign to DEST]
13 fi
14 esac
15 case
16 form DEST real
17 . form SORC int
18 [[similar to first case, except
19 treat conversion from int to real]]
20 esac
21 case
22 {{same as Figure 6]}
23 esac
24 corp

Figure 6. Alternate form for assignment.

100

ceeds that of the integer precision of the computer. The
implementer would then know exactly. what he must do
to handle these situations.

Who benefits?

- The design teams. Design teams using Flex benefit
because everyone is speaking the same language. Al-
though modules may exist in different versions, they ail
stemn from the same root, and the variation can be con-
trolled.

Designers also benefit because the process is auto-
mated. The Flex processor detects inconsistencies (inter-
face errors, FIX/ALT access violations, etc.), and design
walkthroughs can concentrate on whether or not the
design is complete, correct, and satisfies the specifica-
tions.

With the aid of a librarian, a centralized design data
base can be maintained and controlled. To aid this pro-
cess, the processor produces a map of the programming
system with a cross-reference listing, and the caretaker
might modify the processor to provide other indices into

- the design. For example, he might require the ‘“‘PUR-
POSE: [text]” declaration at the beginning of each
routine, and the processor could then list these for all
routines in the design.

The managers. The processor has features that a
manager can use to determine the progress of the design.
It keeps several size counts for each module (number of
lines, comments, escapes, nonblank characters, non-

blank characters in comments, etc.). The manager can
determine which modules are lagging and the extent to
which modules are being documented. The ratio of
escapes to other statements gives some idea of the pro-
gress of the top-down design.

Software engineering researchers. A flexible auto-
mated design language can be used as a testbed for soft-
ware engineering methods and theories. The Flex pro-
cessor generates data on the syntactic structure of a
design, and the caretaker could add other specific
measures that could be used to study features of.the
design process. Design groups could be given dif ferent
versions of the language, and their resulting progress, or
lack of it, would test the value of different design
methods. '

Documentation. Design language text can be self-
documenting (as can the text of a program). Since there
are different levels of the design text, there are different
levels of documentation, each providing only the detail
neéded for its level. The caretaker may add features to en-
courage documentation—for example, a specxal comment

. following each data declaration, as shown in Figure 3.

What are the disadvantages?

Many features of a design language that are abstractly
pleasing (such as the assignment of large data structures)
can be quite inefficient if translated literally into a target
programming language. The programmers must then
give special attention to rearranging for efficiency, and
the target code may have a structure radically different
from the design.

Because the design text is never executed, features
whose faults are not obvious until run time occur only in
the target language. They must be “back translated™ in-
to the design language and cured. It may even be that
these faults are corrected, perhaps unknowingly, when
translated into the target language.

Thereis overhead associated with maintaining a design
as well as a programming language data base that small
organizatiéons may not be able to absorb.

Flex has its own drawbacks. Many of the interesting
modifications to the Flex system require the attention of

_ a caretaker who has more-than-casnal familiarity with

the processor software. The design team will need to

"designate a caretaker in much the same way as a librarian

v

is designated.

The Flex processor does a lot of processing and is
relatively slow. But just as an ounce of prevention is
worth a pound of cure, an error caught early in the design
process can avoid expensive changes later.

Over the horizon

We want to avoid the “basket weaving’’ syndrome:
building a tool solely for the sake of building it, rather
than for the benefit of its users. The most important task
of the Flex system is to prove its own value.

COMPUTER -

There are precedents, hm:rever, that attest to the value
of automated design systems. Caine and Gordon® and
Van Leer* both describe PDLs that are less ambitious
than Flex. They are both enthusiastic about the success
of these tools in production environments. Automated
design languages can provide a library design data base
similar to the program libraries that Brooks? describes as
‘““one of the best-done things in the 0S/360 effort.”

" Support tools. There are several extensions to the Flex

system. Many of these tools depend upon- the specific
syntax of the language being used, however, and loss of
flexibility must be considered.

Interactive query systems. Programs that interactively
query the design could answer specific questions from
managers or designers. The information would be cur-
rent, freshly drawn from the actual design. Other pro-

. grams could present graphs of the programming system.

Special editors. Special text editors would help to in-
put the design and better control access to it. They could
preprocess parts of the design and keep track of which
parts had recently been changed and needed to be
reprocessed. They could provide templates similar to the
one in Figure 3 and let the designers “‘fill in the blanks.* *

Specification systems. Specification, the statement of
the problem that a software system is to.solve, is
generally not addressed by design languages. Although a
specification and its software solution should not be
structurally related (the person who states the problem
should only state needs, not specify how those needs are
to be met), there may be a way of extending the general
concepts of design languages to accommodate specifica~
tion. For example, Figure 3 is similar to the PSL/PSA
specification language

Simulators. When a particular language syntax .
becomes standard in an environment, an interpreter
could be written to execute the design. The run-time en-
vironment can be thoroughly controlled with features
too expensive to be included in production programming
languages. The interpreter can be as machme indepen-

. dent as the design language 1tself

- The last word

The Flex software design system gives the software
designer a flexible language with which to communicate
his designs, as well as providing him with the precise,
machine-checkable form and function of a modern pro-
gramming language. The system has benefits for
designers, program managers, and programmers. Since
this tool is relatively new, there are. many questions as to
how it will perform in both experimental and practical
environments. Its early use will be aimed at answering
these questions. M ’

Abknowledgment

The bulk of this work w)as carried out at the Naval
Research Laboratory, Materials Science Division, Wash-
ington, DC.

November 1981

References

1. R. W. Jensen and C. C. Tonies, Software Engineering,
Prentice-Hall, Englewood Cliffs, N.J., 1978, p. 97.

2. R. C. Linger, H. D. Mills, and B. Witt, Structured Pro-
gramming Theory and Praclice, Addlson-Wesley,
Reading, Mass., 1977.

3. S. H..Caine and E. K. Gordon, “PDL—A Tool for Soft-
_ware Design,”’ AFIPS Conf. Proc., Vol. 44, 1975 NCC,
’ pp. 271-276.

. P. Van Leer, ‘;Top-Down-Development Using a Program
Design Language,”’ IBM Systems J., Vol. 15, No. 2, 1976,
pp. 155-170. -

5. R. Boyd, and A.. Pizzarello, *Introduction to -the
WELLMADE Design Methodology,”’ IEEE Trans. Soft-
ware Eng., Vol. SE-4, No. 8, July 1978, pp. 276:282.

‘ 6. B. P. Buckles, ‘“‘Formal Module Level Specifications,"
Proc. ACM Ann. Conf., Seattle, Wash., Oct. 1977, pp.
138-144.

7. D. Teichroew, and E. Hershey, ‘“‘PSL/PSA: A Computer-
Aided Technique ‘for Structured Documentation and
Analysis of Information - Processing Systems,” IEEE
Trans. Software Eng Vol. SE-3, No. 1, Jan 1977 PP
41-48.

8. D. T. Ross and K E. Schoman, “Structured Analysxs for
. Requirements Definition,” IEEE Trans. Software Eng.,
Val. SE-3, No. 1, Jan. 1977, pp. 6-15.

9. T. E. Bell, D. C. Bixler, and M. E. Dyer, ‘‘An Extendable
Approach to Computer-Aided Software Requirements
Engineering,”’ IEEE Trans. Software Eng., Vol. SE-3, No.
1, Jan. 1977, pp. 49-60.

. T. Winograd, ‘‘Beyond Programming Languages,”

Comm. ACM, Vol. 22, No. 7, July]979 pp. 391-401.

- Professionals

in today" s job market you can most likely pick up the telephone, cali a -
friend or aquaintance and have job interviews arranged in 48 hours! But
is this really the best way to approach such an tmponam process? At |
Wintov Wyman we don 1 believe it is.

Our busmess is the busmcss of coptacts, and our staff of professnonal
consl.!_llams can provide you with objective evailuations which wiil help
ti the.one that will best satisty your

you g job

personal and professaonal goals.
With Winter Wyman, you can conhdcmlally axpiore career opponunihes
aligneq with your interests and get tha advantage of our knowiedge of
the markeipiace and wide range of industry contacts.

We are currently searching for md/wduals with a .
record of accomplishment in the following disciplines:

¢ MICRO * NETWORKING
ARCHITECTURE
¢ DIGITAL LOGIC

* OPERATING + FIRMWARE DESIGN

SYSTEMS DESIGN *, AnALOG RFIMODEM
« DATA BASE DESIGN DESIGN

-Clients include mainf_ramé, mini, micra, and peripheral
vendors; research organizations; software and
systems houses; and consulting firms.

For a confidential discussion please write; or call
Rande McCollum or Sally Siiver at (617) 235-8505.

MEMBER
MASSACHUSETTS PROFESSIONAL
PLACEMENT CONSULTANTS

Welissiey Otfice/80 William Street Weilesiey,

Reader Service Number 12

+ 11 B. Wegbreit, “The Treatment of Data Types in ELL,”

12.

13.

14,

15.
16.
7.
18.

19.

Comm. ACM, Vol. 17, No. 5, May 1974, pp. 251-264.

K. Jensen and N. Wirth, Pascal—User Manual Report,
Springer-Verlag, New York, 1974.

B. W. Lampson et al., “‘Report on the Programming
Language EUCLID,” SIGPLAN Notices (ACM), Vol. 12,
No: 2, Feb. 1977, pp. 1-79.

B. Liskov et al., “Abstraction Mechanisms in CLU,”

“Comm. ACM, Vol. 20, No. 8, Aug. 1977, pp. 564-576.

S. A. Sutton, and V. R. Basili, “FLEX: A Flexible,
Automated Process Design System,”® NRL Report 8349,

‘Naval Research Laboraw}'y, Washington, DC, 1979.

S. A. Sutton, *The FLEX System: User and Caretaker’s
Manual,”” Technical Report TR-765, Department of Com-
puter Science, University of Maryland, 1979.

V. R. Basili, and A. J. Turner, SIMPL-T: A Structured
Programming Language, Paladin House, Geneva, Ill.,
1976.

J. B. Morris, “A Synopsis of Data Type Abstraction in
Programming Languages,” Los ‘Alamos Scientific
Laboratory Report LA-UR-76-1750, 1976.

D. L. Parnas, “*On the Criteria Used in Decomposing
Systems into Modules,” Comm. ACM Vol. 15, No. 12,

Dec. 1972, pp. 1053-1058.
. F. P. Brooks, The Mythical Man-Month: Essays on Soft-

ware Engineering, Addison-Wesley, Reading, Mass., 1974.

Stephen A. Sufton is a senior software
designer and quality assurance admin-
istrator at Digital Technology, Inc., in
Champaign, Illinois. His professional in-
terests include all areas of software engi-
neering and software quality assurance,
particularly software testing and verifica-
tion. Previously, while at the Naval
Research Laboratory in Washington, DC,
he designed and implemented computer

systems for automated mechanical testing of advanced military
materials.

Sutton received his BS and MS degrees in theoretical and ap-
plied mechanics from the University of Illinois in 1973. He
received an MS in computer science from the University of
Maryland in 1979 .

Victor R. Basili has been a-member of the
faculty of the Department of Computer
Science at the University of Maryland
since 1970, where he is presently an
associate professor. From 1963 to 1967 he
taught in the mathematics and computer
science department at Providence College,
Providence, Rhode Island. He has beenin-
volved in the design and development of
several software projects, including the

Simpl famxly of structured programming languages, the graph

algorithmic language, Graal, and the SL/1 language for the
CDC Star. Currently he is involved in the measurement and
evaluation of software development at the NASA/Goddard
Space Flight Center.

© Basili has acted as a consultant for several industrial
organizations and government agencies, including IBM, GE,
CSC, NRL, NSWC,'and NASA. He is a member of ACM, the
IEEE Computer Society, and the American Association of

University Professors.

He received his BS degree in

mathematics Yrom Fordham College, his MS in mathematics
from Syracuse University, and his PhD in computer science
from the University of Texas at Austin, in 1961, 1963, and 1970

respectively.

COMPUTER

