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This paper analyzes the resource utilization curve devel-
oped by Parr. The curve is compared with several other
curves, including the Rayleigh curve, a parabola, and a
trapezoid, with respect to how weli they fit manpower uti-
lization. The evaluation is performed for several projects
developed in the Software Engineering Laboratory of the
6-12 man-year variety. The conclusion drawn is that the
Parr curve can be made to fit the data better than the
other curves. However, because of the noise in the data,
it is difficult to confirm the shape of the manpower distri-
bution from the data alone and therefore difficult to vali-
date any particular model. Also, since the parameters
used in the curve are not easily calculable or estimable
from known data, the curve is not effective for resource
estimation.

INTRODUCTION

Two important problems face the project manager at
the beginning of the software development process.
First, the manager must estimate the basic quantities
of concern: the cost of the system, the duration of the
project, and the size of the development team. The
techniques for estimating cost have received more at-
tention, but perhaps the crucial quantity in determining
the success of the project is the schedule. The initial
estimate of duration is often incapable of being changed
because many contracts now include deadlines, with fi-
nancial penalties for missing them. The mistake of
underestimating the project duration can have dire ef-
fects. Brooks [1] points out that the common practice
of increasing the production team when a project is late
can involve more trouble than benefit. Putnam [2] has
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presented a model that illustrates in a quantitative way
that the tradeoff of manpower for time is not free. Fur-
ther, there are limits as to how far a schedule can be
shortened depending on the difficulty of the develop-
ment effort. Scheduling decisions cannot be made ar-
bitrarily as a matter of convenience.

Once the estimates of the project cost, schedule, and
team size are made, the next problem facing the project
manager is how to distribute the total effort (repre-
sented by cost and team size) over the course of the pro-
ject schedule. This problem has been solved for some
large-scale projects using the Putnam model. Previous
work has been done at the Software Engineering Lab-
oratory (SEL) at the University of Maryland to decide
whether the early prototype of the Putnam model, de-
signed for large projects, could be applied to small- and
medium-scale projects as well. The results have been
mixed. To understand better why this model is less ef-
fective, it is important to consider the characteristics of
the SEL environment.

The Software Engineering Laboratory collects and
analyzes the data from projects built by Computer Sci-
ences Corporation for the Goddard Space Flight Center
(NASA). The goals of the laboratory are

1. to provide management with a mechanism to moni-
tor the status of current projects;

2. to collect data to study the software process, to find
what parameters can be isolated (understood), and
to build measures incorporating these parameters;
and

3. to compare the effects of various techniques upon
system development [3, p. 116].

The seven projects used in this study are all attitude
determination packages for satellite systems. They
range in size from 50,900 to 111,900 lines of delivered
source code (including comments). The code is mostly
written in FORTRAN, with a small portion written in as-
sembly language. The cumulative effort varied from 3
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Table 1. Statistics About the Projects

Project

1 2 3 4 5 6 7
Total lines® 111.9 55.2 50.9 754 754 854 89.5
New lines” 84.7 440 453 493 20.1 76.9 62.0
Developed lines® 90.2 46.2 46.5 54.5 31.1 78.6 67.5
Effort (man-months) 1157 95.9 78.9 90.7 39.6 98.6 98.3
Duration (months) 158 11.5 13.2 125 8.7 174 143
Average staff size 73 83 60 73 46 57 69

°In thousands of lines of source code.

to 10 man-years and lasted 9-18 months. A complete
set of statistics is given in Table 1. All these projects
fall into the medium-size range. It should be noted that
new projects are often upgraded versions or other mod-
ifications of existing systems. The implications of this
are twofold. Many projects can use some of the design
and even the code of previous systems, and the organi-
zation as a whole has great experience with the appli-
cation area (since for them the problems are well de-
fined). In contrast, large-scale projects can be
characterized as needing more than “2 years of devel-
opment time, 50 man-years of effort or greater, and a
hierarchical management structure of several layers”
{2, p. 302].

The work described in this paper is a continuation of
the studies of Basili and Zelkowitz [3] and Mapp [4].
Their analysis can be divided into two parts. In the first
part, they asked whether the Putnam model could be
used as an estimation tool. They took the Rayleigh
equation (which is the central part of the Putnam
model) and derived a relationship among three impor-
tant quantities of the software process: the total effort
K, in man-hours; the number of weeks T, until accep-
tance testing; and the maximum staffing Y, in man-
hours per week. During the requirements phase the
contractor estimates each quantity, and the data are
reported on the general project summary (GPS) form.
Given any two of these estimates, a prediction of the
third quantity can be based on the Rayleigh equation.
The most interesting quantity (as we mentioned before)
is the project duration, since NASA budgets fix the
total resources each year in advance, and the contractor
assigns a fixed number of people to the effort. The pre-
dictions of the time to acceptance testing were quite
good when compared with the actual dates, in contrast
to the original estimates [3]. The GPS estimates were
consistently too low. Thus, the Rayleigh equation pro-
vides a check to ensure the project duration is not
underestimated.

The second part of the analysis considered how well
the Rayleigh curve fit the shape of actual staffing data
over time. The Rayleigh equation can be rewritten in

V. R. Basili and J. Beane

the form of a line for the variables y/t and 2. After
this, a line can be fit to the transformed data using lin-
ear regression. When Basili and Zelkowitz tried this,
they found that the resulting curves did not follow the
general shape of the data. At a glance it was clear that
other curves could have fit the data better, and the
quantities ( 7, and K) taken from the fitted curve were
unreliable as predictors. :

Tom Mapp carried the curve-fitting comparison one
step further. He tested four curves (a parabola, a tra-
pezoid, a horizontal line, and the Rayleigh curve). The
measure of comparison was the average squared (ver-
tical) distance between the curve and the data points.
Mapp used two techniques to find a best fitting curve
for the Rayleigh equation and the parabola, the linear
technique and a blind search. The blind search system-
atically sampled values from a bounded portion of the
parameter space. The parameter set that yielded the
best error measure became the center of a smaller
“search box.” When a new iteration failed to improve
the error measure, the search was terminated. In every
case the search technique produced a better fit than the
linear method. The best curve, determined from the
rank orderings of the final error measures for four proj-
ects, was the parabola. The study concluded that the
Putnam model was successful at predicting milestones
but did not fit the staffing data for our environment.

In this paper we analyze a new dynamic staffing
model proposed by Parr [5]. To begin we review the
general differences between static distribution models,
based on a work breakdown structure, and dynamic dis-
tribution models, derived from a theory about problem
solving. Then we examine the two theoretical (dy-
namic) models of Parr and Putnam to illuminate the
critical assumptions that shape the curves and how they
differ. Finally, we consider the claims made by dynamic
staffing models and attempt to validate them using data

. from our environment. In particular, how well do dy-

namic models actually fit our data, and can the Parr
model be used to predict project duration (in a manner
similar to the Putnam model)?

DISTRIBUTION MODELS, CLAIMS, AND
LIMITATIONS

Static distribution models start with a general descrip-
tion of the activities that constitute the software devel-
opment process for a given environment. Then the tasks
that comprise each activity are grouped under the right
development phase. The important step is to distribute
the total effort across these tasks. Each task is given a
percentage, based on the skill and intuition of the model
builder, and any available accounting data (assuming
it reflects a similar environment of software methodol-
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ogies). The percentages can be divided further to take
into account different types of personnel (managers, an-
alysts, programmers, or librarians) and different levels
of experience that will be needed for the job. An ex-
ample of a work breakdown structure is given by Wol-
verton [6]. When the functional specifications are com-
plete, some adjustments will often be made 'in the
baseline percentages to reflect the special demands of
the particular project.

The static model provides a detailed staffing algo-
rithm once an estimate is made for the total effort and
the project schedule. A staffing algorithm is an excel-
lent tool to monitor the progress of the project. First,
the manager can use the algorithm to anticipate the
fluctuations in his manpower needs before it becomes a
problem. Because hiring new people is difficult, an in-
crease in staffing requires some warning. In addition,
the milestones of the schedule work like a sequence of
checkpoints. When a milestone is not met, the work
breakdown highlights which tasks are in trouble and
possibly need more people.

The impulse to add more people to a late task is a
natural one, but it can cause the task to be even later.
It is unexpected phenomena like this that motivated the
development of dynamic staffing models based on a the-
ory of how we build software. Dynamic models propose
assumptions to help explain such behavior. For exam-
ple, adding more people to a working group increases
the number of communication lines. The job of keeping
people informed is more costly in terms of time and ef-
fort. Also, new people require an adjustment period, to
get acquainted with the task, and will probably divert
some of the energy of the original team members. On
the other hand, there are inherent constraints in the
software problem itself. A partial ordering of the indi-
vidual subproblems exists, which limits the amount of
work that can be done at the same time (and the num-
ber of people who can be effectively used). All these
assumptions could help to explain why a part of the ef-
fort that is applied to a task does not result in any ac-
tual progress.

Dynamic distribution models are not alternatives to
static staffing methods but instead complement them.
Dynamic models deal with the kind of macroscopic
quantities that are needed to use a static model. Used
alone, dynamic methods lack the necessary detail to be
an effective staffing algorithm, but they provide a
glimpse of the overall picture. Dynamic models can es-
timate critical milestones in the schedule. They can
serve as a means of checking the reasonableness of the
percentages in the work breakdown structure with re-
gard to the weekly effort expended. One aspect of the
Putnam model even shows how a change in the speci-
fications at any time will effect the schedule, the total
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effort, and the size of the code. Next we consider how
a theoretical model derives an effort distribution.

SHAPING A DISTRIBUTION CURVE; THE
THEORIES

The dynamic models rely on a set of assumptions de-
scribing how we build software. A software project con-
sists of solving a bounded set of problems. Each prob-
lem represents some aspect of the design or
implementation for which a decision must be made be-
tween possible alternatives. We are concerned with the
constraints describing when effort can be effectively ap-
plied to solving these problems. The dynamic models of
Parr and Putnam agree that the reason for a decrease
in effort at the end of the project is an exhaustion of the
problem set. This decrease reflects the nature of the de-
bugging task. “Debugging is ‘99 percent complete’
most of the time” [1, p. 154]. We do not have adequate
measures to decide when a project is done, or even how
much longer it will take. System debugging does not
lend itself to people working in parallel, because errors
tend to be discovered sequentially. The correction of
one error uncovers another. It requires a small number
of people working over an extended period to complete
this phase of the project. Both models use an exponen-
tial tail to describe this situation.

The models disagree over what constrains the distri-
bution curve at the start of the project. Putnam argues
that progress can only be made once the development
team becomes familiar with the problem and the pro-
posed method of solution. The familiarization (or learn-
ing) rate that fit his data best was a straight line whose
slope is determined by management’s staffing decisions.
However, there are practical limits as to how fast the
buildup can be. First, it is hard to obtain new people,
whether by hiring them or transferring them from other
projects. Second, there is an organizational limit on the
number of people that can communicate and work ef-
fectively with one another. The rate of the initial
buildup also has implications for the duration of the
project. Given a fixed amount of total effort, the faster
the rise in staffing, the shorter the schedule. The size
and the complexity of the problem fixes a minimum
time period for the project duration.

Parr feels that these considerations focus on the
wrong issue. It is important to understand how the
problem itself limits the effort that can be effectively
applied before considering those management decisions
that are economically motivated. In that way we can
examine an optimal staffing plan for the problem with-
out concern for practical considerations, whose impact
can be analyzed separately. Parr suggests that there are
dependencies between the problems, so that the work
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on a particular task cannot begin until others have been
completed. These dependencies form a partial ordering.
At any given time a subset of the unsolved problems
exists, called the visible set, consisting of those that are
ready to be worked on; in other words, all of the tasks
on which a visible problem depends have been solved.
The size of the visible set is the quantity that manage-
ment is aware of, and (provided there are enough peo-
ple to work on all of the visible problems at once) it
should determine an optimal level of staffing.

The Rayleigh curve rises in a straight line from the
origin to a rounded peak and then falls in an exponen-
tial tail. The formula for the Rayleigh curve is

y'(t) = 2Kate™",
where

y’ is the effort in man-hours expended per week,
t the time in weeks,

K the development effort in man-hours (the area under
the curve), and

a a shaping parameter.

a determines the slope of the rising portion of the curve
and equals —3r3, where 14 is the point of maximum
manning. When K represents the life-cycle cost of the
system, ¢4 corresponds roughly to the development time
up to acceptance testing. This equation makes explicit
the inverse relationship between the learning rate and
the project duration. In the discussion to follow X rep-
resents the development cost (that is, we assume no
maintenance or enhancement). ‘

The normalized Parr curve is bell shaped (symme-
tric about the origin) and trails off exponentially on
both sides. The formula for the Parr curve is

y(t) = aK'Ae™" /(1 + Ae™)'+/r,
where

' is the effort in man-hours expended per week,
t the time in weeks,

K’ the development effort in man-hours,

A the horizontal shift factor,

« the time normalization factor, and

7 a structuring index.

v measures the extent to which formal structured tech-
niques are a part of the development process. When vy
> 1 the peak of the curve is skewed to the right. The
purpose of structured programming is to delay imple-
mentation decisions through the use of abstraction and
information hiding. These practices result in more time
being spent in the specification and design phases so
that the coding and testing phases will be simpler (par-
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titioned in such a way as to minimize interfaces and
allow maximum parallel effort). « stretches or shrinks
the time variable onto a unitless scale, and A4 shifts the
curve horizontally along the time axis.

K’ has a different interpretation than K. Putnam as-
sumed that each project has an official starting date
prior to which no money or people are budgeted. This
was reasonable in his environment, because a separate
organization handled the preliminary work. If the start-
ing date is ¢ = 0, then the Rayleigh curve must pass
through the origin. Parr argues that there is always
some effort expended before the official project start.
This early work serves the important function of defin-
ing the problem set that represents the desired software
system (through feasibility studies and requirements
analysis), establishing its internal structure (through
functional specifications), and solving the top-level
problems (through preliminary design) on which all the
others depend. The positive effect of these activities is
to expand the visible set of unsolved problems that is
available to be worked on at the project start. General
experience with the application area, specific design, or
even code contributes to the structuring process. Thus
the Parr curve does not pass through the origin. If K,
represents the initial effort (the area under the curve
before ¢t = 0), then K’ = K + K, and K, along with
the shaping parameters « and A, determines »’(0), the
level of initial staffing. More will be said concerning this
relationship in the section on estimating the Parr curve
parameters.

A second difference between the two curves relates
to the degree of flexibility in positioning the point of
maximum staffing. As we mentioned previously, this
point is determined by the slope of the initial rise (i,
being directly related to a). A large slope implies an
early peak and a rapid fall in staffing. Conversely, a
small slope implies a late peak with little or no decrease
before acceptance testing. Basili and Zelkowitz com-
ment that for medium-sized projects “the resource
curve is mostly a step function.” The Rayleigh curve
seems inappropriate to this shape, and “variations in
the basic curve so that it is flatter in its mid-range” are
being investigated. The Parr curve is one possibility. In
the next section we present our results from the curve
fitting comparison between Parr and Rayleigh.

DO DYNAMIC MODELS ACTUALLY FIT OUR
DATA?

We considered two paradigms in our analysis of curve
fitting. First, we wanted to be able, given the data on
the effort associated with a project, to tell what staffing
algorithm (actually, what distribution curve) had been
used in its development. The curve we were looking for
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would fit the data better than the others. In particular,
we set up a comparison between the two theoretical
curves (those based on a software theory) of Parr and
Putnam, as well as two control curves with reasonable
characteristics (initial rise to a peak and then a fall). If
a theoretical curve did better, then this would tend ap-
proximately to validate the assumptions made by the
model.

The possibility remained that our data contained so
much noise that none of the curves would stand out as
better than the rest. In that case, a second paradigm is
to be considered: Given the effort data and a staffing
algorithm, we can decide whether in fact the algorithm
had been used for the development process. This para-
digm was tried with a staffing rule of thumb supplied
by the contractor.

The noise comes from several sources. Since the data
is weekly, weeks that contain holidays involve less total
effort. If one member of the team is sick or on vacation,
there is a drop in the weekly effort. If there is a prob-
lem, several people will work overtime and create a rise
in the weekly effort. This is especially true when the
average staff size is between 4.6 and 8.3 on the projects
studied. To eliminate the noise we tried smoothing the
data and combining four-week intervals. Unfortu-
nately, this had little effect.

The nature of our effort data made it necessary to
use an error measure for comparing curve fits; often a
visual comparison was not possible. We chose the same
measure as Mapp had used, namely the standard error

SE:i_U_(_E),:VLW’

=1
where

N is the number of data points,

x(?) the effort in man-hours expended in week ¢ (the
data), and

A1) the distribution curve evaluated at ¢.

The technique to minimize SE involved two routines
that were borrowed from the IMSL (International
Math and Statistics Library) package. The first,
ZXMIN, uses a quasi-Newtonian method to calculate
the minimum of a user-supplied function. The routine
requires an initial guess for the parameters of the func-
tion and then in an iterative fashion generates a new set
of parameters from the old set. In order to avoid con-
verging to a local minimum, we started the search at a
large number of points. The second routine, XSRCH,
did the selection of the initial parameter sets from a
search box of reasonable values fixed by the user. Theré
are two conditions that control the termination of the
search process, the number of iterations and the differ-
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Table 2. An Initial Curve-Fitting Comparison: Rayleigh vs

Parr Using SE
Project
1 2 3 4 Average
Parr curve 939 2356 2204 2928 2204
Rayleigh curve 3379 4501 3926 4758 3926

ences between consecutive values of the parameters.
One more twist was added to force the search to stay
within the initial search box.

In the first curve-fitting comparison the Parr curve
did much better than the Rayleigh curve on each of
four projects (see Table 2). The average of the standard
error across the projects showed that the Parr fits were
nearly twice as good (2204 to 3926). But these results
were not very interesting, because the Parr curve has
four parameters and the Rayleigh curve has only two.
We had the suspicion that any curve with four param-
eters would have done better than one with two. In
order to make our comparisons meaningful we decided
to examine curves with an equal number of parameters.
In the next test we therefore removed a parameter from
the Parr curve and added one to the Rayleigh curve.
We also included two more control curves. If a control
did as well or better than the curves based on a theo-
retical distribution model, we could conclude that for
our environment there was nothing special about the
curve shapes.

The choice of parameter to remove from the Parr
curve was decided once we noticed that the parameter
A could change by several orders of magnitude and the
curve still maintain a good fit (see Appendix A). The
other parameters seemed to compensate in such a way
as to suggest the power relationship

A= flay) = 2072

A second possibility for removing A was to set it equal
to a constant. For the projects in question the constant
1000 produced good fits. The results from comparing
these three-parameter variations to the basic Parr curve
(see Table 3) show that a constant 4 does almost as
well as an extra parameter.

To increase the flexibility of the Rayleigh curve we

Table 3. Three- and Four-Parameter Fits

Project
1 2 3 4 Average
A = 1000 939. 2356 2913 3060 2317
A = floy) 991 7096 2704 3303 3524

Four-parameter curve 939 2356 2592 2928 2204




64

Table 4. Three-Parameter Curve Fit
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Project
1 2 3 4 5 6 7 Average

SE

Parr 938 2356 2913 3060 2367 2072 2864 2367

Rayleigh 1837 3853 2517 3713 2980 2580 3350 3007

Parabola 1115 2298 2505 3497 3078 2508 3203 2601

Trapezoid 974 2265 2588 2981 2517 2722 3066 2445
Rank ordering )

Parr 1 3 4 2 1 1 1 13

Rayleigh 4 4 2 4 4 3 4 25

Parabola 3 2 1 3 3 2 3 17

Trapezoid 2 1 3 1 2 4 2 15

incorporated a horizontal shift factor so that the curve
was not forced to pass through the origin. We borrowed
the control curves from the Mapp study, a parabola and
a “trapezoid” consisting of three straight lines. The
exact formulation for these curves is given in Appendix
B. The three-parameter curve fitting comparison (in-
cluding graphs and tables of SE values and rankings)
is presented in Table 4 and Figures 1-7. With respect
to average SE values, the Rayleigh fits had improved,
but Parr still did better. It is reassuring to note that the
Parr curve also did better than either of the controls in
terms of average fit and total rankings. However, we
question whether the differences between these evalu-
ations are large enough to be significant.

We concluded that the large fluctuations in the data
for projects of this size effectively covered up the inher-

Figure 1. Three-parameter fit of man-hours to weeks for
project 1. Key: - — —, Parr curve; ---, Putnam curve;
— - -, parabola; , trapezoid.
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ent shape of the effort distribution, if in fact such a
shape exists as Putnam and Parr suggest. Consider our
experience: When fitting the four-parameter Parr
curve, the noise in the data allowed us to change the
characteristics of the curve considerably (as reflected in
the parameter A) and still retain a reasonable fit. Also,
three very different curves, the trapezoid, the parabola,
and Parr did equally well in the three-parameter com-
parison. The very data seem to contradict the assump-
tion that there are constraints on staffing, whether in-
troduced by management concerns or by problem
dependencies. It therefore appears that we cannot tell
what kind of software environment or staffing algo-
rithm was used given only the effort data for a given
project.

The second paradigm attempts to validate a staffing

Figure 2. Three-parameter fit of man-hours to weeks for
project 2. For key see Figure 1.
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Figure 3. Three-parameter fit of man-hours to weeks for
project 3. For key see Figure 1.

algorithm given both the algorithm and the effort data.
The rule of thumb for staffing that the contractor tries
to follow is this:

1. At the start of the project assign from one-half to
three-quarters of full staffing (because of a lack of
early funding and problems in finding available

people).

Figure 4. Three-parameter fit of man-hours to weeks for
project 4. For key see Figure 1.
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Figure 5. Three-parameter fit of man-hours to weeks for
project 5. For key see Figure 1.

w

At the end of the design phase, plus-or-minus a
month, build to full staffing.

During the coding phase maintain full staffing.
During the testing phase, (a) if on schedule, de-
crease manning as appropriate; (b) if behind, work
overtime; and (c) if there are late changes to the user
requirements, increase manning by an additional
one-third.

Figure 6. Three-parameter fit of man-hours to weeks for
project 6. For key see Figure 1.
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Figure 7. Three-parameter fit of man-hours to weeks for
project 7. For key see Figure 1.

These guidelines convey the impression that manage-
ment has considerable flexibility in terms of staffing to
handle problems when they arise. The reason new peo-
ple can be brought in at the end and contribute almost
immediately is the similarity between the projects.
Often a new system is a modification or enhancement
of an old system, as seen in the percentage of existing
code that gets reused, so little time is wasted in becom-
ing familiar with a new system.

Next we wanted to check whether the contractor’s
rule of thumb was being used in practice. Since the al-
gorithm is expressed as a step function, we needed to
calculate averages for the phases concerned. In partic-
ular, we chose an 8-week period from the middle of
each phase, which we thought could be representative
.in the sense that expenditures for those weeks took on
roughly median values for the phase as a whole. We
gave added weight to periods in which expenditures
were more or less stable, whether the period fell in the
middle or not. The averages computed from these pe-
riods are approximate. By selecting a different period
the numbers can be changed by as much as 25 man-
hours. Table 5 shows the numbers for five projects. If
we assume that the numbers for the coding phase rep-
resent full staffing, they correspond fairly well to the
algorithm. The average percentage of weekly design ex-
penditures was 67% that of full staffing taken across all
projects, a number midway within the range quoted in
the algorithm for design, and various projects seemed
to exhibit behavior that fit well into the three options
for step 4. Project 1 decreased the level of staffing, proj-
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Table 5. Verifying the Contractor’s Algorithm

Project Design® Code® Test® Design/code  Test/code
1 197 270 220 0.73 0.81
2 94 364 360 0.26 0.99
3 202 244 253 0.83 1.04
4 205 245 326 0.84 1.33
5 114 170 224 0.67 1.32
Average: 0.67 1.10

“Averages for 8-week periods (in man-hours per week).

ects 2 and 3 remained at the same level, and projects 4
and S increased staffing by one-third during the testing
phase. The conclusion, then, is that we cannot reject the
assumption that the contractor’s algorithm is being
used as a rough guideline by the managers. However,
if we plotted the contractors algorithm as we did the
other curves, the SE would be no better.

REALITY AND THE PARR PARAMETERS

One of the benefits we mentioned in connection with
theoretical effort distribution models was the ability to
predict important milestones in the development sched-
ule. However, before turning to the prediction problem,
we wanted to be sure that the curves we fit to the effort
data resulted in dates that were close to the actual mile-
stones. This was another way of validating the model.
In particular, we looked at the time period from the of-
ficial start of the project through acceptance testing
(t,), or roughly the duration of the development activ-
ity. Solving the Parr equation for ¢, yields

_ 1 In(k/K)T -1
T ey 1000 ’

where K7 is the cumulative effort up to acceptance test-
ing. (In the SEL environment we have estimated K,
= 0.88K. To convert these parameters into their Parr
equivalents we added K, to each, so K, = 0.88 (K’ —
Ky) + K,.) The derivation of the equation for ¢, is given
in Appendix C, and the results of the comparison be-
tween the real values of ¢, and the values taken from
the curve are presented in Table 6. Except for project
1, the predicted values are within 5% of the true values.
The bad estimate can be explained (at least in part) by

Table 6
Project
1 2 3 4
t, (estimated) 57.7 52.1 61.9 55.8
t, (actual) 47.8 54.5 60.8 534
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our not beginning to collect data for project 1 until well
into the design phase.

Now that we had some confidence that the Parr
curve fit the data about as well as any other and that
the milestones calculated from the parameters were
fairly accurate, we turned to the difficult problem of
estimating the curve’s parameters. K’ is the total de-
velopment effort, and a model like that of Walston and
Felix [7] or Boehm [8] could be used to obtain an es-
timate. y describes the degree to which formal (struc-
tured) methodologies are part of the development pro-
cess. This parameter like Putnam’s “technology
constant,” can be calibrated based on the techniques in
use for a given environment. The remaining parameters
A and « determine K, the amount of effort expended
before the official start of the project; o converts the
time variable onto a unitless scale, and A shifts the
curve horizontally. Both depend on the duration of the
project, the unit of measure for the time variable, and
what part of the curve (how much of the exponential
tails) is to be used to fit the data. a was introduced in
the derivation of the Parr curve as a proportionality
constant relating the rate of expending effort to the
amount of work to be done at a given moment. If it took
one person one time unit to solve each problem in the
development effort, then o would be 1. It can be shown
that when A is large (for our environment A4 was on the
order of 1000) « is approximately equal to the y inter-
cept of the distribution curve, y’(0), divided by K, (see
Appendix D). Our energies were therefore directed to
finding a way to estimate these two quantities.

During the early stages of the project when the ef-
fort estimation and distribution models are needed,
some initial effort data are available (Table 7). We at-
tempted to use the data to estimate the y intercept of
the distribution curve. Table 8 compares the y intercept
with the first data point, the average of the first five
data points, and the average of the first ten data points.
For projects 1 and 4 the initial effort point is a close
approximation to the y intercept, and after 5 weeks the
estimate is even better. However, the averages of the
initial effort for the other two projects do not begin to
approximate the y intercept until after the tenth week.

This approach seemed to fail because of the nature
of our data. Most projects have trouble finding enough
people at the start, and many of the people who are as-

Table 7
Project
1 2 3 4
Old code (%) 24.2 20.5 11.0 34.5
Ky/K 40.6 8.9 335 28.0
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Table 8
Project
1 2 3 4
y intercept 179 79 138 136
Effort for first week 163 11 20 110
Average for first 5 weeks 175 49 64 133
Average for first 10 weeks 185 71 130 163

signed to the project begin by working part time, so
even when the new effort allows a good deal of parallel
activity at its inception, the problem of short. staffing
often squanders the opportunity for a fast start. As a
result, the optimal manpower rates as reflected by the
Parr curve are not met by the projects with early staff-
ing problems. Using the initial effort data for a project
is thus not an acceptable method of estimating y’(0).

We also tried to estimate K, combining those activ-
ities that help define the problem before the official
start of the project. Such activities as feasibility studies,
requirements analysis, the use of existing design and
code, and the general experience of the contractor with
the application area partition the problem so that more
people can work in parallel at an early stage in the de-
velopment. For a rough estimate we chose the percent-
age of existing code because it was easy to get the data.
Table 7 shows that comparison to K. Much of the vari-
ation in K, is not explained by this factor alone. To im-
prove the comparison other factors (such as those men-
tioned above) will have to be incorporated into the
estimate.

Thus we were unsuccessful in using the Parr curve
as a predictor of such milestones as completion date
since we were unable to associate the equation param-
eters with any data that would be easy to estimate at
the onset of the project.

CONCLUSION

Dynamic distribution models offer an estimation tool
for critical software quantities such as project duration,
as well as a set of assumptions to enhance our under-
standing of problem solving behavior. To provide some
assurance that these assumptions are valid for a given
environment, we proposed fitting the effort distribution
curve to actual data. In previous studies the Rayleigh
curve proved to be a good method for estimating project
duration, but for small- to medium-scale projects it did
not fit the data. Thus there is some doubt whether the
model can be used to monitor the expenditures of effort
for an environment. This paper analyzed the applica-
bility of an alternative curve developed by Parr. In a
comparison of four curves with an equal number of pa-
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Table 9. Parr Curve Fit for A Constrained (Project 1)

<20 <25 <40 <100 <200 <1000
100y 72 16 19 9.1 10.1 12.4
flay) 355 538 593 1344 2650  1296.1
SE 1382 1338 1218 1091 1019 939

rameters, the Parr curve produced the best fits. How-
ever, the results and the data tend to contradict rather
than support the theory on which the curve is based.
The data imply that management has the ability to
change staffing almost arbitrarily to meet the short-
term needs of the project. The fluctuations in the data
imply that a natural shape for the effort distribution
may not exist for projects of this size.

The Parr model must do more than fit effort data.
Although a fitted curve produced an accurate predic-
tion of project duration, the crucial question is whether
we can discover a way to estimate the Parr parameters
themselves. Our efforts have not been fruitful up to this
point, but other options of study remain. For now the
Parr curve has limited usefulness as an effort distribu-
tion and resource estimation tool.

APPENDIX A. Eliminating a Parameter from the Parr
Curve by a Power Relationship

The Parr curve is flexible enough to allow A to change by
several orders of magnitude and still retain a reasonable fit.
As A is increased, the product of @ and v increased in a sim-
ilar way so as to suggest the following power relationship:

A = flay) = 2%,

This function was deduced by noticing the change in the pa-
rameters for various fits where the value of A was con-
strained to be less than some bound. In the cases of projects
1 and 4, the bounds were consistently set too low, so that by
increasing the bound the fit improved. The results of con-
trasting A are shown in Tables 9 and 10.

APPENDIX B. Three-Parameter Curves

Three curves were compared with the Parr curve in the
three-parameter test. The variable 7 is time measured in
weeks.

For the Rayleigh (Putnam) curve,

Y(1) = 2Ka(t + t)e o+’
where

y’ is the effort in man-hours expended per week,

a a shaping parameter related to the time when the curve
reaches a maximum,

K the total effort for the project in man-hours, and
t, a horizontal shift factor to remove the origin constraint.

V. R. Basili and J. Beane

Table 10. Parr Curve Fit for 4 Constrained (Project 4)

<20 <50 <100 <500 <1000 <3000
100ay 5.9 8.1 9.1 11.7 12.9 14.9
Sfeoy) 148 69.1 1334 8317 1910.6 76434
SE 4123 3425 3341 3145 3060 2928

For the parabola,

yy=att+bt+c if y() >0,
=0 if (1) <o.

The parameters a, b, and ¢ do not have any special meaning
from an estimating point of view.
-For the trapezoid,

y(t) = [3(H—y)/Tlt +y, if 0=<t<T/3
=H if T/3=<1<2T/3,
=3H — 3H/T)t if 2T/3<t<T,
=0 if 1>T,

where

 is the effort in man-hours expended each week,

H the maximum manning for the project in man-hours,
T an arbitrary time period in weeks, and

'y, the manning at project start.

The measure for goodness of fit used in comparing the
curves (see Table 4) was

se = 3 L0 — ()"

where

. N is the number of data points (the project duration in

weeks),
f(2) the value of the curve at ¢, and
x(?) the actual effort in man-hours expended during week ¢.

APPENDIX C. Verifying the Time to Acceptance
Testing as Predicted by the Parr Curve

The integral of the Parr curve is an equation for the cumu-
lative effort expended up to time ¢t. We solve this equation
for the time ¢,, the time to acceptance testing.

Y1) = K(1 + Ade™")~
Substitute Y’(z,) = K,/ and A = 1000:
Ko /K = (1 + 1000e™)~",

1000~ = (K'/K,)" — 1,
_ln[(K/K) — 1]

. 1000

1 In(K/K)" — 1

oy 1000

= —

Table 6 compares the estimate of ¢, using a fitted three-pa-
rameter Parr curve with the actual data (the values for ¢,
are in weeks).
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APPENDIX D. Searching for a Physical
Interpretation of the Parameter «

a can be expressed in terms of y(0) and K. The three-pa-
rameter Parr curve evaluated at t = O is

¥y (0) = 1000aX’/1001'*1/7,

Using the cumulative distribution curve, the initial effort K,
is

K, = Y"(0) = K’1001-.

Solving for K’ and substituting back into the first equation
leaves 1000aK,,/1001. « is approximately equal to y'(0)/ K,.

Table 6 shows a comparison of the percentage of existing
code that is reused in the new system to the percentage of
initial effort as computed by the Parr curve. Table 7 com-
pares the effort data at the beginning of the projects with the
y intercept of the three-parameter Parr curve. Three mea-
sures for the effort data are used: the first data point, the
average of the first five data points, and the average of
the first ten. All the numbers are in units of man-hours per
week.
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