A Comparative Analysis of Functional Correctness

DOUGLAS D. DUNLOP AND VICTOR R. BASILI
Department of Computer Science, University of Maryland, College Park, Maryland 20742

The functional correctness technique is presented and discussed. It is also explained that
the underlying theory has an implication for the derivation of loop invariants. The
functional verification conditions concerning program loops are then shown to be a
specialization of the commonly used inductive assertion verification conditions. Next, the
functional technique is compared and contrasted with subgoal induction. Finally, the
difficulty of proving initialized loop programs is examined in light of both the inductive
assertion and functional correctness theories.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program
Verification—assertion checkers; correctness proofs; validation; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning about Programs—

invariants

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Functional correctness, inductive assertion

correctness, subgoal inductions.

INTRODUCTION

The relationship between programs and the
mathematical functions they compute has
long been of interest to computer scientists
[McCa63, STrA64]. More recently, Mills
[MiLL72, MILL75] has developed a model
of functional correctness, that is, a meth-
odology for verifying that a program is cor-
rect with respect to an abstract specifica-
tion function. This theory has been further
developed by Basu and Misra [Basu7s,
Misr78] and now appears as a viable alter-
native to the inductive assertion verifica-
tion method that is due to Floyd and Hoare
[FLoY67, HOAR69].

This paper presents a tutorial view of the
functional correctness theory. This view is
based on a set of structured programming
control structures. An implication that this
verification theory has for the derivation of
loop invariants is discussed. The functional
verification technique is contrasted and
compared with the inductive assertion and
subgoal induction techniques using a com-

mon notation and framework. In this anal-
ysis, the functional verification conditions
concerning program loops are shown to be
quite similar to the subgoal induction veri-
fication conditions and a specialization of
the commonly used inductive assertion ver-
ification conditions. Finally, the difficulty
of proving initialized loops is examined in
the light of the functional and inductive
assertion theories.

1. DEFINITION OF TERMS

In order to describe the functional correct-
ness model, we consider a program P with
variables vy, Us, . . . , Un. These variables may
be of any type and complexity (e.g., reals,
structures, files), but we assume each v;
takes on values from a set d;. The set D =
di X dz X +++ X dn is the data space for P,
and an element of D is a data state. A data
state can be thought of as an assignment of
values to program variables and is written
(e1, €2 ..., Cn) where each v; has been
assigned the value ¢; in d;.

D. D. Dunlop’s present address is Intermetics, Inc., 4733 Bethesda Ave., Suite 415, Bethesda, MD 20814.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its

date appear, and notice is given that copying is by perm

ission of the Association for Computing Machinery. To

copy otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0010-4892/82/0600-0229 $00.75

Computing Surveys, Vol. 14, No. 2, June 1982

230 . D. D. Dunlop and V. R. Basili
CONTENTS

INTRODUCTION

1. DEFINITION OF TERMS

2. THE FUNCTIONAL CORRECTNESS TECH-
NIQUE

3. THE LOOP INVARIANT f(X0) = f(X)

4. COMPARING THE HOARE AND MILLS
LOOP PROOF RULES

5. SUBGOAL INDUCTION AND FUNCTIONAL
CORRECTNESS

6. INITIALIZED LOOPS

7. SUMMARY

ACKNOWLEDGMENTS

REFERENCES

The effect of a program can be described
by a function f:D — D which maps input
data states to output data states. If P is a
program, the function computed by P, writ-
ten [P], is the set of ordered pairs {(X, Y)|
if P begins execution in data state X, P will
terminate in final state Y}. The domain of
[P]is thus the set of data states X for which
P terminates.

If the specifications for a program P can
be formulated as a data-state-to-data-state
function f, the correctness of a program can
be determined by comparing f with [P].
Specifically, we say that P computes f if
and only if f is a subset of [P]. That is, if
f(X) = Y for some data states X and Y, we
require that [P](X) be defined and be equal
to Y. Note that in order for P to compute
£, no explicit requirement is made concern-
ing the behavior of P on inputs outside the
domain of f.

Example 1
Consider the simple program
P =while a >0do

b=>b*a
a=a-1
od.

The function computed by the program can
be written as

[P]1={(a, b), (0,5 * (a)))|a=0}

U {({a, d), (a, b))|a < 0}.
Computing Surveys, Vol. 14, No. 2, June 1982

Thus if a is greater than or equal to zero,
the program maps a to 0 and b to b * (a!);
if @ is less than zero, the program maps a
to a and b to b (the identity mapping).

As anotational convenience, we often use
conditional rules and data-state-to-data-
state “assignments” (called concurrent as-
signments) to express functions. In this no-
tation, the function [P] just described
would be written

[Pl=(a=0—>a,b:=0,b* (a))]|
TRUE — a, b :=a, b).

That is, if a is greater than or equal to zero,
the effect of the function is described by
the first concurrent assignment; otherwise

(i.e., if TRUE holds), the effect of the func- -

tion is described by the second concurrent
assignment. Finally, if we are given f =
(a=0—a,b:=0,b* (a) as the function
to be computed, we may say that P com-
putes f, since fis a subset of [P].

We make use of the following notation.
The domain of a function f is written as
D(f). The notation f ° g is used to repre-
sent the composition of the functions g and
f; that is, if A = f o g, then A(X) = f(g(X))
If g is a function or binary relation, g~
represents the binary relation which corre-
sponds to the inverse of g. If A and B are
Boolean-valued formulas, the notation
A © B states that A is true if and only if B
is true. Finally, we use the shorthand B+H
for the while loop program:
while B(X) do

X=HX)

od.

In this program, X represents the program
data state, B is a total predicate on the data
state, and H is a data-state-to-data-state
function which represents the input/output
effect of the loop body.

1

2. THE FUNCTIONAL CORRECTNESS
TECHNIQUE

The functional correctness technique relies
heavily on a procedure whose responsibility
is to verify that a while loop computes a
given state-to-state function. We present
this while loop procedure as a theorem and
then describe the technique for general pro-
grams. We first need the following defini-
tion.

o

Comparative Analysis of Functional Correctness .

Definition

The loop B+H is closed for a set of data
states S if and only if (iff)

XeS&BX)>HX)ES.

Intuitively, a loop is closed for S if the data
state remains in S as it executes for any
input in S.

Theorem 1

If the loop B=H is closed for the domain of
a function f, then the loop computes f iff,
for all X € D(f) .

the loop terminates when executed

in the initial state X, (2.1)
BX) - fX) = fHX)), (22)
~BX)—- fX) =X (2.3)

Proof. First, suppose (2.1)-(2.3) hold.
Let X, be any element of D(f). By condition
(2.1), the loop must halt for the input Xo,
thereby producing some output after a fi-
nite number of iterations. Let n represent
this number of iterations, and let X, repre-
sent the output of the loop. Furthermore,
let X3, Xz, ..., Xa1 be the intermediate
states generated by the loop, so that for all
i satisfying 0 < i < n, we have B(X,) and
X1 = H(X;), and also ~B(X,) holds. Con-
dition (2.2) shows that f(Xo) = f(Xi) =
... = f(X,). Condition (2.3) indicates that
f(X,) = X,.. Thus f(Xo) = X, and the loop
computes f.

Second, suppose the loop computes f. Let
us now consider the consequences if each
condition in the theorem were false. If (2.1)
were false, our supposition would be con-
tradicted. If (2.2) were false, that is, there
existed an X € D(f) for which B(X) held
but f(X) # f(H (X)), then, from the closure
requirement, H(X) would be in D(f) and,
when given the input H(X), the loop would
produce f(H(X)) (by the supposition).
Since the loop produces f(X) when pre-
sented with the input X (again, by the sup-
position), this would imply that the loop
could distinguish between the case in which
H(X) was an input and the case in which
H(X) was an intermediate result from the
input X. It is impossible that the loop could
so distinguish, since the data state describes
the values of all program variables and this,

231

in turn, precludes the possibility of the

loop’s reacting differently in these two

cases. Finally, if (2.3) were false, there
would exist an X € D(f) for which the loop
would produce X as an output, but where
f(X) # X. Because none of the three cases
bear out our original supposition, the loop
must not compute f when one of (2.1), (2.2)
and (2.3) is false. [l

An important aspect of Theorem 1 is the
absence of need for an inductive assertion
or loop invariant. Under the conditions of
the theorem, a loop can be proved or dis-
proved directly from its function specifica-
tion.

Example 2

Using the loop P and function f of Example
1, we show that P computes f. D(f) is the
set of all states satisfying a = 0. Since a is
prevented from becoming negative by the
loop predicate, the loop is closed for D(f)
and Theorem 1 can be applied. The termi-
nation condition (2.1) is valid since a is
decremented in the loop body and has a
lower bound of zero. Since H({a, b)) =
(a — 1, b * a), condition (2.2) is

a>0- f({(a, b)) = f(a—1,b%a))
which is
a>0— (0, b*(al))
=(0, (b*a)* ((a— 1)

which can be shown to be valid using the
associativity of * and the definition a! =
a * ((a — 1)!). Condition (2.3) is

a=0-(0,b*(a)) = (a, b)

which is valid using the definition
ol =1

The functional correctness procedure is
used to verify that a program is correct with
respect to a function specification. Large
programs must be broken down into sub-
programs whose intended functions may be
more easily derived or verified. These re-
sults can then be used to show that the
program as a whole computes its intended
function. The exact procedure used to di-
vide the program inte subprograms is not
specified in the functional correctness the-
ory. In the interest of simplicity, the tech-

Computing Surveys, Vol. 14, No. 2, June 1982

232 . D. D. Dunlop and V. R. Basili

nique presented here is based on prime
program (i.e., language statement type) de-
composition [LING79]. That is, correctness
rules are associated with each prime pro-
gram (or equivalently, with each statement
type) in the source language. The reader
should keep in mind, however, that in cer-
tain circumstances, other decomposition
strategies may lead to more efficient proofs.
One such circumstance is illustrated in Sec-
tion 5.

In our presentation of the functional
correctness procedure, we consider simple
ALGOL-like programs consisting of assign-
ment, if-then-else and while statements.
Before we can apply the correctness tech-
nique, we must know the intended function
of each loop in the program, and must be
sure that each loop is closed for the domain
of its intended function. These intended
functions must be supplied either by the
programmer or by us (in the role of the
verifier). In the latter case, some heuristic
(not discussed here) must be employed in
order to derive a suitable intended function
for each loop. This need for intended
loop functions is analogous to the need
for sufficiently strong loop invariants in
an inductive assertion proof of
correctness.

In order to prove that a structured
statement S (i.e., a while statement,
if-then-else statement, or sequence con-
sisting of two statements) computes a func-
tion f, it is first necessary to derive the
function computed by each component
statement, and then to verify that S com-
putes f using these derived subfunctions.
Consequently, the functional correctness
technique is described by a set of function
derivation rules and a set of function veri-
fication rules. These rules are given in Fig-
ure 1.

Before considering an example of the use
of these rules, we introduce two conven-
tions that will simplify the proofs of larger
programs. First, we extend the concurrent
assignment notation described above by al-
lowing an assignment into only a portion of
the data state. In this case it is understood
that the other data-state components are
unmodified. Before going on to the second
convention, let us consider an illustration
of this first one.

Computing Surveys, Vol. 14, No. 2, June 1982

Example 3

If a program has variables v,, vs, vs, the
sequence of assignments

n=4uv3:=17

computes the function represented by the
concurrent assignment

U1, Uz, U3 =4, U2, 7.

Our convention allows this function to be
described using the shorthand notation

U, U3 == 4, 7.

In this case we are assigning into the por-
tion of the data state containing v, and vs.
The remaining portion (the variable vs) is
assumed to be unmodified.

Second, if a function description is fol-
lowed by a list of variables surrounded by
“#” characters, the function is intended to
describe the program’s effect on these vari-
ables only. Other variables are considered
to have been set to an arbitrary, unspecified
value.

Example 4

If a program has variables v, vz, vs that
take on values from di, d, ds, respectively,
the function description

f= (1 >0 vs, U3:= V1 + Us, Ua) #Uz, Us#
is equivalent to

(11 >0—> vy, Uz V3= 7, U1 + U3, V3),
where ? represents any arbitrary value.

Note that in a sense, functions like f of
Example 4 are not data-state-to-data-state
functions but are more accurately consid-
ered general relations. For instance, if v; is
greater than zero, this function f maps the
input vy, v, Us) to (1, v1 + vs, U2) as well as
to (2, v1 + vs, v2). However, we adopt the
view that the function f of Example 4 maps
the set dy X dz X d3 to the set dz X ds and
in this light, f is a function. We call {vz, vs}
the range set for f, and notate it RS(f).
Functions not using the # notation are
assumed to have the entire set of variables
as their range set. Similarly, if the variables
Ury, Urs, . . ., Ury are the necessary inputs to
a function description f, we say that
{vry, vry, ..., vrz} is the domain set for f,
and notate it DS(f). In Example 4, the

Y oa

Comparative Analysis of Functional Correctness .

233

Rule - Statement Type Steps Comments
D1 S=v=e 1) Return [v = e]. The function computed
the assignment
D2 S=8;8; 1) Derive [Si] Use derivation rules
2) Derive [S;] Use derivation rules
3) Return [S:] © [Si] Compose the functions
D3 S =if Bthen S; 1) Derive [Si] Use derivation rules
else S, 2) Derive ‘[Sz] Use derivation rules
fi 3) Return| Conditional function
(B [S:]| TRUE — [S:]
D4 S = while B 1) Let fbe the intended
do S, funcﬁ‘ion (either given or
od derived)
2) Verify fhat Use verification rules
while B do S, od
computes f
3) Return,f
| (a)
Rule Statement Type Steps Comments
V1 S=v=e 1) Derive [S] Use derivation rules
2) Show f(X) =Y —>[S](X) =Y Prove the implication
V2 S=8;8S; 1) Derive [S] Use derivation rules
2) Show f(X) =Y > [SIX)=Y Prove the implication
V3 S=if Bthen S; 1) Derive [S] Use derivation rules
else S: 2) Show f(X) = Y- [S]JX) =Y Prove the implication
fi
V4 S = while B 1) Derive [S:] Use derivation rules
do S; 2) Apply Theorem 1
od
(b)
Figure 1. (a) Derivation rules used to compute [S]; (b) verification rules used to prove that S computes f.

domain set for f is {vi, ve, Us}, which hap-
pens to be the entire set of variables, but
this need not be the case. Some functions
(i.e,, constant functions) may have an
empty domain set.

~Example 5

Consider the following program.

Cl) (n=0->s:=8UM(i, 1, m,i")) #s#
1) a=1s=0

C2) (n=0—> s:=s+ SUM(@, a, m, i")) #s#
2) while a <= m do
3) J=0p:=1 A
C3) (mnzj—>pj=p+a”, n
4) while j < n do
5) J=Jj+L
6) p=p*a
7) od;
8) s:=8+ p;
9) a=a+1
10) od

In this example, the functions on the lines
labeled C1, C2 and C3 are program com-
ments and define the intended functions for
the program, the outer while loop and the
inner while loop, respectively. If a is a
variable and b, ¢ and d are expressions, we
use the notation SUM(q, b, ¢, d). for the
quantity

Y d.
a=b

Furthermore, we use the notation F,_. to
represent the derived function for lines n
through m of the program.

Step 1. Using derive rules D1 and D2 we
get

Fseg=j,p=j+1p+a.

Step 2. We must verify that the inner
loop computes its intended function. The

Computing Surveys, Vol. 14, No. 2, June 1982

234 . D. D. Dunlop and V. R. Basili

closure condition and termination condi-
tion are easily verified. The other condi-
tions,

j<n— (p*a™? n)

(n—(j+1))
3

=((p*ra)*a n)

and

j=n—(p*a®? n)=(p,Jj)

(y+1)

are true by the definitions x =x* (x”7)

and x° = 1.

Step 3. Using D1 and D2 we derive Fs ;
as follows:

Fo:=(nz=j—>p,j=p+a"? n)Fss

=(mzj—->p,j=p=*a"? n)
o, p=01
=(n=0- p, j:=a", n).

Step 4. Again with D1 and D2 we derive
Fs o

Fsog=Fs90o(n=0—>p,j:=a" n)
=s,a=s+p,a+l
o(n=0— p,j:=a", n)
=n=0->p,Jsa

=a",n,s+a",a+1l).

Step 5. Now we are ready to show the
outer loop computes its intended function.

Again the closure and termination condi-.

tions are easily shown. The remaining con-
ditions are (where n = 0)

a<m— s+ SUM(, a, m, (™)
=(s+a")
+ SUM(@, a +1,m, ")
and
a>m— s+ SUM(, a, m, i) = s,
both of which are true by virtue of the
properties of the function SUM.

Step 6. We now derive Fy_i. Applying
D2 we get

Computing Surveys, Vol. 14, No. 2, June 1982

Fi o= (n20—>s:=s
+ SUM(, a, m, ")) #s# o F1,
=n=0—->s:=35

+ SUMC, a, m, i")) #s#

ca,s=10
=n=0-s:=SUM(, 1,m,i")
#s#.

Step 7. Since the intended program
function (given in line C1) agrees with F_10,
we conclude that the program is correct
with respect to its specification.

The essential ideas behind the functional
correctness technique just illustrated were
developed by Mills [Mi1LL72, M1LL75]. Our
presentation here is based on prime pro-
gram decomposition of composite programs
and emphasizes the distinction between
function derivation and function verifica-
tion in the correctness procedure. Basili
and Noonan [Basi80] have compared and
contrasted the functional correctness and
inductive assertion verification theories.

The essential idea behind Theorem 1
can be traced to McCarthy [McCa62,
McCa63], who described a technique,
called “recursion induction,” for proving
two functions equivalent. Theorem 1 can
be viewed as a specific application of
McCarthy’s technique. Manna and Pnueli
[MANN70, MANNT71], and more recently,
Topor [Toro75] and Morris and Wegbreit
[Morr77], have suggested loop verification
rules similar to that stated in Theorem 1.
Basu and Misra [BAsu75] have proved a
result corresponding to Theorem 1 for the
case in which the loop contains local vari-
ables.

The closure requirement of Theorem 1
has received considerable attention. Sev-
eral classes of loops which can be proved
without the strict closure restriction have
been analyzed by Misra and Basu [BAsU76,
Misr78, Misr79, Basu80]. Wegbreit
[WEGB77], however, has described a class
of programs for which the problem of
“generalizing” a loop specification in order
to satisfy the closure requirement is NP-
complete.

Comparative Analysis of Functional Correctness .

3. THE LOOP INVARIANT f(X0) = f(X)

An important implication of Theorem 1 is
that a loop that computes a function must
maintain a particular property of its data
state across iterations. Specifically, after
each iteration, the function value of the
current data state must be the same as the
function value of the original input. In this
section we discuss and expand on this re-
quirement, specifically focusing on loops
which are closed for the domain of the
functions they compute.

A loop assertion for the loop B*H is a
Boolean-valued expression that yields the
value TRUE just prior to each evaluation
of the predicate B. In general, a loop asser-
tion A is a function of the current values of
the program variables (which we denote by
X), as well as of the values of the program
variables on entry to the loop (denoted by
X0). To emphasize these dependencies, we
write A(XO0, X) to represent the loop asser-
tion A.

Let D be a set of data states. A loop
invariant for BxH over a set D is a Boolean-
valued expression A(X0, X) which satisfies
the following conditions for all X0, X € D:

A(X0, X0) (3.1
A(X0, X) & B(X)
— A(X0, HX)) & (H(X) € D). (3.2)

Thus, if A(X0, X) is a loop invariant for
B+H over D, then A(X0, X) is a loop asser-
tion under the assumption that the loop
begins execution in a data state in D. Fur-
thermore, the validity of this deduction can
be demonstrated by an inductive argument
based on the number of loop iterations.
Loop assertions are of interest because
they can be used to establish conditions
which are valid when (and if) the execution
of the loop terminates. Specifically, any
assertion that can be inferred from

A(X0, X) & ~B(X)

will be valid immediately following the
loop.

It should be clear that for any loop
BxH, there may be an arbitrary number of

(3.3).

235

valid loop assertions. For instance, the
predicate TRUE is a trivial loop assertion
for any while loop. However, the stronger
(more restrictive) the loop assertion, the
more that one can conclude from condition
(3.3). For a given state-to-state function £,
we say that A(X0, X) is an f-adequate loop
assertion iff A(X0, X) is a loop assertion
and A(X0, X) can be used in verifying that
the loop computes the function f. More
precisely, if f is a function, the condition for
a loop assertion A(X0, X) being an f-ade-
quate loop assertion is

X0 € D(f) & A(X0, X) & ~B(X)
— X = f(X0).

A loop invariant A(X0, X) over some set
containing D(f) for which condition (3.4)
holds is an f-adequate loop invariant.

(3.4)

Example 6
Let P denote the program

while a & {0, 1} do
if a > 0 then
a=a—2
elsea:=a+2fi
od.

Consider the following predicates:

Ai1({a0), (a)) & TRUE

A:({a0), (a)) < ABS(a) = ABS(a0)

As({a0), (a)) & ODD(a) = ODD(a0)

As((a0), (a)) & ODD(a) = ODD(a0)
& ABS(a) = ABS(a0)

As({a0), (a)) & 0DD(a) = ODD(a0)
Viea=3&a0=2)

where ABS denotes an absolute value func-
tion, and ODD returns 1 if its argument is
odd and 0 otherwise. Each of the five pred-
icates is a loop assertion. Let D be the set
of all possible data states for P (ie., D =
{{(a)|a is an integer}). Let f = {({a),
(ODD(a)))|a is an integer}, and consider
A;z. Since 0 = ODD(0) and 1 = ODD(1),
a € {0, 1} implies @ = ODD(a). Thus we
can infer a = ODD(a0) from As({a0), {(a})
& a € {0, 1}. Hence A; is an f-adequate
loop assertion. Similarly, A, and As are f-

Computing Surveys, Vol. 14, No. 2, June 1982

236 . D. D. Dunlop and V. R. Basili

adequate loop assertions, but neither A, nor
A, is restrictive enough to be f-adequate.
Predicates A; and A, are loop invariants
over D; however, since As fails (3.2) (use
a = 3, a0 = 2 to see this), it is not a loop
invariant.

Theorem 2

If B+H is closed for D(f) and B+H com-
putes f, then f(X0) = f(X) is an f-adequate
loop invariant over D(f), and furthermore,
it is the weakest such loop invariant in the
sense that it is implied by all other such
loop invariants. That is, if A(X0, X) is any
f-adequate loop invariant over D(f),
A(X0, X) - f(X) = f(XO0) for all X, X0 €
D(f).

Proof. First we show that f(X) = f(X0)
is a loop invariant over D(f). Condition
(8.1) is f(X0) = f(X0). From Theorem 1,
for all X € D(f),

B(X) - f(X) = f(HX)).
Thus for all X, X0 € D(f),
B(X) & f(X0) = f(X)
- f(X) = f(HX)) & f(X0) = f(X),
that is,
B(X) & f(X0) = f(X)
— f(X0) = f(H(X)).

Adding the closure condition B(X) —
H(X) € D(f) yields condition (3.2). Thus
f(X) = f(X0) is a loop invariant over D(f).
Again from Theorem 1, for all X € D(f),

~B(X) - f(X) = X.
Thus for all X0 € D(f), ’
f(X) = f(X0) & ~B(X)
- f(X) = f(X0) & f(X) = X;
that is,
fX) = f(X0) & ~B(X)
— f(X0) = X,

which shows f(X) = f(X0) is f-adequate.
Let A (X0, X) be any f-adequate loop invar-
iant for B+H over D(f), and let Z0, Z be
elements of D(f) such that A(Z0, Z). Since
Bx*H computes fand Z € D(f), there exists
some sequence Zi, Zy, . . . , Zn (possibly with

Computing Surveys, Vol. 14, No. 2, June 1982

n = 1) where Z, = Z, Z, = f(Z), ~B(Z,),
and with B(Z)) & Zi.1 = H(Z;) for all i
satisfying 1 < i < n. By condition (3.2) we
have A(Z0, Z,), A(Z0, Z5), ..., A(ZO, Z,);
thus A(Z0, f(Z)) and ~B(f(Z)). Since Z0
€ D(f) and A(X0, X) is f-adequate,

A(20, f(2)) & ~B(f(Z)) — [(20) = f(Z)

from condition (3.4). Thus for all Z0, Z €
D(f),

A(Z0, Z) — f(Z20) = f(Z). a

Example 6 (continued)

In this example, A; is of the form f(X) =
f(X0). Az is weaker than the other f-ade-
quate loop invariant A, since A4 implies As.
It is worth noting that A; is not weaker
than As, but As is not a loop invariant, and
that As is not weaker than As, but A, is not
f-adequate. Thus indeed, A; is the weakest
f-adequate loop invariant for P. This situ-
ation is illustrated in Figure 2, in which the
sets labeled S;-S;s are the sets of ordered
pairs ((a0), {(a)) satisfying A:-As, respec-
tively; that is,

Si = {({a0), (a))|Ai((a0), (a))}

for i = 1, 2, 3, 4 and 5. The diagram is
partitioned in half with @ & {0, 1} on the
left and a € {0, 1} on the right. Note that
S, (or the set corresponding to any f-ade-
quate loop invariant for that matter) is a
subset of Ss. Furthermore, the sets corre-
sponding to each f-adequate loop assertion
(i.e., Ss, S; and S;) are identical where a €

- {0, 1}. This region of the diagram is pre-

cisely the set f.
Consider the problem of using Hoare’s
iteration axiom

I&B{X:=HX)Z
— I{B+H)}I & ~B

to prove that the loop B*H computes a
function f where BxH is closed for D(f). In
our terminology, if BxH is correct with
respect to f, I must be a loop invariant over
(at least) the set D(f) (otherwise X = f(X0)
for all X0 € D(f) cannot be inferred). How-
ever, using a loop invariant over a proper
superset of D(f) is generally unnecessary,
unless one is trying to show that the loop
computes some proper superset of f. If we

(3.5)

Comparative Analysis of Functional Correctness .

ae {01}

a {{O,I}

237

SIEN

s2

Figure 2. The sets S;-S;.

$3= &5 SHADING
S4=] SHADING
$5+= [[] SHADING

choose to use a loop invariant I over exactly
D(f), Theorem 2 tells us that f(X) = f(X0)
is the weakest invariant that will do the
job. In a sense, the weaker an invariant is,
the easier the task of verifying that it is
indeed a loop invariant (i.e., that the ante-
cedent to (3.5) is true), because it says less
(is less restrictive, is satisfied by more data
states, etc.) than other loop invariants.
Along these lines, one can conclude that, if
a loop is closed for the domain of a function
/i Theorem 2 gives a formula for the
“easiest” loop invariant over D(f) that can
be used to verify that the loop computes f.

Let us again consider loop invariants and
functions as sets of ordered pairs of data
states. Let BxH compute f and let
A(X0, X) be an f-adequate loop invariant.
It is clear that in this case, the set

{(X0, X)|A(X0, X) & ~B(X)
& (X0 € D(f)}

is precisely f. That is, f must be the portion
of the set represented by A(X0, X) obtained
by restricting the domain to D(f) and dis-
carding members whose second component
causes B to evaluate to TRUE (e.g., the
portion of S; in Figure 2 in the region a €
{0, 1} is f). Can the set represented by
A(X0, X) be determined from f? No, since
in general, there are many f-adequate in-
variants over D(f) and the validity of some

will depend on the details of B and H (e.g.,
A, in Example 6). However, Theorem 2
gives us a technique for constructing the
only f-adequate invariant over D(f) that
will be valid for any B and H, provided
B + H computes f and is closed for D(f).
Specifically, this invariant couples an ele-
ment of D(f) with any other element of
D(f) which belongs to the same level set'
of f.

Put another way, all f~adequate loop in-
variants over D(f) describe what the loop
does (i.e., they can be used to show that the
loop computes f), and some may- also con-
tain information about Aow the final result
is achieved. That is, one might be able to
use an f-adequate loop invariant to make a
statement about the intermediate states
generated by the loop on some inputs. The
intermediate states “predicted” by the
weakest invariant f(X) = f(XO0) is the set of
all intermediate states that could possibly
be generated by any loop B+H that com-
putes the function. Thus, the invariant
f(X) = f(X0) can be thought of as occupying
a unique position in the spectrum of all
possible loop invariants: it is strong enough
(i.e., specific enough) to describe the net
effect of the loop on the input set D(f) and

1 S is a level set of fiff there exists a ¥ such that S =
XIAX) =Y}

Computing Surveys, Vol. 14, No. 2, June 1982

238 . D. D. Dunlop and V. R. Basili

yet is sufficiently weak (i.e. sufficiently
general) that it offers no hint about the
method used to achieve the effect.

Example 7

Consider the following program:
while a > 0 do

a=a-1
c=c+b
od.

This loop computes the function
f=@=0—>abc=0bc+ax*b).

From Theorem 2, we know that

A({a0, b0, c0), (a, b, c))

< (0, b0, c0 + a0 * b0)
=(0,b,c+ax*b);
that is,
A({a0, b0, c0), {a, b, c))
ob=b&c0+a0+*b0=c+a=xb

is the weakest f-adequate invariant over
D(f) = {{a, b, c)|a = 0}. Consider the
sample input (4, 10, 7). Our loop will
produce the series of states (4, 10, 7),
(8, 10, 17), (2, 10, 27), (1, 10, 37), (0, 10,
47). Of course, our invariant agrees with
these intermediate states (i.e., A((4, 10, 7),
(4, 10, 7)), A({4, 10, 7), (3, 10, 17)), ...,
A((4, 10, 7), (0, 10, 47))), but it also agrees
with (6, 10, —13). We conclude then, that
it is possible for some loop which computes
f to produce an intermediate state {6, 10,
—13) while mapping (4, 10, 7) to (0, 10,
47). We further conclude that no loop
which computes fcould produce (6, 10, —12)
as an intermediate state from the input (4,
10, 7}, since the invariant would be violated.

To emphasize this point, we define an f-
adequate invariant A(X0, X) over D(f) for
B+H to be an internal invariant if
A(XO0, X) implies that B+H will generate X
as an intermediate state when mapping X0
to f(X0). Intuitively, an internal invariant
captures what the loop does, as well as a
great deal of how the loop works. In our
example,

(b=0b0) & (c=c0+ b+ (ald — a))
& 0=<a) & (a < al)

Computing Surveys, Vol. 14, No. 2, June 1982

is an internal invariant, but A({a0, b0, c0),
(a, b, c)) as defined above is not (since, for
example, the program will not produce (6,
10, —13) on the input (4, 10, 7)). It can be
proved that if f is any nonempty function
other than the identity function, no loop
for computing f exists for which f(X) =
f(X0) is an internal invariant.”? However, if
we | consider nondeterministic loops and
wea\(en the definition of an internal invar-
iant ‘to be one where A(X0, X) implies that
X may be generated by B+H when mapping
X0 to f(X0), such a loop can always be
found. This loop would nondeterministi-
cally switch states so as to remain in the
same level set of f. Our example program
could be modified in such a manner as
follows:

while ¢ > 0do

¢ := “some integer value greater than or equal
to zero”;
=c+bx(a—1t)
a=t¢
od

and would then correspond to a “blind
search” implementation of the function.

Basu and Misra [Basu75] have empha-
sized the difference between loop invariants
and loop assertions. The fact that f(X) =
f(X0) is an f-adequate loop invariant has
been reported by several authors [BAsu75,
LinG79]. The independence of this loop
invariant from the characteristics of the
loop body has been discussed by Basu and
Misra [Basu75].

4. COMPARING THE HOARE AND MILLS
LOOP PROOF RULES

An alternative to using Theorem 1, in show-
ing that a loop computes a function, is to
apply Hoare’s inductive assertion verifica-
tion technique [HoAR69]. In this technique,
if R; and R, are predicates and T is a

2 Qutline of proof: Let f(Y) # Y and B+H compute f,
and suppose that the f-adequate invariant f(X) = FXO0)
over D(f) for B+H is an internal invariant. We must
have B(Y). By (22) AY) = fLH(Y)). Consider H(Y)
as a fresh input. Since f(X) = f(X0) is an internal
invariant and A(Y) = f(H(Y)), the loop must eventually
produce intermediate state Y, which must then pro-
duce H(Y). Thus B+H fails to terminate and does not
compute f. :

Comparative Analysis of Functional Correctness .

program, the notation R: {T} R: asserts

that if R, is true and the program T begins"

execution and terminates, then R, will be
true. Applying Hoare’s method, one could
verify P {B+H} € where

P< X =X0& X € D(f),
@ < X = f(X0)

by demonstrating the following for some
predicate I

Al: P 1,
A2: B & I{X:= HX)}I,
A3: ~B&I— Q.

Strictly speaking, conditions Al through A3
show partial correctness; to show total cor-
rectness, one must also prove

A4: B=*H terminates for any input state
satisfying P.

We now wish to compare these verifica-
tion conditions with the functional verifi-
cation conditions. Recall from Theorem 1
that if B+H is closed for D(f), the func-
tional verification rules are

F1: X € D(f) - B+*H terminates for the
input X,
X € D(f) & B(X) — f(X) = HX)),

X€ED(f) & ~B(X) - f(X)=X.

F2:
F3:

In the following discussion we adopt the
convention that if fis a function and X is
not in D(f), then f(X) = Z is false for any
formula Z.

Theorem 3

Let B+H be closed for D(f). If f(X) = f(X0)
is used as the predicate I in A1-A3, then
Al & A2& A3 & A4 > F1 & F2 & F3. That
is, the functional verification conditions
F1-F3 are equivalent to the special case of
the inductive assertion verification condi-
tions A1-A4 which results from using f(X)
= f(X0) as the predicate I. In particular, if
I & f(X) = f(X0) in the inductive assertion
rules, then

Al & TRUE,

A2 < F2 provided (X € D(f)) & B(X)
— X € D(H),

A3 & F3, and

A4 « F1.

239

Proof. We begin by noting that the ter-
mination conditions A4 and F1 are identi-
cal; thus A4 < F1. Second, Al is

X=X0& X e D(f) - f(X) = f(X0)

which is clearly true for any f. Combining
this fact with our first result yields Al & A4
« F1. Condition A3 can be rewritten as

~B(X) & f(X) = f(X0) - X = f(X0)

which is trivially true for any X, X0 outside
D(f). Thus, A3 may be rewritten as

A3: X, X0€ D(f) & ~B(X) & f(X)
= f(X0) - X = £(X0).

Note that A3’ — F3 by considering the case
where X = X0. Furthermore, F3 — A3’ by
considering the case where X0 € D(f) and
f(X) = f(X0). Now we have A3 & A3 «
F3; adding this to A1 & A4 < F1 obtained
above, we get the new equivalence Al & A3
& A4 & F1 & F3. We next prove that A2
& A4 & F1 & F2. This, combined with the
new equivalence, yields the desired result:
Al & A2 & A3 & A4« F1 & F2 & F3. Note
that if there exists an X € D(f) such that
B(X) holds but H(X) is not defined, then
the loop itself will be undefined for X, both
A4 and F1 will be false, and A2 & A4 <
F1 & F2. .

We now consider the other case, where
for all X € D(f), B(X) — X € D(H). In this
situation we will show that A2 < F2; com-
bining this with A4 < F1 yields A2 & A4
o F1 & F2. Rule A2 may be rewritten as

(B(X) & f(X) = f(X0))
{X = H(X)} f{(X) = f(X0)

which, again, is trivially true if X or X0 is
outside D(f); thus A2 is equivalent to

(X, X0 € D(f) & B(X) & fiX) = f(X0))
{X = HX)} f(X) = f(X0).

Since H is defined for any input X € D(f)
such that B(X) by hypothesis, this formula
may be transformed using Hoare’s axiom of
assignment to the implication

(X, X0 € D(f) & B(X) & f(X)

= f(X0))
- f(H(X)) = f(X0).

A2

As before, we can show A2 — F2 by con-

Computing Surveys, Vol. 14, No. 2, June 1982

240 . D. D. Dunlop and V. R. Basili

sidering the case where X = X0, and F2 —
A2 by considering the case where X0 €
D(f) and f(X) = f(X0). Thus A2 & A2 «
T2 which implies A2 <> F2. This completes
the proof of the theorem. [

The purpose of Theorem 3 is to allow us
to view the functional verification condi-
tions as verification conditions in an induc-
tive assertion proof. Not surprisingly, both
techniques have identical termination re-
quirements. If the termination condition is
met, F2 amounts to a proof that f(X) =
f(X0) is a loop invariant predicate. Condi-
tion F3 amounts to an application of the
“Rule of Consequence,” ensuring that,
given the predicate f{iX) = f(X0) and the
negation of the predicate B, the desired
result can be implied.

5. SUBGOAL INDUCTION AND
FUNCTIONAL CORRECTNESS

Subgoal induction is a verification tech-
nique proposed by Morris and Wegbreit
[Morr77]. It is based largely on work of
Manna and Pnueli [MANN70, MANNT71]. In
this section we compare subgoal induction
to the functional correctness approach de-
scribed in Section 2. ‘

We first note that subgoal induction can
be viewed as a generalization of the func-
tional approach in that subgoal induction
can be used to prove a program correct with
respect to a general input-output relation.
A consequence of this generality, however,
is that the subgoal induction verification
conditions are sufficient but not necessary
for correctness; that is, in general, no con-
clusion can be drawn if the subgoal induc-
tion verification conditions are invalid. Pro-
vided that the closure requirement is sat-
isfied, the functional verification conditions
(as well as the subgoal induction verifica-
tion conditions, when applied to the same
problem) are sufficient and necessary con-
ditions for correctness. Results reported by
Misra [Mi1srR77] suggest that it is not pos-
sible to obtain necessary verification con-
ditions for general input-output relations
without considering the details of the loop
body.

In order to compare the two techniques
more precisely, we consider the flowchart
program in Figure 3 adapted from the Mor-

Computing Surveys, Vol. 14, No. 2, June 1982

Figure 3. Flowchart program.

ris and Wegbreit paper [MORR77]. In the
figure, P1, P2, P3 and P4 are points of
control in the flowchart, X represents the
program data state, B is a predicate on the
data state, and K, H and @ are data-state-
to-data-state functions. Note that this flow-
chart program amounts to a while loop
surrounded by pre- and postprocessing. Our
goal is to prove that the program computes
a function f. Morris and Wegbreit point out
that subgoal induction uses an induction on
the P2-to-P4 path of the computation; that
is, one selects some relation v, shows induc-
tively that it holds for all P2-to-P4 execu-
tion paths, and then, finally, uses v to show
that fis computed by all P1-to-P4 execution
paths. In our application, since f is a func-
tion, it will be required that v itself be a
function. Once v has been selected, the
verification conditions are

S1: X e D) & ~B(X) — v(X) = @(X),
S2: X € D(v) & B(X) — v(H(X)) = v(X),
S3: X € D(f) - f(X) = v(K(X)). ‘

Note that S1 and S2 test the validity of v,
and S3 checks that v can be used to show
the program computes f.

An application of the functional verifi-
cation technique presented here results in
a similar kind of analysis except that the
function @ is not included in the induction
path. We select some function g and show
that it holds for all P2-to-P3 execution
paths (i.e., we show that the while loop
computes g), and then use g to show that f

Comparative Analysis of Functional Correctness .

is computed by all P1-to-P4 execution
paths. Once g has been selected, the verifi-
cation conditions are

Fl: X€ D(g) & ~BX) —» gX) =X,
F2: X € D(g) & B(X) — g(H(X)) = g(X),
F3: X € D(f) — f(X) = Q(g(K(X))).

Note that both techniques require the
invention of an intermediate hypothesis
which must be verified in a “subproof.”
This hypothesis is then used to show that
the program computes f. The function @ in
the flowchart program is absorbed into the
intermediate hypothesis in the subgoal in-
duction case; it is separate from the inter-
mediate hypothesis in the functional case.
Indeed, the two intermediate hypotheses
are related by

U=Qog_

If @ is a null operation (identity func-
tion), the intermediate hypotheses and ver-
ification conditions of the two techniques
are identical. A significant difference be-
tween the two techniques, however, can be
seen by examining the case where K is a
null operation. If the loop is closed for D(f),
subgoal induction enjoys an advantage
since f can be used as the intermediate
hypothesis. That is, the subgoal induction
verification conditions are simply

S1: X € D(f) & ~B(X) — Q(X) = f(X),
82" X e D(f) & B(X) - f(H(X)) = f(X).

In the functional case, one must still de-
rive a hypothesis for the loop function g. A
heuristic is to restrict one’s attention to
those functions which are subsets of @' o
f. However, it is worth emphasizing that
this heuristic need not completely specify
& since, in general, @ ' ° fis not a function.
Once g has been selected, the verification
conditions are

F1© X € D(g) & ~B(X) — g(X) = X,
F2: Xe€ D(g) & B(X) — g(H(X)) = g(X),
F3: X € D(f) - fX) = QgX)).

The difference between the two tech-
niques in this case is due to the prime
program decomposition strategy employed
in the functional correctness algorithm
given in Section 2. A more efficient proof is
realized by treating the loop and the func-
tion @ as a whole. Accordingly, correctness

241

rules for this program form might be incor-
porated into the prime program functional
correctness method described earlier. The
validity of these rules can be demonstrated
in a manner quite similar to the proof of
Theorem 1.

Example 8

We wish to show that the program

while x & {0, 1, 2, 3} do
ifx<Othenx:=x+4
elsex:=x—4fi

od;
ifx>1thenx:=x—2fi
computes the function f = {((x),

{(ODD(x)))}. The subgoal induction verifi-
cation conditions are

x € {0, 1, 2, 3} - Q(x) = ODD(x),
x & {0, 1,2, 3} - ODD(H(x)) = ODD(x),

where
Q(x) = if x > 1 then x — 2 else x,
H(x) =if x < 0then x + 4 else x — 4.

Both these conditions are straightforward.
Now let us consider the prime program
functional case. Suppose we are given (or
may derive) the intended loop function

g = {({(x0), (x))|x € {0, 1, 2, 3}
& x mod 4 = x0 mod 4}.

We can verify that the loop computes g by
demonstrating F1' and F2'. Condition F3’
uses g to complete the proof.

The difficulty with splitting up the pro-
gram in this example is that it requires the
verifier to “dig out” unnecessary details
concerning the effect of the loop. One need
not uncover these details, that is, one need
not determine explicitly the function com-
puted by the loop, in order to prove the
program correct. The only important loop
effect (as far as the correctness of the pro-
gram is concerned) is x € {0, 1, 2, 3} and
ODD(x) = ODD(x0). In this example,
treating the program as a whole appears
superior since it only tests for the essential
characteristics of the program components.

It is worth observing that, provided the
loop is closed for D(f), an inductive asser-

Computing Surveys, Vol. 14, No. 2, June 1982

242 . D. D. Dunlop and V. R. Basili

tion proof of a program of this form could
be accomplished by using the loop invariant
f(X) = f(X0). The verification conditions
in this case would be equivalent to the
subgoal induction verification conditions.
Note that, in general (as in our example),
f(X) = f(X0) is too weak an invariant to be
g-adequate for the intended loop function
£ above.

6. INITIALIZED LOOPS

The preceding section indicates that it is
occasionally advantageous to consider a
program as a whole rather than to consider
its prime programs individually. In this sec-
tion we attempt to apply the same philos-
ophy to the initialized loop program form
and use the result as a basis from which to
compare the functional and inductive as-
sertion approaches to this particular veri-
fication problem.

We again consider the program given in
Figure 3, with the added understanding
that @ is a null operation (identity func-
tion). We want to prove that the program
computes a function £, that is, that f holds
for all P1-to-P3 execution paths. We have
seen that prime program functional cor-
rectness involves an induction on the P2-
to-P3 execution path using an intermediate
hypothesis g. An inductive assertion proof
would involve an induction on the P1-to-P2
execution path using some limited loop in-
variant A(X0, X) [LING79]. A limited loop
invariant differs from those discussed pre-
viously in that it takes into account the
initialization preceding the loop. One of the
objectives of this section is to discuss the
relative difficulties of synthesizing the in-
termediate hypotheses g and A.

We now reason about whether there
might be an efficient way to verify the
program by treating it as a whole (i.e.,
instead of treating the initialization and the
loop individually). In order for the program
to compute f, it must be that K(X) = K(Y)
— f(X) = f(Y). Consequently, the relation
represented by f o (K™") is a function and a
candidate for the intermediate hypothesis
&. Indeed, the initialized loop program is
correct with respect to fiff g = fo (K™) is
a function and the while loop (by itself) is
correct with respect to g. Unfortunately,
the domain of this function is the image of

Computing Surveys, Vol. 14, No. 2, June 1982

the set D(f) mapped through the initiali-
zation K, and since the purpose of the ini-
tialization is often to provide a specific
“starting point” for the loop, the loop will
seldom be closed for the domain of this
function. Thus the problem of finding
an appropriate intermediate hypothesis g
can be thought of as one of generalizing

fo (K.

Example 9
We want to show that the program
s=0;i:=0;
while i < n do
i=i1+1
s=s+a;

od
computes
f=s:=SUM(%, 1, n, a,) #s#.

As before, SUM(%, 1, n, a;) is a notation for
a: + az + --- + a,. If K represents the
function performed by the initialization,
fo(K™)is

(s=0,1i=0-s:=SUMI(%, 1, n, a:)) #s#.

Note that the loop is not closed for the
domain of this function (since values of s
and i different from 0 occur as the loop
executes). To verify the program by means
of the functional method, this function
must be generalized to a function such as

g=s5=s+ SUM(, i + 1, n, ar) #s#.

We now consider the relative difficulties
of synthesizing a suitable loop function g
(for a functional proof) and synthesizing an
adequate limited loop invariant (for an in-
ductive assertion proof). If we have a sat-
isfactory g for a functional proof of the
program, the analysis in Section 3 indicates
that the invariant A(X0, X) < g(X) = g(X0)
over D(g) can be used to show that the loop
computes g; absorbing the initialization
X := K(X) into the invariant gives the result
that the limited invariant A(X0, X) & g(X)
= g (K(X0)) can be used to prove that
the initialized loop program computes
g K=f We now try to go the other way.
Suppose we have an appropriate limited
loop invariant A(X0, X) for an inductive
assertion proof of the program. Can we
derive from that an adequate loop function

Comparative Analysis of Functional Correctness .

£? Yes, and we motivate the result as fol-
lows: We could obtain an equivalent pro-
gram by modifying the initialization to map
X0 to X (nondeterministically) if A(X0, X)

holds. The modified program (assuming

termination) must still compute the same
function; if the initialization maps X0 to
anything other than K(X0), the effect will
simply be to alter the number of iterations
executed by the loop. By the same argu-
ment used to show that the loop, assuming
correctness, must compute f © (K™'), the
loop must also compute f o (A(X0, X)™).
That is, if A(X0, X) holds for some X0 €
D(f) and for some X, the loop must map X
to f(X0). Note that the loop is necessarily
closed for the domain of this function;
otherwise the invariant would be violated.
The proper conclusion is that the synthesis
of an adequate loop function and the syn-
thesis of a suitable invariant are equivalent
problems in the sense that a solution to
either problem implies a solution to the
other problem.

The translation between loop invariants
and intermediate hypotheses in a subgoal
induction proof has been discussed by Mor-
ris and Wegbreit [Morr77] and King
[KING80].

Example 9 (continued)

An inductive assertion proof of our pro-
gram might use the limited invariant s =
SUM(k, 1, i, ax) & 0 < i < n. Note that this
invariant implies the invariant g(K(X0)) =
g(X) discussed above (where g and K are
as defined in Example 9). Using the tech-
nique outlined above, we may derive from
this invariant the loop function

g =(=SUM(k, 1,i,a:),0<i=<n
— s:=SUM(k, 1, n, az)) #s#.

Observe that this is quite different from the
original g, but that g’ is quite satisfactory
for a functional proof of correctness. It may
seem puzzling that g’(X0) = g'(X) is the
constant invariant TRUE over the set
D(g’), and yet Theorem 2 states that such
an invariant must be g’-adequate. This is
not a contradiction, however, since

TRUE, i =n— s = SUM(%, 1, nn, az)

is valid for any state in D(g’). Similarly, a
functional proof that the loop computes g’

243

is trivial, with the exception of verifying
that the closure requirement is satisfied.
This is no coincidence: proving closure is-
equivalent to demonstrating the validity of
the loop invariant.

7. SUMMARY

Our purpose has been to explain the func-
tional verification technique in light of
other program correctness theories. The
functional technique is based on Theo-
rem 1, which provides a method for prov-
ing/disproving a loop correct with respect
to a functional specification when the loop
is closed for the domain of the function.

In Theorem 2, a loop invariant derived
from a functional specification is shown to
be the weakest invariant over the domain
of the function which can be used to test
the correctness of the loop. Theorem 3 in-
dicates that the functional correctness tech-
nique for loops is actually the special case
of the inductive assertion method that re-
sults from using this particular loop invar-
iant as an inductive assertion. The signifi-
cance of this observation is that the func-
tional correctness technique for loops can
be viewed either as an alternative verifica-
tion procedure to the inductive assertion
method or as a heuristic for deriving loop
invariants.

The subgoal induction technique seems
quite similar to the functionai method; the
two techniques often produce identical ver-
ification conditions. We have, however, ob-
served an example where the subgoal in-
duction method appears superior to func-
tional correctness when based on prime
program decomposition. More work ap-
pears necessary in precisely characterizing
these situations and determining if there
are circumstances under which the func-
tional method is more advantageous than
subgoal induction.

We have examined the inductive asser-
tion and functional methods for dealing
with initialized loops. We have shown that
the problems of finding a suitable loop in-
variant and an adequate loop function are
essentially identical. The result indicates
that for this class of programs, the two
methods are theoretically equivalent; that
is, there is no theoretical justification for
selecting one method over the other.

Computing Surveys, Vol. 14, No. 2, June 1982

244 . D. D. Dunlop and V. R. Basili

ACKNOWLEDGMENTS
The authors would like to thank Dr. Harlan Mills,

who was the source of motivation for our studying the -

functional approach to correctness, for his insights
into the technique and his open discussions on the
work reported here.

We are grateful to the editor for suggesting many
improvements in the presentation of this paper. The
comments and suggestions made by the referees are
very much appreciated.

This work was supported in part by the Air Force
Office of Scientific Research Contract AFOSR-
F49620-80-C-001 to the University of Maryland.

REFERENCES

Basiui, V. R, aND Noonan, R. E. “A
comparison of the axiomatic and functional
models of structured programming,” IEEE
Trans. Softw. Eng. SE-6 (Sept. 1980), 454—
464.

Basu, S., AND Misra, J. “Proving loop
programs,” IEEE Trans. Softw. Eng. SE-
1 (March 1975), 76-86.

Basu, S. K., AND MIsRA,J. “Some classes
of naturally provable programs,” in Proc.
2nd Int. Conf. on Software Engineering
(San Francisco, Oct. 13-15), IEEE, New
York, 1976, pp. 400-406.

Basu, S. “A note on synthesis of induc-
tive assertions,” IEEE Trans. Softw. Eng.
SE-6 (Jan. 1980), 32-39.

Froyp, R. W. “Assigning meanings to
programs,” Proc. Symp. Appl. Math. 19
(1967), 19-32.

Hoar69 Hoarg, C. A. R. “An axiomatic basis for
computer programming,” Commun. ACM
12, 10 (Oct. 1969), 576-583.

Basi180

Basu75

Basu76

Basu80

FLov67

King80 KiNg,d. “Program correctness: Oninduc-
tive assertion methods,” IEEE Trans.
Softw. Eng. SE-8 (Sept. 1980), 465-479.

LiNg79 LINGER, R. C., Miis, H,, AND WrTT, B.

1. Structured programming theory and
practice, Addison-Wesley, Reading, Mass.,
1979.

McCab62

McCa63

MANNT0

MannN71

MnL72

MiLL75

Misr77

Misr78

Misr79

MORR77

STRA6G4

Topro75

WEGBT77

Received August 1981; final revision accepted March 1982.

Computing Surveys, Vol. 14, No. 2, June 1982

McCarTHY, J. Towards a mathematical
science of computation,” in C. M. Popple-
well (Ed.), Proc. IFIP Congress 62, North-
Holland, Amsterdam, 1963, pp. 21-28.
McCARTHY, J. “A basis for a mathemat-
ical theory of computation,” in P. Brafford
and D. Hirschberg (Eds.), Computer pro-
gramming and formal systems, North-
Holland, Amsterdam, 1963, pp. 33-70.
MANNA, Z., aND PnuEeLL, A. “Formal-
ization of properties of functional pro-
grams,” J. ACM 17, 3 (July 1970), 555-569.
MANNA, Z. “Mathematical theory of par-
tial correctness,” J. Comput. Syst. Sci. 8
(June 1971), 239-253.

Miis, H.D. “Mathematical foundations
for structured programming,” FSC 72-6012,
IBM Federal Systems Division, Bethesda,
Md, 1972.

Mits, H. D. “The new math of com-
puter programming,” Commun. ACM 18,
1 (Jan. 1975), 43-48.

MisRra, J. “Prospects and limitations of
automatic assertion generation for loop
programs,” SIAM J. Comput. 6 (Dec.
1977), 718-729.

MisRa, J. “Some aspects of the verifica-
tion of loop computations,” IEEE Trans.
Softw. Eng. SE-4 (Nov. 1978), 478-486.
Misra, J. “Systematic verification of
simple loops,” Tech. Rep. TR-97, Univ. of
Texas, Austin, Tex., March 1979.

MoRris, J. H., Jr., AND WEGBREIT, B.
“Subgoal induction,” Commun. ACM 20,
4 (April 1977), 209-222.

STRACHEY, C. “Towards a formal seman-
tics,” in T. B. Steel, Jr. (Ed.), Formal lan-
guage description languages for computer
programming, Proc. IFIP Working Conf.
1964, North-Holland, Amsterdam, 19686,
pp- 198-220.

Toror, R. W. “Interactive program veri-
fication using virtual programs,” Ph.D. dis-
sertation, Dep. of Artificial Intelligence,
Univ. of Edinburgh, Scotland, 1975.
WEGBREIT, B. “Complexity of synthesiz-
ing inductive assertions,” J. ACM 24, 3
(July 1977), 504-512.

