Metric Analysis and Data Validation Across
Fortran Projects

VICTOR R. BASILI. MEMBER, IEEE, RICHARD W. SELBY, JR., STUDENT MEMBER, IEEE, AND TSAI-YUN PHILLIPS

Abstract—The desire to predict the effort in developing or explain the
quality of software has led to the proposal of several metrics in the
literature. As a step toward validating these metrics, the Software
Engineering Laboratory has analyzed the Software Science metrics,
cyclomatic complexity, and various standard program measures for
their relation to 1) effort (inciuding design through acceptance testing),
2) development errors (both discrete and weighted according to the
amount of time to locate and fix), and 3) one another. The data inves-
tigated are collected from a production Fortran environment and ex-
amined across several projects at once, within individual projects and by
individual programmers across projects, with three effort reporting
accuracy checks demonstrating the need to validate a database. When
the data come from individual programmers or certain validated projects,

the metrics’ correlations with actual effort seem to be strongest. For.

Manuscript received July 20, 1982; revised April 29, 1983. This
work was supported in part by the National Aeronautics and Space
Administration under Grant NSG-5123 and the U.S. Air Force Office
of Scientific Research under Contract AFOSR-F49620-80-C-001 to
the University of Maryland. Computer support provided in part by the
facilities of NASA/Goddard Space Flight Center and the Computer
Science Center at the University of Maryland.

The authors are with the Department of Computer Science, Univer-
sity of Maryland, College Park. MD 20742,

modules developed entitely by individual programmers, the validity
ratios induce a statistically significant ordering of several of the metrics’
correlations. When comparing the strongest correlations, neither Soft-
ware Science’s E metric, cyclomatic complexity nor source lines of
code appears to relate convincingly better with effort than the others.

Index Terms—Complexity metrics, data validation, software effort
and error metrics, Software Engineering Laboratory, Software Science.

I. INTRODUCTION

EVERAL metrics based on characteristics of the software

product have appeared in the literature. These metrics
attempt to predict the effort in developing or explain the
quality of that software {11], [17}, [19], [23]. Studies have
applied them to data from various organizations to determine
their validity and appropriateness [1], [13], [15]. However,
the question of how well the various metrics really measure or
predict effort or quality is still an issue in need of confirma-
tion. Since development environments and types of software
vary, individual studies within organizations are confounded
by variations in the predictive powers of the metrics. Studies

0098-5589/83/1100-0652301.00 © 1983 IEEE

BASILI et al.: METRIC ANALYSIS AND DATA VALIDATION

across different environments will be needed before this ques-
tion can be answered with any degree of confidence.

Among the most popular metrics have been the Software
Science metrics of Halstead [19] and the cyclomatic com-
plexity metric of McCabe [23]. The Software Science E
metric attempts to quantify the complexity of understanding
an algorithm. Cyclomatic complexity has been applied to
establish quality thresholds for programs. Whether these
metrics relate to the concepts of effort and quality depends on
how these factors are defined and measured. The definition
of effort employed in this paper is the amount of time required
to produce the software product (the number of man-hours
programmers and managers spent from the beginning of func-
tional design to the end of acceptance testing). One aspect of
software quality is the number of errors reported during the

‘product’s development, and this is the measure associated with .

quality for this study. :

Regarding a metric evaluation, there are several issues that
need to be addressed. How well do the various metrics predict
or explain these measures of effort and quality? Does the
correspondence increase with greater accuracy of effort and
error reporting? How do these metrics compare in predictive
power to simpler and more standard metrics, such as lines of
source code or the number of executable statements? These
questions deal with the external validation of the metrics.
More fundamental questions exist dealing with the internal
validation or consistency of the metrics. How well do the
estimators defined actually relate to the Software Science
metrics? How do the Software Science metrics, the cyclomatic
complexity metric and the more traditional metrics relate to
one another? In this paper, both sets of issues are addressed.
The analysis examines whether the given family of metrics is
internally consistent and attempts to determine how well these
metrics really measure the quantities that they theoretically
describe.

One goal of the Software Engineering Laboratory [6], [7],
[8]. [10], a joint venture between the University of Maryland,
NASA/Goddard Space Flight Center, and the Computer
Sciences Corporation, has been to provide an experimental
database for examining these relationships and providing
insights into the answering of such questions.

The software comprising the database is ground support
software for satellites. The systems analyzed consist of
51000 to 112000 lines of Fortran source code and took
between 6900 and 22 300 man-hours to develop over a period
of 9 to 21 months. There are from 200 to 600 modules (e.g.,
subroutines) in each system and the staff size ranges from
8 to 23 people, including the support personnel. While any-
where from 10 to 61 percent of the source code is modified
from previous projects, this analysis focuses on just the newly
developed modules.

The next section discusses the data collection process and
some of the potential problems involved. The third section
defines the metrics and interprets the counting procedure used
in their calculation. In the fourth section, the Software Science
metrics are correlated with their estimators and related to
more primitive program measures. Finally. the fifth section
determines how well this collection of volume and complexity
metrics corresponds to actual effort and developmental errors.

653

II. THE DATA

The Software Engineering Laboratory collects data that deal
with many aspects of the development process and product.
Among these data are the effort to design, code, and test the
various modules of the systems as well as the errors committed
during their development. The collected data are analyzed to
provide insights into software development and to study the
effect of various factors on the process and product. Unlike
the typical controlled experiments where the projects tend to
be smaller and the data collection process dominates the
development process, the major concern here is the software
development process, and the data collectors must affect
minimal interference to the developers.

This creates potential problems with the validity of the data.
For example, suppose we are interested in the effort expended
on a particular module and one programmer forgets to turn in
his weekly effort report. This can cause erroneous data for ail
modules the programmer may have worked on that- week.
Another problem is how does a programmer report time on
the integration testing of three modules? Does he charge the
time to the parent module of all three, even though that
module may be just a small driver? That is clearly easier to
do than to proportion the effort between all three modules
he has worked on. Another issue is how to count errors.
An error that is limited to one module is easy to assign. What
about an error that required the analysis of ten modules to
determine that it affects changes in three modules? Does the
programmer associate one error with all ten modules, an error
with just the three modules or one third of an error with each
of the three?! The larger the system the more complicated
the association. All this assumes that all the errors are re-
ported. It is common for programmers not to report clerical
errors because the time to fill out the error report form might
take longer than the time to fix the error. These subtleties
exist in most observation processes and must be addressed in
a fashion that is consistent and appropriate for the environ-
ment.

The data discussed in this paper are extracted from several
sources. Effort data were obtained from a Component Status
Report that is filled out weekly by each programmer on the
project. They report the time they spend on each module in
the system partitioned into the phases of design, code, and
test, as well as any other time they spend on work related to
the project, e.g., documentation, meetings, etc. A module is
defined ‘as any named object in the system: that is, a module
is either a main procedure, block data, subroutine or function.
The Resource Summary Form, filled out weekly by the project
management, represents accounting data and records all time
charged to the project for the various personnel, but does not
break effort down on a module basis. Both of these effort
reports are utilized in Section V of this paper to validate the

LEfforts (18], [21] have attempted to make this assignment scheme
more precise by the explanation: a “fault” is a specitic manifestation in
the source code of a programmer “error’’: due to a misconception or
document discrepancy, a programmer commits an “error” that can
result in several “faults” in the program. With this interpretation, what
are referred to as errors in this study should probably be called faults.
In the interest of consistency with previous work and clarity, however,
the term error will be used throughout the paper.

654

effort reporting on the modules. The errors are collected from
‘the Change Report Forms that are completed by a programmer
each time a change is made to the system. While the collection
- of effort and error data is a subjective process and done manu-
ally, the remainder of the software measures are objective and
their calculation is automated.

A static code analyzing program called SAP [25] automat-
ically computes several of the metrics examined in this analysis.
On a module basis, the SAP program determines the number
of source and executable statements, the cyclomatic com-
plexity, the primitive Software Science metrics and various
other volume and complexity related measures. Computer
Sciences Corporation developed SAP specifically for the
Software Engineering Laboratory and the program has been
recently updated [14] to incorporate a more consistent and
thorough counting scheme of the Software Science param-
eters. In an earlier study, Basili and Phillips {3] employed the
preliminary version of SAP in a related analysis. The next
section explains the revised counting procedure and defines
the various metrics.

III. METRIC DEFINITION

In the application of each of the metrics, there exist various
ways to count each of the entities. This section interprets the
counting procedure used by the updated version of SAP and
defines each of the metrics examined in the analysis. These
definitions are given relative to the Fortran language, since
that is the language used in all the projects studied here. The
counting scheme depends on the syntactic analysis performed
by SAP and is, therefore, not necessarily chosen to coincide
exactly with other definitions of the various counts.

Primitive Software Science Metrics: Software Science de-
fines the vocabulary metric n as the sum of the number of
unique operators n; and the number of unique operands 7,.
The operators fall into three classes.

1) Basic operators include

t -/ ** = (0 & /] NE
.GE. .GT. .AND. .OR. .XOR. .NOT.

.EQ. .LE. .LT.
.EQV. .NEQV.

2) Keyword operators include

IF() THEN /* logical if */
IF() THEN ELSE /* logical if-then-else */
IF() , , /* arithmetic if */
IF() THEN ENDIF /* block if */
IF() THEN ELSE ENDIF /* block if-then-else */
IF() THEN

ELSEIF() THEN

ENDIF [* case if */

DO /* do loop */
DOWHILE /* while loop */
GOTO <target> /* unconditional goto:

distinct targets imply
different operators */
/* computed goto:
different number of
targets imply different
operators */

GOTO (T1...Tn) <expr>

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

GOTO <ident>, (T1...Tn) [* assigned goto: distinct
identifiers imply
different operators */

<subr>(, ,*<target>) [* alternate return */

END= [* read/write option */
ERR= [* read/write option */
ASSIGNTO [* target assignment */
EOS [* implicit statement

delimiter */

3) Special operators consist of the names of subroutines,
functions and entry points.

Operands consist of the all variable names and constants.
Note that the major differences of this counting scheme from
that used by Basili and Phillips {3] are in the way goto and if
statements are counted.

The metric n* represents the potential vocabulary, and Soft-
ware Science defines it as the sum of the minimum number of
operators nf and the minimum number of operands n;' . The
potential operator count n; is equal to two; that is, n; equals
one grouping operator plus one subroutine/function designator.
In this paper, the potential operand count n; is equal to the
sum of the number of variables referenced from common
blocks, the number of formal parameters in the subroutine,
and the number of additional arguments in entry points.

Source Lines: This is the total number of source lines that
appear in the module, including comments and any data state-
ments while excluding blank lines.

Source Lines—Comments: This is the difference between
the number of source lines and the number of comment lines.

Executable Statements: This is the number of Fortran
executable statements that appear in the program.

Cyclomatic Complexity: Cyclomatic complexity is defined
as being the number of partitions of the space in a module’s
control-flow graph. For programs with unique entry and exit
nodes, this metric is equivalent to one plus the number of
decisions and in this work, is equal to the one plus sum of the
following constructs: logical if’s, if-then-else’s, block-if’s,
block if-then-else’s, do loops, while loops, AND’s, OR’s, XOR’s,
EQV’s, NEQV’s, twice the number of arithmetic if’s, n- 1
decision counts for a computed goto with n statement labels,
and 7 decision counts for a case if with n predicates.

A variation on this definition excludes the counts of AND’s,
OR’s, XOR’s, EQV’s and NEQV’s (later referred to as Cyclo _
cmplx _2). .

Calls: This is the number of subroutine and function invo-
cations in the module.

Calls and Jumps: This is the total number of calls and deci-
sions as they are defined above.

Revisions: This is the number of versions of the module
that are generated in the program library.

Changes: This is the total number of changes to the system
that affected this module. Changes are classified into the
following types (a single change can be of more than one

type):

a) error correction
b) planned enhancement

BASILI et al.: METRIC ANALYSIS AND DATA VALIDATION

¢) implement requirements change

d) improve clarity

e) improve user service

f) debug statement insertion/deletion
g) optimization

h) adapt to environment change

i) other.

Weighted Changes: This is a measure of the total amount of
effort spent making changes to the module. A programmer
reports the amount of effort to actually implement a given
change by indicating either:

a) less than one hour,

b) one hour to a day,

c) one day to three days, or
d) over three days.

The respective means of three durations, 0.5, 4.5, 16, and 32
hours, are divided equally among all modules affected by the
change. The sum of these effort portions over all changes
involving a given module defines the weighted changes for the
module.

Errors: This is the total number of errors reported by pro-
grammers, ie., the number of system changes that listed this
module as involved in an error correction. (See the footnote 1
regarding the usage of the term “error.”)

Weighted Errors: This is a measure of the total amount of
effort spent isolating and fixing errors in a module. For error
corrections, a programmer also reports the amount of effort
spent isolating the error by indicating either:

a) less than one hour,

b) one hour to one day,
¢) more than one day, or
d) never found.

The representative amounts of time for these durations, 0.5,
4.5, 16, and 32 hours, are combined with the effort to imple-
ment the correction (as calculated earlier) and divided equally
among the modules changed. The sum of these effort portions
over all error corrections involving a given module defines the
weighted errors for the module.

IV. INTERNAL VALIDATION OF THE SOFTWARE
SCIENCE METRICS

The purpose of this section is to briefly define the Software
Science metrics, to see how these metrics relate to standard
program measures and to determine if the metrics are inter-
nally consistent. That is, Software Science hypothesizes that
certain estimators of the basic parameters, such as program
length N and program level L, can be approximated by for-
mulas written totally in terms of the number of unique oper-
ators and operands. Initially, an attempt is made to find
correlations between various definitions of these quantities
based on the interpretations of operators and operands given
in the previous section, Then, the family of metrics that
Software Science proposes is correlated with traditional mea-
sures of software.

Program Lengrh: Program length N is defined as the sum of

655

the total number of operators Ny and the total number of
operands N, , i.e., N=N; +N,. Software Science hypothesizes
that this can be approximated by an estimator N that is a
function of the vocabulary, defined as

N”™ =19y log; n, +n; logz n,.

The scatter plot appearing in Fig. 1 and Pearson correlation
coefficient of 0.899 (p <0.001; 1794 modules)® show the
relationship between N and N” (polynomial regression rejects
including a second degree term at p = 0.05). Several sources
[12], [161], [26], [27] have observed that the length estimator
tends to be high for small programs and low for large programs.
The correlations and significance levels for the pairwise Wil-
coxon statistic [20], broken down by executable statements
and length, are displayed in Table I. In ourenvironment, either
measure of size demonstrates that N” significantly overesti-
mates N in the first and second quartiles and underestimates
it (most significantly) in the fourth quartile. Feuer and
Fowlkes [15] assert that the accuracy of the relation between
the natural logarithms of estimated and observed length
changes less with program size. The scatter plot appearing in
Fig. 2 and correlation coefficient for In N versus In N™ of
0.927 (p <0.001; 1794 modules) show moderate improvement.

Program Volume: A program volume metric V defined as N
log, n represents the size of an implementation, which can be
thought of as the number of bits necessary to express it. The
potential volume V* of an algorithm reflects the minimum
representation of that algorithm in a language where the re-
quired operation is already defined or implemented. The
parameter V* is a function of the number of input and output
arguments of the algorithm and is meant to be a measure of
its specification. The metric V* is defined as

V*=(2+n;)log, (2+13).

The correlation coefficient for V versus V* of 0.670 (p < 0.001;
1794 modules) shows a reasonable relationship between a
program’s necessary volume and its specification,

Program Level: The program level L for an algorithm is
defined as the ratio of its potential volume to the size of its
implementation, expressed as

L=V*/V,

Thus, the highest level for an algorithm is its program specifi-
cation and there L has value unity. The larger the size of the
required implementation V, the lower the program level of the
implementation. Since L requires the calculation of V¥, which
is not always readily obtainable, Software Science hypothesizes
that L can be approximated by

2n,
'th,z.

The correlation for L versus L™ of 0.531 (p <0.001; 1794
modules) is disappointingly below that of 0.90 given in [19].
Hoping for an increase in the correlations, the modules are

partitioned by the number of executable statements in Table
I1. Although the upper quartiles show measured improvement

L™=

2The symbol p will be used to stand for significance level.

656

4000

3000 ' 4

N 2000 oo e .

1000

2000

0 1000

3000
N~

Fig. 1. Observed versus estimated length (1794 modules),
TABLE 1

OBSERVED VERSUS ESTIMATED LENGTH BROKEN DowN BY
PROGRAM SIZE

a. N vs. N" broken down by executable statments.
XQT STMTS MODS R~ ESTIMATION WILCOXON SIGNIF
0 - 19 446 .601 over <<.0001
20 - 40 hy2 511 over £<.0001
41 - 78 457 478 under .0367
79 <= hug 751 under <<.0001
b. N y3. K" broken down by N.
Length N MODS R~ ESTIMATION WILCOXON SIGNIF
0 - 118 Lyg .750 over <<.0001
115 - 243 345 Lhat over <<.0001
244 - 512 453 . 348 under .0010
513 <= u47 .731 under <<.0001
~ (p < .001)

over the correlation of the whole sample, a more interesting
relationship surfaces. The level estimator significantly under-
estimates the program level in the second, third and fourth
quartiles, with the hypothesis being rejected in the first quartile.
The increase in magnitude of the 7 parameter does not
appear to be totally captured by the definition of L”.

Program Difficuity: The program difficulty D is defined as
the difficulty of coding an algorithm. The metric D and the
program level L have an inverse relationship; D is expressed

D= 1/L.

An alternate interpretation of difficulty defines it as the in-
verse of L™, given by

L _mN;

D, =
2 L ~ 2172

Christensen, Fitsos, and Smith [12] demonstrate that the
unique operator count 7, tends to remain relatively constant
with respect to length for 490 PL/S programs. They propose
that the average operand usage N,/n, is the main contributor
to the program difficulty D,. The scatter plot appearing in
Fig. 3 and Pearson correlation coefficient ot 0.729 (p <0.001;
1794 modules) display the relationship between N,/n, and D,
for our Fortran modules. The application of polynomial re-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

10 T T T
8 I 4
6L]
1n(N)

4} J
2L 4
0 1 L I

0 2 4 6 8

in(N‘)
Fig. 2. Log-log plot of observed versus estimated length
(1794 modules).
TABLE 11

RELATIONSHIP OF OBSERVED VERSUS ESTIMATED PROGRAM LEVEL
BROKEN DOWN BY PROGRAM SIZE

XQT STMTS MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 19 U6 . 484 - -
20 - 40 442 .672 under <<.0001
41 - 78 as7 «597 under €<<.0001
79 <= 449 .615 under <<.0001
all 1794 .531 under <<.0001
~ (p < .001)
500 T T T
400 F 4
300 L 4
D2=1/L"
200 b 1
i 1
0 5 10 15 20

N2/n2

Fig. 3. Difficulty versus average operand usage (1794 modules).

gression brings in a second degree term (p < 0.001) and results
in a correlation of 0.738.

However. after observing in Fig. 4 that n, varies with pro-
gram size. it seems as if the n, 's inflation might possibly better
explain D,. The scatter plot appearing in Fig. 5 and the corre-

BASILI et al.: METRIC ANALYSIS AND DATA VALIDATION

300 T T T

v ntl
e n2

nl, n2 i

2000

module index

Fig. 4. Unique operators and operands ordered and indexed by length
(1794 modules).

500 T T T T

300 p 4

D2=1/L"

200 | .]

i
1

) !lii F.h:__
0 ._.L:i_l_H!'HII l”:h | |
0 20 n " .
nl

100

Fig. 5. Difficulty versus unique operator count (1794 modules).

lation of 0.865 (p < 0.001; 1794 modules) show the relation-
ship of D, versus ;. Stepwise polynomial regression brings in
a second degree term initially, followed by a linear term r<
0.001), and results in a correlation of 0.879. In our environ-
ment, the unique operator count n, explains a greater propor-
tion of the variance of the difficulty D, than the average
operand usage N,/n,.

Program Effort: The Software Science effort metric E at-
tempts to quantify the effort required to comprehend the
implementation of an algorithm. It is defined as the ratio of
the volume of an implementation to its level, expressed as

E= vV _v?
Lov®
The E metric increases for programs implemented with large
volumes or written at low program levels; that is. it varies with

657

TABLE 111
OBSERVED VERSUS ESTIMATED SOFTWARE SCIENCE E METRIC

»

« Pearson Correlation (p < .001; 1794 modules).

R
E vs. E .663
in B vs. 1n E* 931
E vs., E*° .603
ln E vs. 1n E™" .890

b. E vs. E° broken down by executable statements.
. XQT STMTS MODS R™ ESTIMATION WILCOXON SIGNIF
0 - 19 446 .708 under .0050
20 - 40 852 .709 over. <<.0001 "
41 - 78 35T L over <. 0001
79 <= LLE] .550 over <<.0001
= (p < .001)

the square of the volume. An approximation to E can be
obtained without the knowledge of the potential volume by
substituting L™ for L in the above equation. The metric

V _mN:V_ mN;Nlogs o

L 2m

E "
L 2m

defines the product of one half the number of unique oper-
ators, the average operand usage and the volume. Inan attempt
to remove the effect of possible program impurities [9], [19],
N" is substituted for N in the above equation, yielding

prno NTlogan _ mNa(ny logs my +m; log; my) loga -
L" 2”2)

The correlation coefficients for E versus E”, E versus E™*,
In E versus In E”, and In E versus In E™" are given in Table
Ill-a. A fit of a least squares regression line to the log-log plot
of E versus E” produces the equation

InE=0830In E™ + 1.357.

Equivalently,
E=¢l-357 g~0.8%0

Due to this nonlinear relationship and the improved correla-
tion of In E versus In E”, the modules are partitioned by
executable statements in Table III-b. The application of poly-
nomial regression confirms this nonlinearity by bringing in a
second degree term (p < 0.001), resulting in a correlation of
0.698. In Table III-b, notice that the correlations seem sub-
stantially better for modules below median size. The signifi-
cant overestimation in the upper three quartiles attributes to
the relationship of L and L™ described earlier.

Program Bugs: Software Science defines the bugs metric B
as the total number of “delivered” bugs in a given implementa-
tion. Not to be confused with user acceptance testing, the
metric B is the number of inherent errors in a system compo-
nent at the completion of a distinct phase in its development.
Bugs B is expressed by

where E, is theoretically equivalent to the mean number of
elementary discriminations between potential errors in pro-
gramming. Through a calculation that employs the definitions
of E, L, and X (\=LV* is referred to as the language level),

658

TABLE 1V
COMPARISON OF SOFTWARE SCIENCE METRICS AGAINST MORE
TRADITIONAL SOFTWARE MEASURES (1794 MODULES)

otherwise

Source_Lines Source-Cmmts Cyclo_cmplx_2 Calls_& Jumps
! i I !

Revisions |
|

| Execut_Stmts! Cyclo_emplx | Calls
i ! |

a, 2776 .854 778 .796 .818 .361 .802 .su2
n, .852 .867 .853 .767 .TT4 .u430 .809 .64
Ny .824 ,964 .868 .881 .889 .328 .86 .552
Ny .826 .949 .871 .858 .870 .355 .870 .597
ny® .792 .691 .754 .635 .629 .501 .683 .541
N .829 .961 .873 .87% .88% 343 .87 .577
N° .864 .897 .864 .800 .811 420 .836 .621
v - 837 .962 .875 .873 .883 .13 .876 .s84
Ve 76 L67T . 738 618 611 485 .664 .525
L -.098 -.179 -.112 -,170 -.173 ? -.158 -.083
Lt -.383 -.411 -394 -.389 -.396 -.216 ..386 ..250
D,=1/L .067a .24 (113,178,196 -,093 .134 ?
Dz=‘l/L“ .696 .872 .745 .816 .839 ,269 .791 .u78
Ny/n +365 L5448 437 508 .517 .106 .4TO .241
Lalbsa .136 ? .108 ? ? .13% ? .051¢
£ J439 629 .500 .S535 .556 .106 .506 .282
£ .663 .831 SN JT7T 0 .79T L2284 748 452
E*" .738 .877 .760 .799 .829 .268 .788 .501
8 - .837 .962 .875 .873 .883 .3u3 876 .s84
B* L586 .74 (610 650 .670 .149 620 ,355

T B and V will have identical correlations since they are linear
functions of one another.

this equation becomes
xl/3E2/3
=T0-'
The derivation determines an E, value of 3000, assumes
AY3 = | and obtains
E2/3
3000

~

The correlation for B versus B™
modules).

In summary, the relationship of some of the Software Sci-
ence metrics with their estimators seems to be program size
dependent. Several observations lead to the result that the
metric N” significantly overestimates N for modules below
the median size and underestimates for those above the median
size. The level estimator L™ seems to have a moderate correla-
tion with L, and its significant underestimation of L in the
upper three quartiles reflects its failure to capture the magni-
tude of n3 in the larger modules With respect to the E
metric, the effort estimator E” correlates better over the
whole sample than E”", and their strongest correlations are
for modules below median size. The estimator E” shows a
nonlinear relationship to the effort metric E. The correlation
of In E versus In E” significantly improves over that of E
versus E”, with the E” metric’s overestimation of E for larger
modules attributing to the role of L™ in its definition. With
the above family of metrics, Software Science attempts to
quantify size and complexity related concepts that have tradi-
tionally been described by a more fundamental set of measures.

Table 1V displays the correlations of the Software Science
metrics with the classical program measures of source lines of
code, cyctomatic complexity, etc. There are several observa-
tions worth noting. Length N and volume V have remarkably

is 0.789 (p <0.001; 1794

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

similar correlations and correspond quite well with most of
the program measures. Several of the metrics correlate weil
with the number of executable statements, especially the pro-
gram “‘size” metrics of Ny, N;, N, and V (also B). The level
estimator L™ and its inverse D, seem to be much more related
to the standard size and complexity measures than their coun-
terparts L and D,. The language level A does not seem to show
a significant relationship to the standard size and complexity
measures, as expected. The E™” metric relates best with the
number of executable statements and the modified cyclomatic
complexity, while correlating with all the measures better than
the E metric and slightly better than E~. None of the Soft-
ware Science measures correlate especially well with the num-
ber of revisions or the sum of procedure and functions calls.
The primary measures of unique operators n; and unique
operands 7, correspond reasonably well overall with =, being
stronger with source lines and n, stronger with the cyclomatic
complexities. In the next section, an analysis attempts to
determine the relationship that these parameters really have
with the quantities that they theoretically describe.

V. EXTERNAL VALIDATION OF THE SOFTWARE
SCIENCE AND RELATED METRICS

The purpose of this section is to determine how well the
Software Science metrics and various complexity measures
relate to actual effort and errors encountered during the
development of software in a commercial environment. These
objective product metrics are compared against more primitive
volume metrics, such as lines of source code. The reservoir of
development data includes the monitoring of several projects
and the analysis examines several projects at once, individual
projects and individual programmers across projects. To re-
move the dependency of the distribution of the correlation
coefficient on the actual measures of effort and errors, the
nonparametric Spearman rank order correlation coefficients
are examined in this section [22]. (The ability of a few data
points to artificially inflate or deflate the Pearson product-
moment correlation coefficient is well recognized.) The
analysis first examines how well these measures correspond
to the total effort spent in the development of software.

A. Metrics’ Relation to Actual Effort

Initially, a correlation across seven projects of the Software
Science E metric versus actual effort, on a module by module
basis using only those that are newly developed, produces the
results in Table V. The table also displays the correlations of
some of the more standard volume metrics with actual effort.
These disappointingly low correlations create a fear that there
may be some modules with poor effort reporting skewing the
analysis. Since there is partial redundancy built into the effort
data collection process, there exists hope of validating the
effort data.

Validation of Effort Data: The partial redundancy in the
development monitoring process is that both managers and
programmers submit effort data. Individual programmers
record time spent on each module, partitioned by design,
code, test, and support phases. on a weekly basis with a Com-
ponent Status Report (CSR). Managers record the amount of

BASILI et al.: METRIC ANALYSIS AND DATA VALIDATION

TABLE V
SPEARMAN RANK ORDER CORRELATIONS Rq WITH EFFORT FOR ALL
MobuLEs (731) FRom ALL ProJECTS (p < 0.001).

E .345
E® 445
E~* .u88
Cyelo_cmplx u63
Cyelo_cmplx 2 467
Calls RIS
Calls & Jumps .494
D,=1/L .126
02:1/L“ A17
Source_Lines .522
Execut_Stmts .456
Source~Cmmts .460
v .448
N 434
n, .485
n, 461
B .4u8
B” 385
Revisions <531
Changes 469
Weighted Chg .468
Errors .220
Weighted Err .226

time every programmer- spends working each week on the
project they are supervising with a Resource Summary Form
(RSF). Since the latter form possesses the enforcement
associated with the distribution of financial resources, it is
considered more accurate [24]. However, the Resource
Summary Form does not break effort down by module, and
thus a combination of the two forms has to be used.

Three different possible effort reporting validity checks are
proposed. All employ the idea of selecting programmers that
tend to be good effort reporters, and then using just the
modules that only they worked on in the metric analysis. The
three proposed effort reporting validity checks are:

number of weekly CSR’s submitted
by programmer

V. =
) Vim number of weeks programmer appears on RSF’s
sum of all man-hours reported by programmer
by V,= on all CSR’s
' sum of all man-hours reported for programmer
on all RSF’s
number of weeks programmer’s CSR
effort > RSF effort
C) Vi =1]-

total number of weeks programmer
active in project

The first validity proposal attempts to capture the frequency
of the programmer’s effort reporting. It checks for missing
data by ranking the programmers according to the ratio V; of
the number of Component Status Reports submitted over the
number of weeks that the programmer appears on Resource
Summary Forms. The second validity proposal attempts to
capture the total percentage of effort reported by the pro-
grammer. This proposal ranks the programmers according to
the ratio V, formed by the sum of all the man-hours reported
on Component Status Reports over the sum of all hours dele-
gated to him on Resource Summary Forms.

659

TABLE VI
SPEARMAN RANK ORDER CORRELATIONS Rg WITH EFFORT FOR
MODULES ACROSS SEVEN PROJECTS WITH VARIOUS
- VALIDITY LEVELS

Keys 2 p > .05
* p <= .05
otherwise p <= .001

Validity ratio Vo (#mods)

all(731) 80%(398) 90%(215)

E 23485 .307 «357
£" 485 L422 467
E*" 488 .480 .513
Cyclo_cmplx 163 457 479
Cyclo_cmplx_2 .U67 Jush .506
Calls KAL) .360 .02
Calls_& Jumps .493 475 79
D1=1/L <126 .088% ?

DzztlL“ 7 371 JAu21
Source_Lines .522 .519 .501
Execut_Stmts .456 .29 475
Source-Camts . 460 420 .439
v 448 U3y 475
N 834 416 .460
n, ~485 .462 493
n, 461 467 .503
B 448 J43h LUTS
8" .345 .307 .357
Revisions 531 .580 .565
Changes .569 495 .385
Weighted Chg .468 .521 .462
Errors .220 .381 .205
Weighted Err .226 .382 .2u7

Note that for a given week, the amount of time reported
on a Component Status Report should be always less than or
equal to the amount of time reported on the corresponding
Resource Summary Form. This is not because the programmer
fails to “cover” himself, but a consequence of the manage-
ment’s encouragement for programmers to realisticly allocate
their time rather than to guess in an ad hoc manner. This
observation defines a third validity proposal to attempt to
capture the frequency of a programmer’s reporting of inflated
effort. This data check ranks the programmer’s according to
the quantity V; equal to one minus the ratio of the number
of weeks that CSR effort reported exceeded RSF effort over
the total number of weeks that the programmer is active in the
project.

Metrics’ Relation to Validated Effort Data: Of the given
proposals, the systems development head of the institution
where the software is being developed suggests that the first
proposal, the missing data check, would be a good initial
attempt to select modules with accurate effort reporting [24].
The missing data ratios V, are defined for programmerson a
project by project basis, Table VI displays the effort correla-
tions of the newly developed modules worked on by only
programmers with V;; >= 90 percent from all projects, those
with Vi, >= 80 percent and for all newly developed modules.
Most of the correlations of the modules included in the
Vi >= 90 percent level seem to show improvement over those
at the Vi, >=80 percent level. Although this is the desired
effect and several of the V, >=90 percent correlations in-
crease over ‘the original values, a majority of the correlations
with modules at the Vi, >= 80 percent level are actually lower
than their original coefficients. Since the effect of the ratio’s

660

TABLE VII
SPEARMAN RANK ORDER CORRELATIONS Rg WITH EFFORT FOR
VARIOUS VALIDITY RANKING OF MODULES FROM INDIVIDUAL

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

TABLE VIII
SPEARMAN RANK ORDER CORRELATIONS Rs wWiTH EFFORT FOR
MobpuULEs TOTALLY DEVELOPED BY FIVE INDIVIDUAL

PROJECTS S.. S5, AND S PROGRAMMERS

Key: ? p > .05 Key: 72 p > .05

. p <= .05 . p <= .05

a p <= .01 a p <= .01
otherwise p <z .001

2z umavailable data

Project
s 8.~ S,

Validity ratic ! 3 7

v all 80% 90% 808 90% all 80%
tmodlres 9 29 20 132 81 127 u9
E . 613 .687 726 469 (419 .285 .409a
E® 665 .713 .786 .602 .585 .389 .569
g 700 .74T7 .798 .638 .640 430 .s67
Cyelo_cmplx LT5T 778 .792 .583 .608 463 .523
Cyelo_omplx_2 .764 .785 787 609 .664 .491 523
Calls .681 .698 .818 JAa82 492 408 485
Calls & Jumps .776 .813 .822 .598 ,619 .488 .569
D1=1/L .262a 2 ? L1568 2 ? ?
D2=1/L“ 625 .681 735 .507 442 377 499
Source_Lines .686 .672 .729 .783 L7348 .486 .499
Execut_Stmts .688 .709 .781 .609 .594 .408 .s515
Source-Cmmts .670 .710 ,778 671 654 L4816 U7
v 657 .692 .178 .627 .637 .377 .497
N .653 .680 .755 613 619 .360 ,u84
n, .683 .740 .88 .553 .533 L8439 43
n, 667 .701 .T47 643,698 .365 .45
B 657 .692 .77% 627 .637 37T 49T
B 613 .6u3 (726 J469 419 .285 .409a
Revisions 67T LT1T 808 .655 .632 .449 510
Changes .687 645 760 672 .639 .238a .380a
Weighted Chg .685 .629 .749 673 649 .238a .256%
Errors z z z 584 611 -253a .438
Weighted Err z 2 z 615 .605 24858 ,276%

“ A1l modules in project 33 were developed by programmers
with Vm >= 80%.

"7 There exist fewer than a significant number of modules developed
by programmers with Vm >z QO0%.

screening of the data is inconsistent and the overall magnitudes
of the correlations are low, the analysis now examines modules
from different projects separately.

The Spearman correlations of the various metrics with effort
for three of the individual projects appear in Table VII. Al-
though the correlation coefficients vary considerably between
and among the projects, the overall improvement in projects
S, and S; is apparent. Almost every metric’s correlation with
development effort increases with the more reliable data in
projects S; and S,. When comparing the strongest correla-
tions from the seven individual projects, neither Software
Science’s E metrics, cyclomatic complexity nor source lines
of code relates convincingly better with effort than the others.
Note that the estimators of the Software Science E metric, E™
and E™", appear to show a stronger relationship to actual
effort than E.

The validity screening process substantially improves the
correlations for some projects, but not all. This observation
points toward the existence of project dependent factors and
interactions. In an attempt to minimize these intraproject
effects, the analysis focuses on individual programmers across
projects. Note that Basili and Hutchens [2] also suggest that
programmer differences have a large effect on the results when
many individuals contribute to a project.

The use of modules developed solely by individual program-
mers significantly reduces the number of available data points

otherwise p <=z ,001

Programmer (#mods)

I:’1(31) P2(17) P3(21) Pu(Z’J) PSUS)
E «593 ? ? .561a ?
E® 718 .526¢ .375% .555a .507%
g .789 +570a ? .539a .511¢
- Cyelo_cmplx .592 469% .521a .565a ?
Cyclo_cmplx 2 .684 +583a Lug1e .546a ?
Calls .622 787 ? .669 ?
Calls_& Jumps .701 .60ka JU51e .579a ?
!’_1 =1/L 314 ? ? -7 ?
Dy=1/L" 713 .u6on ? .497a .u67e
Source_Lines .863 .682 .605a .624 ?
Execut_Stmts 187 .540¢ .436e 631 .534e
Source-Cmmts .826 .576a .530a .612 .509¢
v .718 .5ho# 4538 .579%a 4518
N .676 (5268 .L61% 5562 ,LT1e
n, 811 .575a ? .536a ?
n, 765 - .701 .527a .597 ?
B .718 .540% 453 .57% R
B* .593 ? ? .561a ?
Revisions 675 .523% 77 .468¢ ?
Changes JH12e L4680 .600a ? ?
Weighted Chg .428a .527¢ .502a ? ?
Errors .386¢ ? .668 ? .596a
Weighted Err L3429 ? .624 ? .Slse
VALIDITY RATIOS (%)
v 92.5 96.0 87.7 83.9 74,1
vy 97.9 91.8 98.8 82.1 Th.1
vy 78.6 69.5 77.6 80.0 87.5
Ave.V v, 95.2 93.9 93.25 83.0 5.1
Ave. Vm,Vi 85.5 82,75 82.65 81.95 80.8

because of the team nature of commercial work. Fortunately,
however, there are five programmers who totally developed at
least fifteen modules each. The correlations for all modules
developed by them and their values of the three proposed
validity ratios are given in Table VIIL. The order of increasing
correlation coefficients for a particular metric can be related
to the order of increasing values for a given validity ratio using
the Spearman rank order correlation. The significance levels
of these rank order correlations for several of the metrics
appear in Table IX. The statistically significant correspondence
between the programmers’ validity ratios V,, and the correla-
tion coefficients justifies the use of the ratio V, in the earlier
analysis; possible improvement is suggested if V, were com-
bined with either of the other two ratios.

In summary, the strongest sets of correlations occur between
the metrics and actual effort for certain validated projects and
for modules totally developed by individual programmers.
While relationships across all projects using both all modules
and only validated modules produce only fair coefficients,
the validation process shows patterns of improvement. Apply-
ing the validity ratio sc'reening to individual projects seems to
filter out some of the project specific interactions while not
affecting others, with the correlations improving accordingly.
Two averages of the validity ratios (V,, with V; and V., with
Vi) impose a ranking on the individual programmers that

BASILI et al.: METRIC ANALYSIS AND DATA VALIDATION

TABLE IX
SIGNIFICANCE LEVELS FOR THE SPEARMAN RANK ORDER
CORRELATIONS BETWEEN THE PROGRAMMER’S VALIDITY
RATIOS AND THE CORRELATION COEFFICIENTS FOR
SEVERAL OF THE METRICS

Ratio

Metric Vm v, v, Ave(Vm,Vt) Ave(vm,vi) Ave(Vt,Vi)
g"" .09 .09

Cyelo_cmplx .05
Cyclo_cmplx 2 .05 .02 .02

Calls_& Jumps .05 .02 .02

Source Lines .05 .02 .02
Source-Cmmts .09 .09

v (8) .09 .09

n, .05 .02 .02

Revisions .001 097 .09 .09

~ Negative correlation.
TABLE X

SPEARMAN RANK ORDER CORRELATIONS Rg WITH ERRORS AND
WEIGHTED-ERRORS FOR ALL MODULES (652) FROM SiX PrOJECTS™

Key: 7 p > .05
L4 p <= .05

a p <= .01
otherwise p <= .001

Errors Weighted_err

E .083% ,[101a
E” L5 1T
g** .163 .186
Cyclo_cmplx .196 .205
Cyclo_cmplx_2 .189 .200
Calls 220,236
Calls_& Jumps .235 .2u8
D1=1/L ? ?
Dyz1/L" 128 .140
Source_Lines .255 .265
Execut_Stmts 177 .198
Source-Cnmts .288 ,298
v .168 .186
N .162 .180
n, .102a .132
nz 181 .199
B .168 .186
j: .083*% .101a
Revisions .375 .375
Changes 67T .636
Weighted_Chg .627 .677
Design Eff .219 .185
Code_Eff .285 .316
Test _Eff 149 164
Tot_Effort 328,332

~ Project 51 has no data to distinguish errors from changes.

statistically agrees with an ordering of the improvement of
several of the correlations. In all sectors of the analysis, the
inclusion of L™ in the Software Science E metric in its esti-
mators E”™ and E”™ " seems to improve the metric’s correlations
with actual effort. The analysis now attempts to see how well
these metrics relate to the number of errors encountered
during the development of software.

B. Metrics’ Relation to Errors

This section attempts to determine the correspondence of
the Software Science and related metrics both to the number
of development errors and to the weighted sum of effort re-
quired to isolate and fix the errors. A correlation across all
projects of the Software Science bugs metric B and some of
the standard volume and complexity metrics with errors and

661

TABLE XI
SPEARMAN RANK ORDER CORRELATIONS Rg WITH ERRORS AND
WEIGHTED-ERRORS FOR MODULES FROM THREE
INDIVIDUAL PRrOJECTS

Rey: 2 P> .05
* p <= ,05
a p <= .01
otherwise p <= .001
Err errors
W_err weighted-errors
Project (#mods)
s3(132) 5,(35) 37(127)
Err W_err Err W_err Err W_err
EA 401 .378 ? ? +397 3N
E .536 482 ? ? .507 .503
" 579 .522 ? ? 492,505
Cyclo_cmplx .542 .481 ? ? .393 .368
Cyclo_cmplx_2 .553 .489 ? ? .405 ,400
Calls L85 432 -300% .316% ,423 419
Calls_&_Jumps .566 .518 ? ? 432 .u412
D1=1/L ? ? ? ? .168% ,178¢
D2=1/L‘ 491 426 ? ? .563 .559
Source _Lines .648 .622 339% 0 490 .u87
Execut_Stmts .538 .505 ? ? 478 Lu65
Source-Camts .599 .568 ? ? 2501 .u483
581 495 ? ? 461 .u56
N .526 480 ? ? L4857 Lulg
ny .550 .500 ? ? .488 .522
n, .541 .500 ? ? .348 .367
B .54t 495 ? ? JH461 456
B* 401,378 ? ? +396 .390
Revisions .784 694 .686 .630 567 .500
Changes 939 .864 L7700 L761 .727 .670
Weighted Chg .840 .885 .661 .757 624 .714
Design_Eff ? ? ? ? ? ?
Code Eff .620 .632 .413a .398a .274 .264
Test _Eff 473 .48 3120 2 ? ?
Tot_Effort 644 615 .U55a .447a .253a ,245a
PROJECT ATTRIBUTES
Weiss study X X
weyv X
Chronology recent early middle

weighted errors, using only newly developed modules, produces
the results in Table X. Most of the correlations are very weak,
with the exception of system changes. These disappointingly
low correlations attribute to the discrete nature of error re-
porting and that 340 of the 652 modules (52 percent) have
zero reported errors. Even though these correlations show
little or no correspondence, the following observations indi-
cate potential improvement.

Weiss [4], [S] conducted an extensive error analysis that
involved three of the projects and employed enforcement of
error reporting through programmer interviews and hand-
checks. For two of the more recent projects, independent
validation and verification was performed. In addition, the
on-site systems development head asserts that due to the
maturity of the coilection environment, the accuracy of the
error reporting is more reliable for the more recent projects
[24]. These developmental differences provide the motivation
for an examination of the relationships on an individual project
basis.

Table XI displays the attributes of the projects and the
correlations cf all the metrics versus errors and weighted

662

TABLE XII
SPEARMAN RANK ORDER CORRELATIONS Rg WITH ERRORS AND
WEIGHTED-ERRORS FOR MODULES TOTALLY DEVELOPED BY
Two INDIVIDUAL PROGRAMMERS

Key: 2 p> .05
L p <= .05
a p <= .01
otherwise p <= .001
Err errors
W_err weighted-errors
) Programmer (#mods)
P2(17) P3(21)
Err W_err Err W_err
E 514 hy7e . 368% 2
E® .527¢ .4g3# .600a .563a
E** <515% 473 .666 .649
Cyclo_cmplx .575a .558a .463% ,u28¢
Cyelo_cmplx_2 .661a .616a LuBus yuge
Calls 7 L498% .506a .469®
Calls_& Jumps .545% .560a .598a .557a
D1=1/L ? ? ? ?
D2=1/L‘ .558a .526¢ U598 hoge
Source_Lines ? ? .662 .646
Execut_Stmts .624a .577a .57%9a .533a
Source-Cmmts ? 436w .635 .594a
v 4918 y7oe 679 655
N .Loue u79e 641 ,610a
n, L497% 448 .611a .589a
n ? ? 715 G717
2
B JLot1e 472w 679 .655
B" L5148 uy7e .368% ?
Revisions ? ? .83 .81
Changes .716 .662a .855 .828
Weighted Chg ? .510% .863 .861
Design_Eff ? ? LU60% 3928
Code_Eff ? R .699 .667
Test_Eff ? ? .668 .64h
Tot_Effort ? ? .668 .624

errors for three of the individual projects. The correlations
in §,, a project involved in the Weiss study, are fair but better
than those of project Ss (not shown) that was developed at
about the same time. Project S, and S¢ (also not shown) have
very poor overall correlations and unreasonably low relation-
ships of revisions with errors, which point to the effect of
being early projects in the collection effort, The trend that
the attributes produce is not very apparent, although chronol-
ogy and error reporting enforcement do seem to have some
effect. In another attempt to improve the correlations, the
analysis applies the previous section’s hypothesis of focusing
on individual programmers. Table XII gives the correlations of
the metrics with errors and weighted errors for modules that
two of the individual programmers totally developed. Even
though it is encouraging to see the correspondences of the
metrics B, E™" and n, with errors as among the best for pro-
grammer Pj, the same metrics do not relate as well for other
programmers.

In summary, partitioning an error analysis by individual
project or programmer shows improved correlations with the
various metrics. Strong relationships seem to depend on the
individual programmer, while few high correlations show up
on a project wide basis. The correlations for the projects
reflect the positive effects of reporting enforcement and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

collection process maturity, Overall, the correlations with
total errors are slightly higher than those with weighted errors,
while the number of revisions appears to relate the best.

VI. CONCLUSIONS

In the Software Engineering Laboratory, the Software Sci-
ence metrics, cyclomatic complexity and various traditional
program measures have been analyzed for their relation to
effort, development errors and one another. The major results
of this investigation are the following: 1) none of the metrics
examined seem to manifest a satisfactory explanation of effort
spent developing software or the errors incurred during that
process; 2) neither Software. Science’s E metric, cyclomatic
complexity nor source lines of code relates convincingly better
with effort than the others; 3) the strongest effort correlations
are derived when modules obtained from individual program-
mers or certain validated projects are considered; 4) the major-
ity of the effort correlations increase with the more reliable
data; 5) the number of revisions appears to correlate with
development errors better than either Software Science’s B
metric, E metric, cyclomatic complexity or source lines of
code; and 6) although some of the Software Science metrics
have size dependent properties with their estimators, the
metric family seems to possess reasonable internal consistency.
These and the other results of this study contribute to the
validation of software metrics proposed in the literature. The
validation process must continue before metrics can be effec-
tively used in the characterization and evaluation of software
and in the prediction of its attributes.

ACKNOWLEDGMENT

The authors are grateful to F. McGarry and B. Curtis for
their valuable comments on this analysis. We would also like
to thank B. Decker, W. Taylor, and E. Edwards for their
assistance with the SAP program and the S.E.L. database.

REFERENCES

[1] V. R. Basili. Tutorial on Models and Metrics for Software Man-
agement and Engineering. IEEE Comput. Soc., IEEE Cat.
EHO-167-7, 1980.

V. R. Basili and D. H. Hutchens, “Analyzing a syntactic family
of complexity metrics,” Dep. Comput. Sci., Univ. Maryland,
College Park, Tech. Rep. TR-1053, Dec. 1981; to appear in /EEE
Trans. Software Eng.

V. R. Basili and T. Phillips, “Evaluating and comparing the soft-
ware metrics in the Software Engineering Laboratory,” ACM
Sigmetrics (1981 ACM Workshop/Symp. Measurement and
Evaluation of Software Quality), vol. 10, pp. 95-106, Mar. 1981.
V. R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data*,” Dep. Comput. Sci., Univ. Maryland,
College Park, Tech. Rep, TR-1235, Dec. 1982.

—, “Evaluating softwarc development by analysis of changes:
The data from the Software LEngineering Laboratory*,” Dep.
Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-1236,
Dec. 1982,

V. R. Basili and M. V. Zelkowitz, “Analyzing medium scale sott-
ware developments,” in Proc. 3rd Int. Conf. Software Eng.,
Atlanta, GA. May 1978, pp. 116-123.

—, “Measuring software development characteristics in the local
environment.” Comput. and Structures, vol. 10, pp. 39-43.
1979.

V. R. Basili, M. V. Zelkowitz, . E. McGarry, R. W. Reiter, Jr.,
W. I. Truszkowski, and D. L. Weiss, “The Software Engineering

{2

(3]

(4]

(5]

[6]

{7

(8]

BASILI et al.: METRIC ANALYSIS AND DATA VALIDATION

Laboratory,” Software Eng. Lab., NASA/Goddard Space Flight
Center, Greenbelt, MD, Rep. SEL-77-001, May 1977,
{9] N. Bulut and M. H. Halstead, “Impurities found in algorithm
implementations,” 4CM SIGPLAN Notices, vol. 9, Mar. 1974.
D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili,
“The Software Engineering Laboratory,” Software Eng. Lab.,
NASA/Goddard Space Flight Center, Greenbelt, MD, Rep. SEL-
81-104, Feb. 1982,
E. T. Chen, “Program complexity and programmer productivity,”
IEEE Trans, Software Eng., vol. SE-4, pp. 187-194, May 1978.
K. Christensen, G. P. Fitsos, and C. P. Smith, “A perspective on
software science,” IBM Syst. J., vol. 20, pp. 372-387, 1981.
B. Curtis, S. B, Sheppard, and P. M. Milliman, “Third time charm:
Stronger replication of the ability of software complexity metrics
to predict programmer performance,” in Proc. 4th Int. Conf,
Software Eng., Sept. 1979, pp. 356-360.
W. J. Decker and W. A. Taylor, “FORTRAN static source code
analyzer program (SAP) user’s guide (Revision 1),” Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD, Rep.
SEL-78-102, May 1982,
A. R. Feuer and E. B. Fowlkes, “Some results from an empirical
study of computer software,” in Proc. 4th Int. Conf, Software
Eng., Sept. 1979, pp. 351-355. .
G. P. Fitsos, “Vocabulary effects in software science,” IBM Santa
Teresa Lab., San Jose, CA, Tech. Rep. TR 03.082, Jan. 1980.
J. E. Gaffney and G. L. Heller, “Macro variable software models
for application to improved software development management,”
in Proc. Workshop on Quantitative Software Models for Reli-
ability, Complexity, and Cost, IEEE Comput. Society, 1980.
S. A. Gloss-Soler, The DACS Glossary: A Bibliography of Soft-
ware Engineering Terms, Data & Anal. Center for Software,
Griffiss Air Force Base, NY, Rep. GLOS-1, Oct. 1979.

(10]

(1)
(12)
(13]

[14]

{15]

(16}
[17]

(18]

[19]
Elsevier North-Holland, 1977.

R. V. Hogg and E. A. Tanis, Probability and Statistical Inference.
New York: Macmillan, 1977, pp. 256-271.

[21] IEEE Standard Glossary of Software Engineering Terminology,
IEEE, 342 E. 47th St., New York, Rep. IEEE-STD-729-1983,
1983.

M. Kendall and A. Stuart, The Advanced Theory of Statistics,
vol. 2, 4th ed. New York: Macmillan, 1979, pp. 503-508.

T. J. McCabe, “A complexity measure,” IEEE Trans. Software
Eng., vol. SE-2, pp. 308-320, Dec. 1976.

F. E. McGarry, Systems Development Head, Code 582.1, NASA/
Goddard Space Flight Center, Greenbelt, MD, personal consulta-
tion, Jan.-July 1982.

E. M. O'Neill, S. R. Waligora, and C. E. Goorevich, “FORTRAN
static source code analyzer (SAP) user’s guide.” Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD, Rep.
SEL-78-002, Feb. 1978.

V. Y. Shen and H. E. Dunsmore, “A software science analysis
of COBOL programs,” Dep. Comput. Sci., Purdue Univ., West
Lafayette, IN, Tech. Rep. CSD-TR-348, Aug. 1980.

C. P. Smith, “A software science analysis of IBM programming
products,” IBM Santa Teresa Lab., San Jose, CA, Tech. Rep.
TR 03.081, Jan. 1980.

[20]

(22]
(23]
(24]

{25]

(261

(27]

M. H. Halstead, Elements of Software Science. New York: '

663

Victor R. Basili (M’83) is Professor and Chair-
man of the Department of Computer Science at
the University of Maryland, College Park. He was
involved in the design and development of several
software projects, including the SIMPL family of
programming languages. He is currently mea-
suring and evaluating software development in
industrial settings and has consulted with many
agencies and organizations, including IBM, GE,
CSC, Naval Research Laboratory, Naval Surface
Weapons Center, and NASA. He has authored
over 50 published papers on the methodology, the quantitative analysis,
and the evaluation of the software development process and product. In
1982, he received the Outstanding Paper Award from the IEEE TRANs-
ACTIONS ON SOFTWARE ENGINEERING. He was Program Chairman for the
6th International Conference on Software Engineering, and the first ACM
SIGSOFT Software Engineering Symposium on Tools and Methodology
Evaluation. He serves on the Editoriai Boards of the Journal of Systems and
Software and the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.

Dr. Basili is a member of the Association for Computing Machinery, the
Executive Committee of the Technical Committee on Software Engineer-
ing, and the IEEE Computer Society.

Richard W. Selby, Jr. (§’83) was born in Chicago,
IL, in 1959. He received the B.A. degree in
mathematics and computer science from Saint
Olaf College, Northfield, MN, in 1981 and the
M.S. degree in computer science from the Uni-
versity of Maryland, College Park, in 1983.

From 1981 to the present, he has been a
Ph.D. candidate and Research Assistant at the
University of Maryland under the direction of
Dr. V. R. Basili. His research interests include
the modeling, specification, and testing of
software.

Mr. Selby is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Tsai-Yun Phillips received the B.S. degree
(magna cum laude) and the M.S. degree in
computer science from the University of
Maryland, College Park, in 1979 and 1981,
respectively.

At present she is working on her Ph.D. in
computer science at the University of Mary-
land. She has been working in the Computer
Vision Laboratory of the University as a Re-
search Assistant since 1981. Her interests are
three-dimensional segmentation, reconstruction.
and hierarchical shape representation.

