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A Heuristic for Deriving Loop Functions

DOUGLAS D. DUNLOP anp VICTOR R. BASILI, MEMBER, IEEE

Abstract—The problem of analyzing an initialized loop and verifying
that the program computes some particular function of its inputs is
addressed. A heuristic technique for solving these problems is proposed
that appears to work well in many commonly occurring cases. The use
of the technique is illustrated with a number of applications.. An attri-
bute of initialized loops is identified that corresponds to the “effort”
required to apply this method in a deterministic (i.e., guaranteed to
succeed) manner. It is explained that in any case, the success of the
proposed heuristic relies on the loop exhibiting a “reasonable” form of
behavior.

Index Terms-—Constraints, initialized loop programs, loop functions,
program verification.

I. INTRODUCTION

N this paper, we will consider programs of the following
form:

<INITIALIZATION STATEMENTS>> ;

while <LoOOP PREDICATE>> do
<LOOP BODY STATEMENTS>
od.

These programs tend to occur frequently in programming in
order to accomplish some specific task, e.g., sort a table, traverse
a data structure, calculate some arithmetic function, etc. The
intended purpose of such a program is often to compute, in
some particular output variable(s), a specific function of the
program inputs. In this paper, we address the problem of ana-
lyzing a program of the above form in order to prove its correct-
ness relative to this intended function. ‘

One common strategy taken to solve this problem is to syn-
thesize heuristically a sufficiently strong inductive assertion
(i.e., loop invariant [4], [8], [9]) for proving the correctness
of the program. A large number of techniques to aid in the
discovery of these assertions have appeared in the literature
(see, for example, [11], [18]). It is our view, however, that
these techniques seem to be more “machine oriented” than
“people oriented.” That is, they seem geared toward use in an
assertion generator for an automatic program verification sys-
tem. Furthermore, a sizable portion of the complexity of these
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techniques is due to.their general-purpose nature. The method
proposed here is intended to be used by programmers in the
process of reading (i.e., understanding, documenting, verifying,
etc.) programs and is tailored to the commonly -occurring
verification problem discussed above.

An alternative to the inductive assertion approach that is
taken in this paper is to invent a hypothesis concerning the
function of the WHILE loop. Once this has been done, the loop
can be proven/disproven correct with respect to the hypothesis
using standard techniques [2], [13]-[15], [17], [19]. If the
hypothesis is shown to be valid, the correctness/incorrectness
of the program in question follows immediately. It has been
shown [1], [3], [15], [16] that this loop hypothesis can be
generated in a deterministic manner (i.e., one that is guaranteed
to succeed) for two restricted classes of programs. The approach
suggested here is similar to this method in that the same type
of loop behavior is exploited in order to obtain the hypothesis.
Our approach is not deterministic in general, but is intended to
be more widely applicable and easier to use than those previ-
ously proposed. ,

One view of the problem of discovering the general input/
output behavior of the wHILE loop under consideration might
be to study it and make a guess. One might proceed by “exe-
cuting” the loop by hand on several sample inputs and then
inferring some general expression based on these results. Deci-
sions that need to be made when using such a technique include
how many sample inputs to use, how to select inputs, and how
to infer the general expression. But hand execution can be a
difficult and an error prone task. Indeed, the loops for which
hand execution can be carried out straightforwardly are often
the ones least in need of verification or some other type of
formal analysis.

Our method is similar to this technique in that we attempt
to infer the general behavior of the loop from several sample
loop behaviors. In contrast, however, the sample behaviors
are not obtained from hand execution, rather they are obtained
from the specification for the initialized loop program. In
many of the cases we have studied, the general behavior of the
loop in question is quite easy to guess from these samples. This
is not to say that the loop computes a “simple” function of
its inputs or that the loop necessarily operates in a “simple”
manner. - Much ‘more accurately, the ease with which the
general behavior can be inferred from the samples is due to
a “simple” connection between a change in the input value
of an initialized variable and the corresponding change caused
in the result produced by the loop. We will expand on this
idea in what follows.
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II. CONSTRAINTS AND Loor FUNCTIONS
The verification problem is represented as follows:

{X=X0 & X0 € D(f)}
X :=K(X);
while B(X) do
X :=H(X)
od
{V=f(X0)}.

X represents the state of the program and may be viewed as a
vector containing values for each of the variables in the program.
K and H are state-to-state functions corresponding to the
effects of the initialization and loop body, respectively. Bis a
predicate over the state. The program is to produce in the out-
put variable(s) V a function f of the input state X0. D(f) stands
for the domain of the function f, i.e., the set of states for
which f is defined.

If S is the set of all conceivable program states and T is the
set of values that the variables V may assume, f has the func-
tionality f : S - T. In order to verify a program of this form,
we choose to find a function g : S = T that describes the input/
output characteristics of the wHILE loop over a suitably gen-
eral input domain. Specifically, this input domain must be
large enough to contain all the intermediate states generated
by each loop iteration. If this is the case, the loop is said to
be closed [2], {15] for the domain of g.

We briefly consider two alternative approaches to synthe-
sizing this loop function g. The alternatives correspond to the
“top down” and “bottom up” approaches to creating inductive
assertions discussed in [6], [10]. In the “top down” alterna-
tive, the hypothesis g answers the question “what would the
general behavior of the loop have to be in order for the pro-
gram to be correct?” If such a hypothesis can be found and
verified, the correctness of the initialized loop program is estab-
lished. If the program is incorrect, no such valid hypothesis
exists. Inthe “bottom up” alternative, the hypothesis ganswers
the question “what is the general behavior of the loop?” In
this case, a valid hypothesis always exists. Once it has been
found and verified, the program is correct if and only if the
initialization followed by g is equivalent to the function f.

The two approaches attack the problem of synthesizing g
from different directions. The “top down” approach works
from the function specification, the “bottom up” approach
works from the code. The advantage ofa “top down” approach
is that it is usually easier to apply in practice because the veri-
fier has more information to work with (i.e., specification and
code versus just code). The disadvantage is that it may not be
as well-suited to disproving programs. This is because to dis-
prove a program, the verifier must employ an argument that
shows that there does not exist a valid hypothesis. The method
described in this paper is based on the “top down” approach.
We will return to a discussion of this advantage and disadvan-
tage later.

Assuming the above program is correct, several properties of
g can be deduced. First

X0 € D(f) - £(X0)=g(K(XO0)). )
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That is, for inputs satisfying the program precondition, the ini-

* tialization followed by the loop yields the desired result. Sec-

ondly, since the loop computes g, the “iteration condition”

[15]
B(X1) > g(X1)=g(H(X1))

of the standard technique for showing the loop computes g
must hold [14], [15], [17]. This implies

B(K(X0)) > g(K(X0))=g(H(K(X0))).
Combining with (1) yields
X0 € D(f) & B(K(X0)) ~ f(X0)=g(H(K(X0))). @

Predicates (1) and (2) can be rewritten using a new, universally
quantified variable as follows:

X0 € D(f) & X=K(X0) - g(X)=(X0) 1"
and
X0 € D(f) & B(K(X0)) & X=H(K(X0)) - g(X)=f(X0).
2"

If the above program is correct, then the function g that the
loop computes must satisfy (1) and (2'). We call (1") and (2")
constraints, since they serve as constraints or requirements on
the loop function g. Constraint (1) views the program as ini-
tialization followed by the loop—as a single entity. Constraint
(2') views the program as initialization followed by the loop
body followed by the loop—again as a single entity. In a sense,
we are using the well known fact that if condition B(X) is
true, then the programs

X :=H(X),
while B(X)do  while B(X) do
X :=H(X) X :=H(X)
od; od;

are equivalent for the input X. One could derive other con-
straints as well (and we will, later on), by looking at the loop
as two separate iterations followed by the loop, etc.

Thus far, we have developed two constraints (1') and (2)
that g must satisfy. The constraints represent subsets of g. We
are interested in them because, if the first few iterations of the
loop are in some sense representative of all iterations, then it
might be possible to generalize the constraints to g in a rela-
tively straightforward manner. We believe that this is indeed
the case, and we have developed some promising heuristics for
it. We present these heuristics in the next section, but first let us
look at a specific example to make these ideas more concrete.

Example 1: The following program performs z := v0 = k for
v0>0:

{v=v0 & v0=>0}
z:=0;
while v # 0 do
z:=z2+Kk;
vi=v-1
od
{z=v0xk}.
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For this program, the two constraints (1') and (2') are

Cl: v=v0 & v0=0 & z=0 - g(z,v,k)=v0=k

C2: v0>0 & v=v0-1 & z=k > g(z,v,k)=vO+k.
Here, we have used the specific variables to represent the state.
The domain D(f) of the program is given by the precondition.
The predicate X = K(X0) of constraint (1") is z=0. The func-
tion f computed by the loop is vO # k. Note that g is written
as a function of all the variables used in the loop.

Now let us try to generalize constraints C1 and C2 in order
to arrive at a possible loop function g. First, since vO does not
occur as an argument of g, it may help to eliminate it. This is
possible because the antecedent of each constraint completely
defines vO for that constraint. We therefore rewrite C1 and C2
as

Cl: v=0 & z=0 - g(z,v,k)=v*k

C2: v=20 & z=k - g(z,v,k)=(v+1)=k.
Next, note that argument z of g does not appear in the func-
tion expressions v # k and (v + 1) * k. The appearance of z =k
in the antecedent of C2 indicates that we might be able tointro-
duce z into these function expressions. First,rewrite (v+1)*k
asvxk+k:

C2: v=20 & z=k = g(z,v,k)=vsk+k.

Then, an occurrence of k can be replaced by z, yielding one of
the two possibilities: '

v=0 - g(z,v,k)=vsz+k and v=0- g(z,v,k)=vek+z.

Both are generalizations of C2, but only the second is also a
generalization of C1, so we take this latter function as the
definition of g. With it, we can prove the above program using
the standard techniques {14], [15].

This example shows how the constraints derived from a loop
with initialization can be generalized to the loop function g.
At first glance, the general problem of generalizing a set of
constraints to some desired function may seem too difficult.
However, in the limited context where the constraints are
derived from an initialized loop and the function to be derived
is the loop function, it may be possible to develop heuristics
for generalizing a function g from a set of constraints. The
methods of computation of many loops that occur in practice
have enough similarities to make such heuristics useful.

In the next section we introduce a fourstep method for
deriving function g from the constraints. This method was just
used on the previous example, and we will illustrate its use on
many other examples in this paper.

III. THE TECHNIQUE

We describe the four steps using the multiplication program
of Example 1:
{v=v0 & v0=0}
z:=0;
while v+ 0 do
z:=z+Kk;
vi=v-1
od
{z=v0*k}.
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Step 1-rRECORD: This step consists of recording the con-
straints using the templates (1) and (2). As a notational con-
venience, we dispense with the state notation and use program
variables (possibly subscripted by O to denote their initial
values) in these constraints. The terms X0 € D(f) and f(X0)
come from the pre- and postcondition for the initialized loop
respectively. The term X =K(XO0) is based on the input/output
behavior of the initialization, and the terms B(K(X0)) and X =
H(K(X0)) together describe the input/output behavior of the
initialization followed by exactly one loop iteration. The con-
straints for the program are as follows:

Cl: v0=>0 & v=v0 & z=0 > g(z,v,k)=v0xk
C2: v0>0 & v=v0-1 & z=k > g(z,v,k)=vO=k.

We make the following comments. First, g is a function of
each program variable that occurs in the loop predicate or loop
body. Second, note that in C2, the term vO > O captures both
X0 € D(f) (i.e., vO > 0) and B(K(X0)) (i.e., v0 # 0). Asa final
remark, we will use the phrase function expression to refer to
the term in the consequent of a constraint that defines the
value of g (e.g., vO * k in both C1 and C2 above).

Step 2—-simpLIFY: All variables that appear in the constraint
but not in the argument list for g must eventually be elimin-
ated from the constraint. On occasion, it is possible to solve
for the value of such a variable in the antecedent and substitute
the equivalent expression for it throughout the constraint. To
illustrate, in C1 above, v0 is a candidate for elimination. We
know its value as a function of v (i.e., vO =v); hence we can
SIMPLIFY this to

Cl: v=0 & z=0 - g(z,v,k)=v=k.

In a similar manner, the second constraint can be SIMPLIFIED
to (usingv0=v+1)

C2: v=0 & z=k » g(z,v,k)=(v+1)*k.

Step 3—REWRITE: Variables that appear in the argument
list for g but not in the function expression are candidates to
be introduced into the function expression. Each of these
variables will be bound to a term in the antecedent of the con-
straint. The purpose of this step is to rewrite the function
expression of C2 (based on the properties of the operation(s)
involved) in order to include these terms into the function
expression. In the following step (see below), the result of
REWRITE will then be used to introduce the necessary variables
into the function expression. To illustrate, considér the above
SIMPLIFIED C2. Variable z is a candidate to be introduced
into the function expression (v + 1) = k. It is equal to k in the
antecedent. Thus we need to introduce an additional term k
into this function expression. One way to do this is to trans-
late the expression to v * k + k. Based on this, we REWRITE
C2as

C2: v=20 & z=k > g(z,v,k)=vsk +k.

Step 4--suBsTiTuTE: In steps 2 and 3, the constraints are
massaged into equivalent constraints in order to facilitate step
4. The purpose of this step is to attempt to infer a general
loop function from these constraints. We motivate the process
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as follows. Suppose we are searching for a particular relation-
ship between several quantities, say E, m, and ¢. Furthermore,
suppose that through some form of analysis we have determined
that, when m has the value 17, the relationship E=17 % (¢ #% 2)
holds. A reasonable guess, then, for a general relationship
between E, m, and ¢ would be E =m # (¢ #* 2). This would
be particularly true if we had reason to suspect that there was
a relatively simple connection between the quantities m and E.
We arrived at the general relationship by substituting the quan-
tity m for 17 in the relationship that is known to hold when
m = 17. Viewed in this light, the purpose of the constraint C2
is to obtain a relationship that holds for a specific value of m
(e.g., 17). The step REWRITE exposes the term 17 in this
relationship. Finally, SUBSTITUTE substitutes m for 17 in the
relationship and proposes the result as a general relationship
between E, m, and c. In terms of the multiplication program
being considered, the SUBSTITUTE step calls for replacing one
of the terms k in the above rewritten function expression with
the variable z. The two possible substitutions lead to the fol-
lowing generalizations:

v=20 - g(z,v,k)=vek+z
and
v=0 - g(z,v,k)=v=z+k.

Both of these (necessarily) imply (i.e., are generalizations of)
C2, however, only the first is also a generalization of C1. Hence
this function is hypothesized as a description of the general
behavior of the above WHILE loop.

We have applied the above four steps to obtain a hypothesis

v=20 - g(z,v,k)=vxk+z
for the behavior of the loop

while v # 0 do
z:=z+Kk;
vi=v-1;

od.

Since this description is sufficiently general (specifically, since
the loop is closed for the domain of the function), we can
prove/disprove the correctness of the hypothesis using stan-
dard verification techniques [14]. Specifically, the hypothesis
is valid if and only if each of

o the loop terminates for all v 0,

e v=0->z=vsk+z and ,

e vxk+zisaloop constant (i.e.,vO*kO+2z0=v*k+zis
a loop invariant)

hold. We remark that the loop hypothesis is selected in such a
way that if it holds (i.e., the loop does compute this general
function), the initialized loop is necessarily correct with respect
to f. k

We empbhasize that there are usually an infinite number of gen-
eralizations of the constraints C1 and C2, and that, depending
on how REWRITE and SUBSTITUTE are applied, the technique
is capable of generating any one of these generalizations. For
example, REWRITE and SUBSTITUTE applied to the multipli-
cation example could have produced
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C2: v20&z=k—>g(z,v,k)=
vxk + 3xk + kxk#(v- 7)/(4%k) + kxkxk/(k*Kk)
= kxkxk#(v-T)/(4xk*k) - ksk+k*3/(k+k)
and

v=20—>g(z,v,k)=
vk + 3%z + zxzx(v- 7)/(4%K) + z#zxz/(k*K)
- z#zz%(v- 7)/(4xk#K) - zsz*z+3/(k*K),

respectively, where “/”’ denotes an integer division (with trun-
cation) infix operator that yields 0 when its denominator is 0.
This last function is also a generalization of C1 and C2.

It has been our experience, however, that for many initialized
loops there exists some relatively simple connection between
different input values of the variables constrained by initializa-
tion and the corresponding result produced by the WHILE loop.
Most often in practice, these variables are bound to values in
the antecedent of C2 that suggest an application of REWRITE
that uncovers this relationship and leads to a correct hypothesis
concerning the general loop behavior. In the following section
we illustrate a number of applications of this technique.

IV. APPLICATIONS

Example 2: The following program computes powers of
integers, This example serves to illustrate the use of the tech-
nique when the loop body contains several paths:

{¢=¢0 & d=d0 & d0>0}
w:=1;
while d # 0 do
if odd(d) then w :=w = c fi;
c:=cxc;d:=d/2
od
{w=c0 = d0}.

The first constraint is easily RECORDED :

d0=0 & c=c0 & d=d0 & w=1 - g(w,c,d)=cO**c£O
and SIMPLIFIES to

Cl: d=0 & w=1 - g(w,c,d)=c#x*d.

Since there exist two paths through the loop body, we will
obtain two second constraints. The first of these deals with
the path that assigns to w and is executed when the input value
of d is odd. The constraint is

d0>0 & 0dd(d0) & w=c0 & c=c0xcO & d=d0/2
g(w,c,d)=c0x**d0

which SIMPLIFIES to
C2a: d=0 & c=w*w > g(w,c,d)=w(d*2+1).
The constraint corresponding to the other loop-body path is

d0>0 & —0dd(d0) & w=1 & c=c0%c0 & d=d0/2 >
g(w,c,d)=c0x#d0

and SIMPLIFIES to

d>0 & w=1 & SQUARE (¢) > g(w,c,d)=SQRT (¢) **(d*2),
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ie.,
C2b: d20 & w=1 & SQUARE (¢) = g(w,c,d)=c#*=d

where SQUARE(X) = “x is a perfect square,” and SQRT (X) =
“the square root of the perfect square x.” The term SQUARE (c)
is necessary in the antecedent since c is necessarily a perfect
square in the antecedent of the unSIMPLIFIED constraint. . Note
that C2b is implied by C1 and hence is of no additional help
in characterizing the general loop function. The heuristic
suggested in REWRITE is to rewrite the constraint expression
w % (d *2+1)of C2ain terms of w, w * w (s0 as to introduce c)
and d. The peculiar nature of the exponent in this expression
leads one to the equivalent formula w * ((w * w) = d). Ap-
plying SUBSTITUTE in C2a yields

d=0 - g(w,c,d)=w=(c*xd).

This function is in agreement with C1 and thus is a reasonable
hypothesis for the general loop function.

In this example, the portion of C2 corresponding to the loop-
body path that bypasses the updating of the initialized data
(C2b) is implied by C1. Based on this, one might conclude
that such loop-body paths should be ignored when constructing
C2. Considering all loop-body paths, however, does increase
the likelihood that an incorrect program could be disproved
(at the time the general loop function is being constructed) by
observing an inconsistency between constraints C1 and C2.
For instance, in the example, if the assignment to ¢ had been
written “c := ¢ * 2,” the above analysis would have detected
an inconsistency in the constraints on the general loop function.
Such an inconsistency implies that the hypothesis being sought
for the behavior of the loop does not exist, and hence, that the
program is not correct with respect to its specification.

In the previous section, the reader may recall that awkward-
ness in disproving programs was offered as a disadvantage of a
“top down” approach to synthesizing g. However, in our experi-
ence, as in the above instance, an error in the program being
considered often manifests itself as an inconsistency between
C1 and C2. Such an inconsistency is usually “easy” to detect
and hence the program is “easy” to disprove. While it is diffi-
cult to give a precise characterization of when this will occur,
intuitively, it will be the case provided that the “error” (e.g.,
¢ * 2 for ¢ = ¢) can be “executed” on the first iteration of the
loop.

Example 3: The following program counts the nodes in a
nonempty binary tree using a set variable s. It differs from the
previous example in that more than one variable is initialized.
The tree variable t is the input tree whose nodes are to be
counted. We use the notation left(t) and right(t) for the left
and right subtrees of t, respectively. Predicate empty(x) is
TRUE if x is the empty tree:

{—empty(t)}

n:=0;s:= {t};

while s # {} do
select and remove some element e from s;
n:=n+l;
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[*s =5 U sONS (&) */
if <jempty(left(e)) then s := s U {left(e)} fi;
if qjempty (right(e)) then s :=s U {right(e)} fi
od
{n=NoDEs (t)}.

The notation NODES (t) appearing in the postcondition stands
for the number of nodes in binary tree t. The first constraint
is

Cl: —empty(t) & n=0 & s={t} > g(n,s)=NODEs ().

Rather than considering each of the four possible paths through
the loop body individually, we use the abstraction for the
combined effect of the two IF statements

:=s U SONs(e)

where SONS(x) is the set of 0, 1, or 2 nonempty subtrees of x.
Applying this, the second constraint is

C2: —empty(t) & n=1 & s=soNs (t) > g(n,s)=NODES (t).

In order to introduce n and s into the function expréssion for
C2, we choose to REWRITE this expression using the recursive
definition that NODES (x) for a nonempty tree x is 1 plus the
NODES value of each of the 0, 1 or 2 nonempty subtrees of
x. Specifically, this would be

1 +suM (x,S0NS (1), NODES (x))

where SUM (A, B, C) stands for the summation of C over all
A €B. Applying SUBSTITUTE in the obvious way yields

empty (t) = g(n,s)=n+suM (x,s,NODES (x))
—I

which is in agreement with C1 and is thus a reasonable guess
for the general loop function g.

Two remarks are in order concerning this example. The first
deals with condition —empty(t), which characterizes the
domain of the obtained function. The reader may wonder, if
t is not referenced in the loop (it is not in the argument list for g),
how can the loop behavior depend on empty(t)? The answer
is that it obviously cannot; the above function is simply equiv-
alent'to

g(n,s)=n+suM (x,s,NODES (x)).

For the remainder of the examples of this section, we assume
that these unnecessary conditions are removed from the ante-
cedent of the constraint as part of the SUBSTITUTE step.

As a second point, in Example 3 we encounter the case where
the obtained function is, strictly speaking, too general, in that
its domain includes “unusual” inputs for which the behavior
of the loop does not agree with the function. Forinstance, in
the example, the loop computes the function

g(n,s)=n+SUM (,s,NODES (x))

only under the provision that set s does not contain the empty
tree. This is normally not a serious problem in practice. One
proceeds as before, i.e., attempts to push through a proof of
correctness using the inferred function. If the proof is success-
ful, the program has been verified; otherwise, the characteristics
of the input data that cause the verification condition(s) to
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fail (e.g., s contains an empty tree) suggest an appropriate restric-
tion of the input domain (e.g., s contains only nonempty trees)
and the program can then be verified using this new, restricted
function.

Example 4 [7]: Ackermann’s function A(m, n) can be
defined as follows for all natural numbers m and n:

A(0,n) =n+l
A(m+1,0) =A(m,1)
A(m+1,n+1) = A(m,A(m+1,n)).

The following program computes Ackermann’s function using
a sequence variable s of natural numbers. The notation s(1)
is the rightmost element of s and s(2) is the second rightmost,
etc. The sequence s(. . 3)is s with s(2) and s(1) removed, We
wilt use <and> to construct sequences, i.c., a sequence s con-
sisting of n elements will be written <s(n), - - - , s(2), s(1)>.

{m>0,n>0}
s:=<m,n>;
while size(s)# 1 do
if s(2) = 0 then
elseif s(1) = 0 then
else
od
{s=<A(m,n)>}

s:=s(. . 3)<s(1)+1>
=3(..3)I<s(2)-1,1>
s:=s(.. 3)I<s(2)- 1,5(2),s(1)- 1> fi

For this program, the first constraint is
Cl: m>0 & n>0 & s=<m,n> - g(s)=<A(m,n)>.

The second constraints corresponding to the three paths through
the loop body are

C2a: m=0& n>0 & s=<n+1> = g(s)=<A(m,n)>
C2b: m>0 & n=0 & s=<m-1,1> - g(s)=<A(m,n)>
C2c: m>0 & n>0 & s=<m-1,m,n- 1> - g(s)=<A(m,n)>.
REWRITING these three based on the above definition of A
yields

m=0 & n20 & s=<n+1>
m>0 & n=0 & s=<m-1,1>
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STITUTE suggests a behavior of the loop for general sequences
of length 1,2, and 3. Based on these results, the verifier is left
to infer a behavior for a sequence of arbitrary length.

Example 5: Let v[1:n}, n > 0, contain natural numbers.
The following program finds the maximum element in the
array:

m:=0;i:=1;

while i < n do
if m <v[i] then m :=v[i] fi;
ir=i+1
fi

{m=amax (v)}

The notation AMAX (V) appearing in the postcondition stands
for the largest element of the array v. The following constraints
are obtained:

Cl: m=0& i=1—->g(m,i,v,n)=AMAX (V)
C2: m=v[1] &i=2 - g(m,i,v,n)=AMAX (V).

Noticing the appearance of v[1] and 2 in C2, we REWRITE
AMAX (v) in C2 as Max(v[1], AMAX (v[2:n])), where MaX
returns the largest of its two arguments, and v[2:n] is a nota-
tion for the subarray -of v within the indicated bounds. The
generalization obtained by applying SUBSTITUTE,

g(m,i,v;n)=MAX (m,AMAX (v[i:n])),

agrees with C1.

Example 6: Let p be a pointer to a node in a binary tree
and 1N (p) be the sequence of pointers that point to the nodes
in an in-order traversal of the binary tree pointed to by p. The
following program constructs 1N (p) in a sequence variable vs
using a stack variable stk. We use the notation 1{p) and r(p)
for the pointers to the left and right subtrees of the tree pointed
to by p. If p has the value NiL, IN (p) is the empty sequence.
Variable rt points to the root of the input tree to be traversed;

>g(s)=<n+1>
- g(s)=<A(m-1,1)>

m>0 & n>0 & s=<m- 1,m,n- 1> - g(s)=<A(in- 1,A(m,n- 1))>.

SUBSTITUTING here yields

s=<s(1)>
s=<s(2),s(1)>
$=<5(3),5(2),s(1)>

Note that the second of these implies C1. The three together
seem to suggest the general loop behavior (where n > 1)

g(<s(n),s(n-1),--+,s(1)>)=
<A(s(n),A(s(n-1),- - - A(s(2),5(1)) - - D>,

We remark that in the first three examples, the heuristic
resulted in a loop function that was sufficiently general (i.e.,
the loop was closed for the domain of the inferred function).
Example 4 illustrates that this does not always occur. The
loop function heuristic is helpful in the example in that suB-

> g(5)=<s(1)>
> g(5)=<AGQ)s)>
> 2(5)=<AG(3), AG(2),5(1)>.

p :=r1t; stk := EMPTY; vs = <>}
while 4(p=NiL & stk=EMPTY ) do_
if p#NiL then
stk := push(stk,p) /* push p onto stk %/ ;
p:=1(p)
else
p := top(stk) /* p gets top stk element #/ ;
stk := pop(stk) /# pop stk #/ ;
vs :=vs | <p>;
p :=r(p)fi
od
{vs =N (rt)}. -
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Up until now, we have attempted to infer a general loop func-
tion from two constraints. Of course, there is nothing special
about the number two. In this example, the *“connection™
between the initialized variables and the function values is not
clear from the first two constraints and it proves helpful to
obtain a third constraint. Constraints C1 and C2 correspond
to 0 and 1 loop-body executions, respectively. The third con-
straint C3 will correspond to 2 loop-body executions. We will
use the notation (el, - - - , en) for a stack containing the ele-
ments el, -+, en from top to bottom. The constraints for
this program are

Cl:
g(p,stk,vs)=1N (1t)
rt#NIL &
g(p,stk,vs)=1IN(1t)

C2:
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cerning the general behavior of the loop. Our belief is that it
is often easy to fill in the remaining “pieces™ of the loop func-
tion ““picture” once this basis has been established.

In some circumstances, however, the constraints do constitute
a complete description of an adequate loop function. The
significance of these situations is that no guessing is necessary;
the program can be proven/disproven correct using the con-
straints as the general loop function. In this section we give a
formal characterization of this circumstance.

Definifion: For some N > 0, an initialized loop is N-closed

p=rt &

p=l(rt) &

stk=EMPTY & vs=<> -

stk=(rt) & vs=<> -

C3a: rt#NIL & 1(1t)#NIL & p=1(1(rt)) & stk=(1(rt),rt) & vs=<> -

g(p,stk,vs)=1N (rt)

C3b: rt#NiL & 1(rt)=NIL & p=r(rt) &

g(p,stk,vs)=IN (rt).

Note that there are two third constraints. Functions C3a and
C3b correspond to executions of the first and second loop-
body paths (on the second iteration), respectively. There is
only one second constraint since only the first loop-body path
can be executed on the first iteration. Using the recursive def-
inition of 1IN, we REWRITE C2, C3a, and C3b as follows:

stk=EMPTY & vs=<rt>—>

with respect to its specification f if the disjunction of the con-
straints C1, C2, - - -, CN defines a value of function g over a
set for which the loop is closed. In this case, the constraints
C1,C2,-- -, CN are complete.

Thus if a loop is N-closed for some N >0, the disjunction of

C2": rt#NIL & p=l(rt) &  stk=(rt) & <> -
g(p,stk,vs)=IN(I(rt)) I<rt>1 1N (r(rt))
C3a’: rt#NIL & I(rt)#NiL & p=1(I(rt)) & stk=(1(rt),rt) & vs=<> -

g(p,stk,vs)= 1N (I(1(rt))) I<i(rt)> Il tv (r (I(rt)))

I<rt> 1
C3b": rt#NIL & I(rt)= NIL & p=r(rt) &

IN (r(rt))

stk=EMPTY & vs=<rt>—>

g(p,stk,vs)= <rt> N (r(rt)).

Applying SUBSTITUTE to each of C2', C3a’, and C3b’ suggests
stk=(el) &

stk=EMPTY > g(p,stk,vs)=vs N (p),

respectively. The first two of these constraints imply the fol-
lowing behavior for an arbitrary stack where vs has the value
<>

stk=(el,- - -, en) & vs=<>-> g(p,stk,vs) =
IN(p) I (<et>liN(el) II--- I <en> Il 1N (en))

and in combination with the last constraints, the general
behavior

stk=(el, -+, en) ~g(p,stk,vs) =
vs hin(p) I (<e1>Nin(el) I -+« I <en> I IN (en)).

V. COMPLETE CONSTRAINTS

The technique described above for obtaining a general loop
function is ‘“nondeterministic” in that the constraints do not
precisely identify the desired function; rather they serve as a
formal basis from which intelligent guesses can be made con-

vs=<> = g(p,stk,vs)=IN(p) I<el >l N (r(el))
stk=(el,e2) & vs=<> - g(p,stk,vs)=IN (p) I<el >l N (r(el))
I<e2>1 1N (r(e2))

the first N constraints constitutes an adequate loop function

for the loop under consideration. Intuitively, N is a measure

of how quickly (in terms of the number of loop iterations) the

variables constrained by initialization take on “‘general” values.
Example 7: Consider the following program:

{b=a0 & b=b0 & b0>0}
a:=a+l;
while b >0 do
a:=a+l;
b:=b-1
od
{a=a0 + b0 + 1}.
The first constraint is
Cl: b0=0 & a=a0+1 & b=b0 — g(a,b)=a0+b0+1
which SIMPLIFIES to
b>0— g(a,b)=a+b.

This constraint defines a value of g over the set of data states
in which b is nonnegative. Since the loop is closed for this set
(i.e., if b is initially nonnegative, it remains so after each itera-
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tion), the program is 1-closed. Cl, by itself, constitutes an The disjunction of these two constraints defines a value of g

adequate loop function. »
Initialized, 1-closed loops seem to occur rarely in practice.
Somewhat more frequently, an initialized loop will be 2-closed.
For these programs, the loop function synthesis technique
described above (using 2 constraints) is deterministic.
Example 8a: Consider the program:

{seq=seq0}

sum :=0;

while seq # EMPTY do
sum :=sum + head(seq);
seq : = tail(seq)
od

{sum=siema (seq0)}.

The notation SIGMA (seqQ) appearing in the postcondition
stands for the sum of the elements in the sequence seq0. The
program is 2-closed since the second constraint is

Cl: x0=20& x=x0x]&
C2: x021 & x=x0%I-1&

y=y0
y=y0+k

over the

{<success, tree, key> |
((msuccess) OR (tree#NIL & key=name (tree)))}.

The loop is closed for this set and hence the initialized loop is
2-closed.

Example 8c: Consider the sequence of initialized loops P1,
P2,P3,- - -, defined as follows for each 1 > 0:

PI: {y=y0 & x=x0 & x0>0}
=x I
while x >0 do
Xx:=x-1;
y:=y+k
od
{y=y0 + x0%I=k}.

For any I > 0, the first I constraints for program PI are

- g(x,y,k)=y0+x0=I*k
- g(x,y,k)=y0+x0xI+k

Cl: x02I-1 & x=x0#I-(I-1) & y=y0+k*(I-1) > g(x,y,k)=y0+x0=I*k,

C2: seqO#EMPTY & sum=head(seq0) & seq=tail(seq0) -
g(sum,seq)=siGMa (seq0)

which SIMPLIFIES to
g(sum,seq)=sum+SIGMA (seq).

The constraint defines g over all possible values of sum and seq
and the loop is trivially closed for this set.

Example 8b: As a second illustration of a 2-closed initial-
ized loop, the following program tests whether a particular key
appears in a binary search tree:

{tree=tree0}

success ;= FALSE;

while tree # NIL & —jsuccess do
if name(tree) = key then success := TRUE
Iseif name (tree) < key then tree := right(tree)
else tree : = left(tree) fi
od ‘

{success = N (key,tree0)}

The notation IN (key, tree0) = “kéy occurs in binary search
tree tree0.” This program is also 2-closed. The first constraint

Cl: success=FALSE & tree=treeQ -
g(success, tree,key)=IN (key, treeQ)
SIMPLIFIES to
success=FALSE — g(success, tree,key)=1IN (key, tree).

If we consider the first path through the loop body, the sec-
ond constraint is

These SIMPLIFY to

x=0 & MI(x)
x20 & MI(x+1)

> g(X,y,k)=y+x#*k
> g(x,y,k)=y+xxk

x20 & MI(x+(I- 1)) > g(x,y,k)=y+xxk

where MI(x) = “x is a multiple of I.” Since the disjunction of
these is the constraint

x20 > g(x,y,k)=y +x*k,

which defines a value of g over a set for which the loop is
closed, program PI is I-closed.

Many initialized loops are not N-closed with respect to their
specification for any N: no finite number of constraints will
pinpoint the appropriate generalization exactly. Thus, when
applying the above technique in these situations, some amourt
of inferring or guessing will always be necessary. A case in
point is the integer multiplication program from Example 1.
The coristraints C1, C2, C3, - - -, define the general loop behav-
ior forz=0,z=k,z=2 %k, ---,etc. The program cannot
be N-closed for any N since with input v = N + 1, the last
value of z will be (N + 1) = k which is not covered by the first
N constraints.

As a final comment concerning N-closed initialized loops, it
may be instructive to consider the following intuitive view of
these programs. All 1-closed and 2-closed initialized loops are
“forgetful,” i.e., they soon lose track of how “long” they have

C2: success=TRUE & tree0#NIL & tree=tree0 & key=name(tree) -
g(success, tree, key)=IN (key,tree0)

which SIMPLIFIES to

success=TRUE & tree#NIL & key=name(tree) -
g(success, tree,key)=1In (key, tree).

been executing and lack the necessary data to recover this
information. This is because states that occur after an arbitrary
number of iterations are indistinguishable from states that
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occur after zero (or one) loop iterations. To illustrate, con-
sider the 2-closed initialized loop of Example 8a. After an
arbitrary number of iterations, little can be said about the
history of execution based on the values of sum and seq. All
one can say is that if sum is not zero then at least 1 loop itera-
tion was executed, but the number of these iterations may be
1, 10, or 10 000.

In contrast, again consider the integer multiplication pro-
gram of Example 1, an initialized loop we know not to be
N-closed for any N. Based on the values of the program vari-
ables z, v, and k after some number of iterations, what can
be said about the history of the execution? Well, exactly z/k
iterations have occurred and we can reconstruct each previous
value of z.

Initialized loops that have the information available to recon-
struct their past have the potential to behave in a “tricky”
manner. By “tricky” here, we mean performing in such a way
that depends unexpectedly on the effect achieved by previous
loop iterations. The result of this loop behavior would be a loop
function that was “inconsistent” across all values of the loop
inputs and that could only be inferred from the constraints
with considerable difficulty. We consider this phenomenon
more carefully in the following section; for now we emphasize
that it is precisely the potential to behave in this unpleasant
manner that is lacking in 1-closed and 2-closed initialized loops
and that allows their general behavior to be described com-
pletely by the first one or two constraints.

VI. “TRICKY” PROGRAMS

The above heuristic suggests inferring g from two constraints
on that function, C1 and C2. Constraint C2 is of particular
importance since REWRITE and SUBSTITUTE are applied to
C2, and, consequently, it serves to guide the generalization
process. C2 is based on the program specification f, the initial-
ization and the input/output behavior of the loop body on'its
first execution. In any problem of inferring data concerning
some population based on samples from that population, the
accuracy of the results depends largely on how representative
the samples are of the population as a whole. The degree to

which the sample defined in C2 is representative of the unknown’

function we are seeking depends entirely on how representa-
tive the input/output behavior of the loop body on the first
loop iteration is of the input/output behavior of the loop body
on an aribitrary subsequent loop iteration.

To give the reader the general idea of what we have in mind,
consider the program to count the nodes in a binary tree in
Example 3. If the loop body did something unexpected when,
for example, the set s contained two nodes with the same parent
node, or when n had the value 15, the behavior of the loop
body on its first execution would not be representative of its
general behavior. By “unexpected” here, we mean something
that would not have been anticipated based solely on input/out-
put observations of its initial execution. An application of our
heuristic on programs of this nature would almost certainly
fail since (apparently) vital information would be missing from
C1 and C2.

Example 9: Consider applying the technique to-the following
program, which is an alternative implementation of the integer
multiplication program presented in Example 1:
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{v=v0 & v0>0}

z:=0;

while v# 0 do -
if z=0 then z:=k
elseif z=kthenz :=z %2 %v
else z:=z- kfi;
vi=v-1
od

{z=vO=k}.

Constraints C1 and C2 are identical to those for the program
in Example 1 and we have no reason to infer a different func-
tion g. Yet this function is not only an incorrect hypothesis,
if does not even come close to describing the general behavior
of the loop. The difficulty is that the behavior of the loop
body on its first execution is not typical of its general behav-
ior, due to the high dependence of the loop-body behavior
on the input value of z.

We make the following remarks concerning programs of this
nature. First, our experience indicates that they occur very
rarely in practice. Secondly, because they tend to be quite
difficult to analyze and understand, we consider them “tricky”
or poorly structured programs. Thirdly, the question of
whether the (input/output) behavior of the loop body on the
first iteration is representative of its behavior on an arbitrary
subsequent iteration is really a question of whether its behavior
when the initialized variables have their initial values is repre-
sentative of its behavior when the initialized variables have
“arbitrary” values. Put still another way, the question is
whether the loop body behaves in a “uniform” manner across
the spectrum of possible values of the initialized data;

In' practice, a consequence of a loop body exhibiting this
uniform behavior is that there exists a simply expressed con-
nection between different input values of the initialized data
and the corresponding result produced by the WHILE loop.
It is the existence of such a connection that motivates the
SUBSTITUTE step above and that is thus a necessary precondi-
tion for a successful application of the technique. This explains
its failure in dealing with programs such as that in Example 9.

VII. RELATED WORK

In [3], [15], [16] the authors describe two classes of ‘“‘natu-
rally provable” programs for which generalized loop specifica-
tions can be obtained in a deterministic manner. Qur technique
sacrifices determinism in favor of wide applicability, and ease
of use. It handles in a fairly straightforward manner typical
programs in these two classes (e.g., Examples 1-3) as well as a
number of programs that do not fit in either of the classes
(e.g., Examples 4-6).

Due to the close relationship between loop functions and
loop invariants (see, for example, [17]), any technique for
synthesizing loop- invariants can be viewed as a technique for
synthesizing general loop functions (and vice versa). In this
light, our method bears an interesting resemblance to a loop
invariant synthesis technique described in [11], [18]. In this
technique- stronger and stronger “approximations” to an ade-.
quate loop invariant are made by pushing the previousapproxi-
mation back through the loop once, twice, etc.

For example, consider the exponentiation program of
Example 2. The loop exit condition can be used to obtain an
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initial loop invariant approximation
d=0 —> w=c0#*=d0.

This approximation can be strengthened by pushing it back
through the loop to yield

(d=0 - w=c0%%d0) & (d=1 - wxc=c0**d0).

In the analysis presented in Example 2, we obtained a value
for the general function for each of two different values of
the initialized variable w (i.e., 1 and sQRT (c)); here we have
obtained a “value” for the loop invariant we are seeking for
each of two different values of the variable that controls the
termination of the loop d. Applying the analysis in [17],
these loop invariant “values” can be translated to constraints
as follows:

d=0 - g(w,c,d)=w,
d=1—>g(w,c,d)=w=c.

Of course, the function expression w # ¢ in the second con-
straint can be rewritten w % (¢ ##% 1); SUBSTITUTING as usual
suggests the general loop function

g(w,c,d)=wx(c*+d).

If we then add the program precondition as a domain restric-
tion on this function, the result is the same general loop func-
tion obtained in Example 2.

We summarize the relationship between these two techniques
as follows. As the initialized loop in question operates on
some particular input, let X[0], X[1], --- , X[N] be the
sequence of states on which the loop predicate is evalnated
(i.e., the loop body executes N - 1 times). Of course, in X[0],
the initialized variables have their initial values, and in X[N],
the loop predicate is FALSE. The method proposed in this
paper suggests inferring the unknown loop function g from
X[0], X[1], g(X[0]), and g(X[1]). The loop invariant tech-
nique described above, when viewed as a loop function tech-
nique, suggests inferring g from X[N], X[N - 1], g(X[N]),
and g(X[N - 1]). Speaking roughly then, one technique uses
the first several executions of the loop and the other uses the
last several executions. One ignores the information that the
loop must compute the identity function on inputs where
the loop predicate is FALSE, the other ignores the information
that the loop must compute like the initialized loop when
initialized variables have their initial values.

Earlier we discussed “top down” and ““bottom up’ approaches
to synthesizing g and indicated that our technique fit in the
“top down” category. The technique based on the last several

iterations is a “bottom up” approach. It is difficult to state

carefully the relative merits of these two opposing techniques.
In our view, however, in a number of circumstances the tech-
nique based on the first several loop executions seems more
“natural” and easily applied. These examples include the
NODES program and the program to compute Ackermann’s
function discussed above. The reason is that a critical aspect
of the general loop function is the function computed by the
initialized loop program (e.g., exponentiation in the above
illustration). In the technique based on the first several itera-
tions, this function appears explicitly in the constraints. In
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the other technique, this information must somehow be inferred
from the corresponding constraints (e.g., by looking for a pat-
tern, etc.). This difficulty is inherent in any ‘“‘bottom up”
approach to synthesizing g.

VIII. CONCLUDING REMARKS

In this paper we have proposed a technique for deriving
functions that describe the general behavior of a loop which
is preceded by -initialization. These functions can be used in
a functional [14] or subgoal induction [17] proof of correct-
ness of the initialized loop program. It is not our intention to
imply that verification should occur after the programming
process has been completed. However, a large number of
existing programs must be read, understood, modified and
verified by “maintenance” personnel. We offer the heuristic
as a tool intended to facilitate these tasks.

It has been argued [15] that the notion of closure of a loop
with respect to an input domain is fundamental in analyzing
the loop. In Section V, this idea is applied to initialized loop
programs. The result is that a loop function for a loop that is
N-closed (for some N > 0) can be synthesized in a deterministic
manner by considering the first N constraints. Hence this
categorization can be viewed as one measure of the “degree of
difficulty” involved in verifying initialized loop programs.

An interesting direction for future research is the develop-
ment of a precise characterization of programs that are not
“tricky” (as discussed in Section VI). Preliminary results along
this line are described in [5] (see also [1]).
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