This in-depth survey of 30 companies reveals actual goings-on in
software production. Results show that, while practice is 10 years behind
research, we have the tools to narrow the gap.

Software Engineering Practices
in the US and Japan

Marvin V. Zelkowitz, Raymond T. Yeh, Richard G. Hamlet, John D. Gannon, and Victor R. Basili,
University of Maryland

The term software engineering first appeared in the late
1960’s to describe ways to develop, manage, and maintain
software so that resulting products are reliable, correct, ef-
ficient, and flexible.' The 15 years of software engineering
study by the computer science community has created a
need to assess the impact that numerous advances have
had on actual software production. To address this need,
IBM asked the University of Maryland to conduct a survey
of different program development environments in in-
dustry to determine the state of the art in software
development and to ascertain which software engineering
techniques are most effective. Unlike other surveys, such
as the recent one on Japanese technology,? we were less
interested in recent research topics. Journals, such as the
IEEE Transactions on Software Engineering adequately
report such developments; we were more interested in
discovering which methods and tools are actually being
used by industry today.? This report contains the results
of that survey.

The goal of this project, which began in spring 1981 and
continued through summer 1983, was to sample about 20
organizations, including IBM, and study their develop-
ment practices. We contacted major hardware vendors in
the US, and most agreed to participate. Several other soft-
ware companies and other “‘high-technology’’ companies
were contacted and agreed to participate. While we ac-
knowledge that this survey was not all inclusive, we did
study each company in depth, and based on discussions
with others in the field, we believe that what we found was
typical.

We were not interested in R&D activities in these com-
panies. Most had individuals engaged in interesting
developments, and most knew what was current in the
field. Qur primary concern was what the average program-
mers in these companies did to develop software projects.

June 1984

Data was collected in a two-step process. A detailed
survey form was sent to each participating company.
When the form was returned, a follow-up visit was made
to clarify the answers given. We believe that this process,
although limiting the number of places surveyed, allowed
us to present more accurate information than if we had
relied on the returned forms alone.

Each survey form contained two parts. Section one asked
for general comments on software development for the
organization as a whole. The information typically repre-
sented the standards and practices document for the orga-
nization. In addition, several recently completed projects
within each company were studied. Each project leader
completed the second section of the survey form, which
described the tools and techniques used on that project.

Several companies were concerned that the projects we
were looking at were not typical of them. (Interestingly,
very few companies claimed to be doing typical software.)
However, since the companies selected the projects they
described on the form, we believe we saw the better
developed projects—if there is any bias to our report, it is
that the average industry project is probably worse than
what we describe here.

Thirty organizations in both the US and Japan par-
ticipated in the study: five IBM divisions, 12 other US
companies, and 13 Japanese companies. About half the
Japanese companies were not interviewed, while the other
half were interviewed to varying degrees of detail. All US
companies were interviewed. The ‘‘Acknowledgments”’
section at the end of this article lists the US participants.
Some of the Japanese participants never responded to our
request for permission to use their names, so only a few
Japanese companies are listed.

Table 1 characterizes the companies visited, divisions
within a company, and the projects studied, arbitrarily

0018-9162/84/0600-005701.00 © 1984 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

classifying projects and teams into four groups according
to sizes: small, medium, large, and very large. Projects are
classified according to the number of staff-months needed
to complete them, and teams according to the number of
members. All companies listed with zero projects were
Japanese companies that submitted part one of our form
only. We interviewed at least one manager in depth in all
surveyed US companies, in addition to general project
management personnel.

After reviewing the basic data, we recognized the
following three software development environments:

(1) contract software. Department of Defense and
NASA aerospace systems;

(2) data processing applications. Software produced by
an organization for its own internal business use;
and

Table 1. Companies surveyed. The size of the project is in staff-
months where (S)mall = <10, (M)edium =10-100, (L)arge = 100-1000,
and (V)ery (L)arge = >1000. Team size is in statf members where
S = <10, M =10-25, L =25-50, and VL = >50.

NO. OF NO. OF PROJECT TEAM
CODE DIVISIONS PROJECTS INTERVIEWED SIZE SIZE
A 2 3 Yes L L
B 2 7 Yes VL VL
C 1 1 No S M
D 1 3 Yes L L
E 3 4 Yes VL VL
F 1 3 Yes VL VL
G 1 2 Yes L L
H 1 7 Yes L M
| 1 9 Yes VL VL
J 1 4 Yes L VL
K 1 8 Yes VL M
L 1 1 Yes L VL
M 1 3 Yes M VL
N 1 2 No S S
0 1 1 Yes VL0 VL
P 1 1 No M -
Q 2 0 No M L
R 1 0 No - -
S 1 1 Yes M S
T 1 4 Yes V0L VL
U 1 0 Yes L VL
v 1 1 Yes M S
W 1 1 Yes L S
X 1 1 No L S
Y 1 1 No L -
z 1 2 Yes M S
AA 2 5 Yes VL VL
BB 1 1 Yes M S
CC 1 1 Yes L S
DD 1 7 Yes VL0 VL
DIRECTOR OF SOFTWARE
l
TEOHNORE AREA 1 AREAZ | | AREAN
GROUP MANAGERS MANAGERS MANAGERS

Figure 1. Typical organization structure.

58

(3) systems software. Operating system support soft-
ware produced by a hardware vendor as part of a
total hardware-software package of products for a
given operating system.

A single company might have projects in more than one
of these categories. For example, one aerospace company
was involved in several DoD-related projects and one in-
ternal data processing application.

General observations

This article is a series of general observations about each
environment. Two of our first observations were that the
data collected by each organization is insufficient and in-
terpretations for similar concepts (e.g., phases of the life
cycle, job descriptions from similar sounding titles, what
certain automated tools should or did do, etc.) differ. We
could have generated a survey consisting of 50 to 100
techniques and proceeded to tabulate them in a report.
However, as we found out, the detailed interview process
was much more informative. In addition, we would not
want others quoting such numbers, since they would be
subjective and imprecise. We believe that the structure we
chose gives a better idea of software development today.

Every company had either written guidelines or unwrit-
ten folklore as to how software was developed, and major
deviations were rare. Differences in projects within a com-
pany were less than the differences in projects among com-
panies. But more significant was the wide gulf between
practices in industry and those documented in current
software engineering literature.

The literature contains many references to software
engineering methodology, including tool support
throughout the life cycle, specification and design
languages, test data generators and coverage metrics,
measurement and management practices, and other tech-
niques. We found surprisingly little use of software
engineering practices across all companies. No organiza-
tion fully tries to use the available technology. Although
some companies had stronger management practices than
others, none used tools to support these practices in any
significant way.

We are not implying that the companies do not have
talented personnel. Most have individual projects that try
to keep abreast of current technology, but within each
company these projects are relatively rare, and the re-
sulting experience is rarely applied to a different project.

Organizational structure. Most companies had an
organizational structure similar to the one in Figure 1. The
software technology group typically has one to five in-
dividuals collecting data, modeling resource usage, and
generating standards and practices documents. However,
this group has no direct authority to mandate software
engineering practices even within a single division. As a
result, standards often vary within a single organization.

We believe that this structure explains a current anoma-
ly in the use of software engineering techniques.
Developers of real products often think that members of
the software technology (research) group (who attend na-

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

tional conferences and write most of the research papers)
are too optimistic about the effects of these techniques,
since they have not applied them to software products.
Managers know their personnel often lack the education
and experience needed to apply these techniques suc-
cessfully. Even techniques that have been adopted are fre-
quently misused. For example, although many companies
used the term chief programmer to describe their program-
ming team organizations, most descriptions bore little
resemblance to the technique outlined in the literature.
Many projects had two to three levels of managers who
handled staff and resource acquisition but did not actively
participate in system design.

A further problem in many organizations is that
generally no one person is the Director of Software (see
Figure 1), responsible for making software decisions. In
some companies, software activities span several divisions.
So even if such a person exists in each division, standards
vary across the company. Interestingly, organizations
often have one person making hardware decisions.

Tool use. Tools are not widely used in the industry. Not
too surprisingly, the use of tools varies inversely from how
far the tools are from the code development phase. Tools
are most frequently used during the code and unit test
phase of software development (e.g., compilers, code
auditors, test coverage monitors, etc.). Tools are less fre-
quentiy used in the adjacent phases of the software life
cycle —design and integration (e.g., PDL processors and
source code control systems). Few requirements or
maintenance tools are used. Table 2 gives some indication
of which techniques and tools are used. In classifying com-
panies, we were somewhat subjective because we counted
tools used on most projects, but not necesarily all, withina
company. For example, every company used high-level
languages on some projects, but they also used assembly
language quite frequently.

Companies tend to adopt methods relatively early
because their ‘‘capitalization’ cost is relatively low, but
tool use takes longer, since development or purchase costs
are higher.

Although the percentages in Table 2 are not exact, the
trends seem clear. Tool use generally has the flavor of
vintage-1970 timesharing. Jobs have a batch flavor in that
runs are built and then compiled. Tool support is
minimal—mostly compilers and simple editors.

Timesharing computer systems and compiler writing
became practical in the late 1960’s and early 1970’s; thus,
on-line access and high-level languages can probably be
labeled the successes of the 1960’s. Similarly, since reviews
and pseudocode or program design language (PDL) were
so widely used, we can call them the successes of the
1970’s. It is disappointing that few other tools have been
adopted by industry. Testing tools are used by only 27 per-
cent of the companies, and most are simply test-data
generators. Only two companies used any form of unit test
tool to measure test-case coverage. In a few cases, tools
were developed but deemed too expensive to use. In one
company, the quality assurance group had developed a
testing tool and was trying to get it used on various proj-
ects. However, each project manager with whom we spoke

June 1984

praised the tool but claimed it was too expensive to run, in-
creased the size of the system too much, etc.

PDL is frequently used, but it is not automated. Some
PDL processors are simply manual formatters, while some
do a pretty print and indent the code. Often the PDL is
only a coding standard and not enforced by any tool. Only
one location had a PDL processor that checked interfaces
and definition/use patterns for variables.

Our sample identified two general classes of companies.
One class had strong management control over develop-
ment with little tool support, while the other had relatively
lax control over programmers, who generally built their
own tools. In one extreme case, three project managers we
interviewed expounded the virtues of their individual text
editors.

The problems in using tools can be attributed to several
factors. Corporate management, particularly of hardware
vendors, tends to have an engineering background. Man-
agers have little, if any, software background and are not
sympathetic with the need for tools. No separate corporate
entity exists whose charter includes tools, so we have no
focal point for tool selection, deployment, and evaluation.
Tools must be funded from project development budgets,
so there is a fair amount of risk and expenditure for a proj-
ect manager to adopt a new tool and train people to use it.
Since project management is rated according to whether
current costs and schedules are met, tool use must be
amortized across several projects to be effective. Conse-
quently, a project manager building and using a new tool
will almost always stand out as unproductive. Companies
often work on different hardware, so tools are not
transportable, limiting their scope and their perceived ad-
vantage. The most striking example of this handicap was
one system in which one million dollars was spent building
a database, yet no one ever thought of using that database
on another system. The need to maintain large existing
products (written in the past in assembly code) makes it
hard to introduce a new tool that processes a new higher
level langauge. Finally, many of the tools are incomplete
and poorly documented. Because such tools fail to live up
to promises, project managers are justifiably reluctant to
adopt them or consider subsequently developed tools.

Review process. At the end of each phase, the evolving
software product is subject to a review process to try to un-
cover problems as soon as possible. A review might be
either an inspection or a walk-through, without regard to
the distinctions made in the software engineering

Table 2. Method or tool use.

METHOD PERCENTAGE OF
OR TOOL COMPANIES
High-level languages 100
On-line access a3
Reviews 73
Program design languages 63
Some formal methodology 41
Some test tools 27
Code auditors 18
Chief programmer team 7

Any formal verification 0
Formal requirements or specifications 0

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

59

literature. * Nearly everyone agrees that reviews work, and
nearly everyone uses them, but the ways reviews are con-
ducted differ greatly. Most agree that software projects
can be routinely completed within time and budget con-
straints that only a few years ago could be managed only
by luck and sweat. Reviews were instituted first for code,
then extended to design. Extensions to requirements and
test-case design are not universal, and some feel that the
technique may have been pushed beyond it usefulness.
Managers would like to extend the review process, while
the technical people are more inclined to limit it to the best
understood phases of development.

Two aspects of reviews must be separated: managerial
control and technical utility. Managers must be concerned
with both aspects, but technical success cannot be assured
by insisting that certain forms be completed. If the tasks
assigned to the reviewers are ill-defined, or the form of the
product reviewed inappropriate, the review will waste the
time of valuable people. Lower level managers prefer to
use reviews only when they think reviews are appropriate.

The technical success of the review process rests on the
expertise and interest of the people conducting the review,
not on the mechanism itself. The review process must be
continually changed to reflect past successes and failures,
and much of this information is subjective, implicitly
known to experienced participants. Some historical infor-
mation is encoded in review checklists, which newcomers
can be trained to use. However, subjective items like the
completeness of requirements are of little help to a novice.

New and old companies differed considerably in their
approaches to reviews. New companies were less commit-
ted to reviews, treating code reviews as training exercises
for junior employees or as verification aids for particularly
difficult modules. Since the newer companies did not have
a large existing software base, they emphasized rapid
development rather than maintenance. However, as com-
panies grew and aged, accumulating software, reviews
seemed to take on added significance as an important
verification aid.

TYPE OF DATA | [_] RESOURCE
COLLECTED ERROR
==

LEVEL OF DATA COLLECTED

Low

AVERA

=

E SPEC DESIGN CODE TEST MAINTENANCE
PHASE PHASE PHASE PHASE PHASE

Figure 2. Amount and type of data collected.

60

Data collection. Every company collects some data, but
not much of it becomes part of the corporate memory to
be used beyond the project on which it was collected. Data
generally belongs to individual managers, and they decide
what to do with it. Data is rarely evaluated and used in an
analysis to see if the process could have been improved.
The opposite is true in Japanese companies in which
“‘postmortem”’ analysis is frequently performed.

Several companies are experimenting with resource
models, such as Price S. Slim.3® No company seems to
trust any model enough to use it extensively; instead the
models are used to check manual estimates. Figure 2 shows
that little data is being collected across all companies. The
levels of Figure 2 are somewhat arbitrary; high represents
the amount of data collected by the NASA Software
Engineering Laboratory (resource use by programmer in
each module, detailed error reports including causes, etc.),
while /ow represents a minimal amount of data (e.g., the
number of major and minor errors detected in reviews,
outstanding error reports per time period, etc.).” In
general, more error data than resource data is collected,
and resource data is typically limited to hours spent by
each programmer on the project to facilitate project bill-
ing.

It is extremely difficult to compare data across com-
panies. First of all, quantitative data is quite rare within
most companies. Error data is rarely tied to causes of er-
rors, and the process of counting errors is never fed back
into the development process. Knowing how many errors
occurred does not necessarily improve the programming
process if you don’t know why they occurred. To keep the
review process open, results are sometimes limited to the
review group and the quality assurance manager. In addi-
tion each company has different definitions for most of
the measured quantities, such as

* lines of code, which is defined as source lines, com-
ment lines, with or without data declarations, ex-
ecutable lines or generated lines;

® milestone dates, which depend on the local software
life cycle used by the company (whether re-
quirements, specification, or maintenance data are
included will significantly affect the results);

® personnel, which might include programmers,
analysts, typists, librarians, or managers.

The differing definitions prevent any meaningful com-
parison. It is quite evident that the computer industry
needs more work on the standardization of terms before it
can address these quantitative issues. Also, it is not clear
that management believes in a need for such data except
for budgeting, so it is rarely collected.

Software development environments
in the US

In describing the general characteristics of software en-
vironments, we limit discussion, for the most part, to the
13 companies in the US where we made site visits to over 20
different locations and interviewed approximately 60 proj-
ect managers. Comments on Japanese software develop-

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

ment and comparisons with the techniques used in the US
are presented in the subsequent section.

General life cycle. The life cycle of a project consists of
the requirements and specification phase, the design
phase, the code and unit test phase, and the integration
test phase.

Requirements and specification phase. At all places
contacted, requirements were in natural language text.
Some projects had requirements documents that could be
processed by machine, but tool support was limited to
screen-oriented text editors. No analysis tools (like SREM
and PSL/PSA were used except on toy projects. 8% Proj-
ects were either too small to justify the use of a processor
or too large to make such use economical.

Reviews determine if the system architecture is com-
plete, if the specifications are complete, the internal and
external interfaces are defined, and the system can be
implemented. These reviews are the most difficult to per-
form, and their results depend greatly on the quality of
people doing the review because the specifications are not
formal. There is little traceability between specifications
and designs.

Design phase. Most designs are expressed in some form
of PDL or pseudocode, which makes design reviews effec-
tive. Tools that manipulate PDL vary from editors to sim-
ple text formatters. Only one company extended its PDL
processor to analyze interfaces and the data flow in the
resulting design.

While the use of PDL seems to be accepted practice, its
use is not particularly effective. For example, we consider
the expansion of PDL to code a reasonable measure of the
detail in a design. A PDL-to-source-code expansion ratio
of 1:1 may indicate that the design has the same detail as its
eventual code. With design and code being separate tasks,
this expansion indicates that the two concepts are not
separated. The expansion ratios of PDL to source code
were 1:5-10 at one location, 1:3-10 at another, and
1:1.5(11)-3 at a third. Customer involvement with design
varied greatly even within installations. Some produced
volumes of PDL with an attitude similar to that for older
projects that produced many detailed flowcharts: Nobody
cares, but it’s in the contract.

Code and unit test phase. Most code was in higher level
languages—Fortran for scientific applications or some
local variation of C, Pascal or PL/1 for systems work. In
the aerospace industry, Fortran was the predominant
language. People who normally worked in assembly lan-
guage thought that Fortran and PL/1 signficantly en-
hanced their productivity. Historical studies have shown
that programmers produce an average of one line of
debugged source code per hour regardless of the language.
(Brooks contains a concise review of this work. 10y

Despite claims that they used chief programmer teams
in development, very few first- or second-line managers
ever wrote any PDL or code themselves. We heard com-
plaints that chief programmer teams worked well only
with small groups, six to nine people, and on projects in

June 1984

which a person’s responsibility was not divided among dif-
ferent groups.

Much of the code and unit test phase lacks proper
machine support. Code auditors could greatly enhance the
code review process. We studied one code review form and
found that 13 of 32 checks could be automated. Manual
checks are currently performed for proper indentation of
the source code, initialization of variables, interface con-
sistency between the calling and called modules, etc.

Most unit testing could be called adversary testing. The
programmer claims to have tested a module and the
manager either does or doesn’t believe the programmer.
Almost no unit test tools are used to measure how effec-
tively the tests devised by a programmer exercise the source
code. While a test coverage measure like statement or
branch coverage is nominally required during the review of
unit test, mechanisms are rarely available to ensure that
such criteria have been met.

Integration test phase. Integration testing is mostly
stress testing—running the product on as much real or
simulated data as is possible. The data processing environ-
ment had the highest level of stress testing during integra-
tion testing. Testing in the systems software environment
was not as rigorous compared to integration testing in the
data processing environment.

Resources. Office space for programmers varied from
one to two programmers sharing a Santa-Teresa style of-
fice with a terminal to large bullpens divided by low,
movable partitions. !! Terminals were the dominant mode
for computer access. Some sites had terminals in offices,
while others had large terminal rooms. The current
average seems to be about two to seven programmers per
terminal. Newer companies had two terminals per pro-
grammer and some were replacing terminals with personal
computers. Within the last two years most companies have
realized the cost-effectiveness of giving programmers ade-
quate computer access via terminals but have still not pro-
vided adequate response time. A response time of 10 to 20
seconds was considered good at some places, where a
subsecond response time was possible. 12

Most companies are willing to invest in hardware, such
as terminals, to assist their programmers but are reluctant
to invest in software that might be as beneficial.

Education. Most companies have agreements with a
local university to send employees for advanced training,
and have their own seminar series. However, there is little
training for project management. Only one company hasa
fairly extensive training policy for all software personnel.

Many companies had two problems with their educa-
tional program: (1) Programmers were sent to courses with

Table 3. Six lines of source code per staff-month.

APPLICATION
LINES OF CODE AND LANGUAGE
75 0S in Assembly
91 1/0 controller in HLL
142-167 0S in HLL
182-280 Assembly applications

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

61

62

little or no follow-up experience, so what they learned was
rarely put into practice and often forgotten; and (2) Some
sites were far away from any quality university, and the
isolation caused problems.

Data collection efforts. The data typically collected on
projects includes the number of lines of PDL for each level
of design, the number of lines of source code produced per
staff-month, the number and kinds of errors found in
reviews, and a variety of measures on program trouble
reports. As Table 3 shows, the range in productivity was
from 75 to 280 lines of code per month for different prod-
ucts using relatively similar development methods. This
discrepancy illustrates that using lines of code as a measure
of productivity is unwise and that more refined productivi-
ty measures are needed. Because of the differing applica-
tion areas, we cannot really compare numbers in Table 3.
However, it does seem obvious that the difficulty of the
application area has more impact on productivity than the
implementation language used (operating systems and
other real-time programs being the most difficult).

One location reported that two major and five minor er-
rors per 1000 lines were found during reviews in the design
phase, and five major and eight minor errors per 1000 lines

US software developers are
primarily producing applications, systems,
or data processing software.

were found during reviews in the code phase. Realistically,
though, the classification of errors into categories like ma-
Jjorand minor may be useful for quality control in product
distribution, but it sheds little light on the causes and
possible treatments of these errors and their prevention in
future systems,

Development environments. The development en-
vironments centered on three types of projects: applica-
tions software, systems software, and data processing.

Applications software. We studied 13 projects in four
companies that produce applications software. In this
area, software is contracted from the organization by a
Federal agency, typically the Department of Defense or
NASA. Software is developed and ‘‘thrown over the wall”’
to the agency for operation and maintenance. Typically,
none of the organizations we surveyed were interested in
maintenance activities. All believed that the payoff in
maintenance was too low and that smaller software houses
could do whatever maintenance was necessary.

Since contracts are awarded after a competitive bidding
cycle initiated by a ‘‘Request for Proposal,” and re-
quirements analysis is typically charged against company
overhead, analysis is kept to a minimum before the con-
tract is awarded. Requirements are written in English, and
no formal tool is used. In addition, since the goal is to win
a contract, there is a clear distinction between cost and
price. Cost is the amount needed to build a product—a
technical process that most companies feel capable of

handling. On the other hand, price is a marketing strategy
needed to win a bid. The price has to be low enough to
win, but not so low that either money will be lost on the
project or the company will be deemed ‘‘not responsive”’
to the requirements of the RFP. Thus, many ideas of soft-
ware engineering developed during the 1970’s on resource
estimation and workload characterization are not mean-
ingful in this environment because of the competitive pro-
cess of winning bids.

In addition, two distinct types of companies emerged
within this group—system developers and software
developers. The system developers would package both
hardware and software for a government agency into
products such as a communications network. In this case,
most of the costs were for hardware, and software was not
considered significant. On the other hand, the software
developers simply built systems on existing hardware
systems. DEC’s PDP/11 series seemed to be the most
popular with system builders that were not hardware ven-
dors.

All companies surveyed had a methodology manual;
however, they were either out of date, or were just in the
process of being updated. In this environment, Depart-
ment of Defense MIL specifications were a dominant driv-
ing force, and most standards were oriented to govern-
ment policies. The methodology manuals were often
policy documents outlining the type of information to be
produced by a project but not how to obtain that informa-
tion.

Tool use was relatively sparse. Fortran was the domi-
nant programming language. Two tools did seem to be
used. In compliance with DoD specifications, most had
somg sort of management reporting forms on resource
utilization. However, these generally did not report on
programmer activities. PDL was the one programming
tool that many companies did depend on, probably
because the cost was low.

Staff turnover was uniformly low, generally five to 10
percent a year. Space for programmers seemed adequate,
with one to two per office being typical. All locations ex-
cept one used terminals for all computer access, and that
one site had a pilot project to build private offices con-
nected to a local minicomputer.

Systems software. We studied 18 projects produced by
11 vendors. Most of the projects were for large machines
although some projects for microprocessors were in-
cluded. Operating systems for those machines were the
most important projects studied. The other projects,
mostly compilers and utilities, did not follow the develop-
ment rules for operating systems projects because the
other projects were considered small, and hence their
designs would be well understood.

Many companies are heading towards a policy of never
building a large product. Development effort is limited to
no more than two years and 10 programmers on any par-
ticular product. A great deal of effort is expended in the
design of traditionally large pieces of software like
operating systems to segment them into pieces of this size.
Japanese companies also seem quite proficient at design-
ing and assembling small projects only.

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

Software is generally written on hardware similar to the
target machine. Terminals are universally used and the
ratio of programmers to terminals varies from 1:2 to 3:1.
Getting a terminal is frequently less of a problem than get-
ting CPU cycles to do development.

In most places, software support is generally limited to
text editors and interactive compilers. High-level develop-
ment languages exist, and in most cases, the policy is that
they be used; however, a substantial portion of operating
systems remains in assembly language (20 to 90 percent
depending on the company). The reasons are partly good
(such as the prior existence of assembly code) and partly
the usual: alternatives have never been considered at the
technical level. Text formatting programs are in wide use,
but analysis of machine-readable text other than source
code is virtually nonexistent.

We studied 18 projects produced by
11 vendors. Most of these were for large
machines, with operating systems being
the major product.

Most testing is considered part of the development ef-
fort. There may be a separate test group, but it reports to
the development managers. Only a final field test may be
under the control of an independent quality control group.
One company assigned the quality control person directly
to the development group, but group members believed
that the independence of that individual in testing the
system had been compromised as a result.

Maintenance is usually handled by the development
staff. A field support group obtains trouble reports from
the field and forwards them to the development organi-
zation for correction. In most cases, the developers, even
if working on a new project, handle errors.

Programmers are usually organized into small teams by
project, and usually stick with a project until it is com-
pleted. The term chief programmer team is used incorrect-
ly to describe conventional organizations: a chain of
managers (the number depends on project size) who do
not program, and small groups of programmers with little
responsibility for organization.

Staff turnover is relatively high (up to 20 percent per
year) compared with that in the applications software
area. Most programmers typically have private cubicles
parceled out of large open areas. The lack of privacy is
often stated as a negative factor.

Software engineering practices vary widely among the
projects we investigated. Not surprisingly, the older the
system, the fewer software engineering techniques used.

Data processing. We studied seven data processing proj-
ects at five locations, although every location had some
data processing activities for internal use. Most data pro-
cessing software that we studied was developed in Cobol,
although some systems were written in Fortran. There is a
need to maintain the code throughout the life cycle.

June 1984

Requirements were mostly in English and unstructured,
although one company structured specifications by user
function. Designs, especially for terminal-oriented prod-
ucts, were similar—a prototype set of simulated screen
displays and menus to which the user could respond. The
most striking difference in the data processing environ-
ment was the heavy involvement of users in the two
development steps. The success of the project depended
on how much the user was involved before integration
testing. One site clearly had a success and a failure on two
different projects that used the same methodology. The
company directly attributed the success to the high level of
interest on the part of the user assigned to the team during
development.

All data processing was done at terminals. Office space
was more varied than in the other two environments we
observed. Some places used one- and two-person offices,
while others partitioned large open areas into cubicles.
Stress was often high in that overtime was more common,
and turnover was the highest in this environment—often
up to 30 percent per year. One location had a low turnover
rate, which they attributed to their salaries being higher
than those offered by comparable companies.

Data processing environments often use a phased ap-
proach to development, and quality control is especially
important. One company, which had had numerous fail-
ures, attributed its recent successes to never attempting
any development that would require more than 18
months. Since these systems often managed the
company’s finances, the need for reliability was most
critical, and stress testing was higher than in other areas.

Japan and US comparisons

Unlike the recent survey by Kim?2 which emphasized the
integrated tool sets and artificial intelligence techniques
being employed by Japanese industry, we found the level
of technology used by the Japanese to be similar to US
practices, but with some important differences. Program-
mers in both countries complain about the amount of
money going toward hardware development and the lack
of resources for software. However, we found that
Japanese companies typically optimize resources across
the company rather than within a single project. One ef-
fect of this policy is that tools become a capitalized invest-
ment paid for or developed out of company overhead
rather than project funds. The cost of tools is spread
among more projects, knowledge about tools is known to
more in the company, and project management is more
willing to use tools since the risk is lower. Thus, tool
development and use is more widespread in Japan. Our
survey does reinforce some of the conclusions of the
earlier survey, namely:

(1) Japanese often use techniques developed in the US
or Europe;
(2) Emphasis seems to be on practical tools.

Two successful techniques used by the Japanese are keep-
ing projects small and relating failures to their causes
through postmortem analyses of error data.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

63

64

Improving software development in the US

While tool use is important for software development,
the most important factor that we saw was the quality of
the personnel on various projects. We firmly believe that
tools cannot replace good people or good methods for
software production. However, tool use can help a good
programmer be even better.

Some very small changes can improve productivity in
many installations. While there is no empirical evidence
that will permit us to forecast gains, there is a general con-
sensus in the software community (like that for the use of
high-level languages) that supports these ideas.

® More and better computer resources should be made
available for development. The computer systems be-
ing used for development are comparable to those
available in the late 1960’s or early 1970’s providing
timesharing on large machines. The use of screen
editors at some locations has been a major improve-
ment, but other tools seem limited to batch compilers
and primitive debugging systems. Response time
seems to be a major complaint at many development
installations.

* Methods and tools should be evaluated. A separate
organization with this charter should be established.
As of now, it does not appear that any one group in
most companies has the responsibility to study the
research literature and try promising techniques.
Since the most successful tools have been high-level-
language compilers, the first tools to be developed
should be integrated into compilers. Thus, these tools
should concentrate on the design and unit test phases
of development, which have formal languages and
relatively straightforward compiler extensions. This
organization could both acquire and evaluate the
tools by looking at case studies and/or conducting ex-
periments.

Tool support should be built for a common high-level
language. The tools we would pick first include a
PDL processor, a syntax-directed editor—an editor
that knows the underlying language syntax and
prevents such errors from entering the program 13 —a
code auditor, and a unit test coverage monitor. The
PDL processor should at least check interfaces. Un-
fortunately, commercially available processors do lit-
tle more than format a listing; however, interface
checking is nothing more than 20-year-old compiler
technology. The processor should also construct
graphs of data flow through the design and extract
PDL from source code so that while both are main-
tained together they can be viewed separately. Code
auditors can be used to check that source code meets
accepted standards and practices. Many checks, such
as those to verify whether begin-end blocks are
aligned, are boring to perform manually and are
therefore error prone. Unit testing tools can evaluate
how thoroughly a program has been exercised. These
tools are easy to build and should be accepted quick-
ly, since many managers require statement or branch
coverage during unit test,

® PDL processors should support an automated set of

metrics that cover the design and coding process. The
metrics in turn can monitor progress; characterize the
intermediate products, such as design and source
code; and attempt to predict the characteristics of the
next phase of development. Possible metrics include
design change counts, control and data complexity
metrics for source code, and structural coverage
metrics for test data. '

s [n syntax-directed editors, the grammar of the

underlying language is built in, so the programmer
needs to include only valid constructs at any point in
the program. Such systems facilitate top-down pro-
gram development and often permit interactive con-
text switching between program editing and program
execution. 1% The programmer can then think more
about algorithm design than keyboarding the pro-
gram text.

® The review process should be improved. Reviews or
inspections are a strong part of current methodology.
The review process can be strengthened by the tools
mentioned earlier. Manual labor in design and code
reviews could be reduced with more effective tools.
Such tools would permit reviewers to spend more
time on the major purpose of the review—the detec-
tion of logical errors—and avoid the distractions of
formatting or syntactic anomalies.

* Incremental development such as iterative enhance-
ment should be used.'® Many successful companies
limited development to under two years and 10
people. One data processing company, after
repeatedly failing to deliver software, decided never
to build anything that required more than 18 staff-
months. Since then they have been successful. Several
other companies reported similar experiences. Large
projects tend to have several layers of management
and their success seems to depend on a stronger
review process that comprises requirements, design,
and code reviews. Smaller projects need less manage-
ment and can succeed with only design reviews.

Data should be collected and analyzed. Most of the
data being collected now is used primarily to schedule
work assignments. Measurement data can be used to
classify projects, evaluate methods and tools, and
provide feedback to project managers. Data should
be collected across projects to evaluate and help
predict the productivity and quality of software. The
kind of data collected and the analysis performed
should be driven by a set of questions that need
answers rather than by what is convenient to collect
and analyze. For example, classifying errors into ma-
jor and minor categories does not shed any light on
development activities. A more detailed examination
of error data can determine the causes of common er-
rors, many of which may have remedies. Project
postmortems should be conducted.

Observations

We identified several approaches for improving soft-

ware productivity although they are not strictly supported

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

(or contradicted) by the data we collected. We offer these
to stimulate discussion on this important topic.

® Maintain compiler technology. Many companies
seem to contract out compiler development to smaller
software houses because the nature of building most
compilers is pedestrian. While compiler technology is
relatively straightforward and perhaps cheaper to
contract to a software house, the implications are far
reaching. Software research is heading toward an in-
tegrated environment that covers the entire life cycle
of software development. Research papers are being
written about requirements and specification
languages, design languages, program complexity
measurement, knowledge-based Japanese fifth-
generation languages, etc.!” All of these depend on
mundane compiler technology as their base.

® Try prototyping. Prototyping is one of the hot topics
in software engineering literature today. !8 It is also
crucial for all other engineering disciplines, but it was
never mentioned on any survey form or during our
visits. A form of prototyping in building data pro-
cessing application software was common: the crea-
tion of screen displays during the design process. This
technique and others should be expanded.

® Develop a test and evaluation methodology. Test
data has to be designed and evaluated. While the cur-
rent software development process provides for the
design of test data in conjunction with the design of
software, there is little tool support for this effort. As
a resillt, almost every project builds its own test data
generator, and a few even build test evaluators. Con-
cepts like attribute grammars may provide the basis
for a tool to support test data generation. 1

e Examine the maintenance process. Surprisingly,
maintenance was rarely mentioned in our interview
process, even though it is an expensive activity that
most companies engage in. A Japanese project is to
build maintenance workstations; their view is that
development is a subset of maintenance. This implies
that the successful methods and tools used in develop-
ment should be adapted for use in this stage of the
process.

e Encourage innovation. Experimental software
development facilities are needed. Management
should be encouraged to use new techniques on small
funded-risk projects.

In preparing this article for publication, we were
grateful for the thoughtful insights and comments from
the reviewers. However, two issues kept on creeping into
their reviews, and we suspect that the reader might have
similar opinions.

(1) The comment was made that the reviewer (or his
colleagues) used more or better tools, thus the
survey was not representative. However, as we
stated at the beginning, the goal was to look at pro-
duction programmers—not research laboratories.
We suspect that most reviewers and probably many

June 1984

readers of Computer also represent the research
category.

(2) Names were sometimes given to demonstrate that
industry is doing something about the problem.
However, every person mentioned by the reviewers
was interviewed by us and is included in this article.
They either represent a research environment, and
are not involved in ‘‘revenue-producing’’ software,
or are considered an anomaly within their own com-
pany.

We are not saying here that software practices are
dismal in the US. Technology transfer takes time, and it
appears that the current level in industry represents the
research environment of the mid-1970’s—a delay of only
10 years. However, certain practices we mentioned do
hinder technology transfer. We hope that this article is an
impetus to address those issues so that discussions can start
within companies to improve the process and shorten—
still further—the time it will take to adopt good practices
in industry. %

Acknowledgments

This project was sponsored by the IBM Corporation.
We also acknowledge the cooperation of the following
organizations for allowing us to survey their development
activities: Bankers Trust Company, AT&T Bell Telephone
Laboratories, Digital Equipment Corporation, Hewlett-
Packard, Honeywell Large Information Systems Division,
Kozo Keikaku Kenkyujo, Japan Information Processing
Service, Microsoft, Nomura Computer Systems Ltd.,
Software Research Associates (Japan), Sperry Univac,
System Development Corporation, Tandem Computers,
Tokyo Electric Power Company, Toshiba Corporation,
TRW, Wang Laboratories, and Xerox Corporation.
Several Japanese companies did not respond to our re-
quest to use their names, so they are not listed here. This
project would not have been possible without the help of
all these companies.

References

1. Software Engineering, P. Naur and B. Randell, eds., NATO
Scientific Affairs Division, Brussels, 1969.

2. K. H. Kim, “A Look at Japan’s Development of Software
Engineering Technology,”” Computer, Vol. 16, No. 5, May
1983. pp. 26-37.

3. R. C. Houghton, ‘‘Software Development Tools: A
Profile,” Computer, Vol. 16, No. 5, May 1983, pp. 63-70.

4. M. E. Fagan, “Design and Code Inspections to Reduce Er-
rors in Program Development,”’ IBM Systems J., Vol. 15,
No. 3, Mar. 1976, pp. 182-211.

5. F. Freiman and Park, PRICE Software Model Overview,
RCA, Cherry Hill, N.J., Feb. 1979.

6. L. Putnam, ‘“SLIM Software Life Cycle Management
Estimating Model: User’s Guide,”” Quantitative Software
Management, (July 1979).

7. Collected Papers: Volume 1, tech. report 82-005, NASA
Goddard Space Flight Center, Software Engineering
Laboratory, Code 582.1, Greenbelt, Md., 1982.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

65

66

8. M. W. Alford, ‘‘A Requirements Engineering Methodology
for Real-time Processing Requirements,”” IEEE Trans.
Software Engineering, Vol. SE-3, No. 1, Jan. 1977, pp.
60-69.

9. D. Teichroew and E. A. Hersey III, ‘“PSL/PSA: A
Computer-Aided Technique for Structured Documentation
and Analysis of Information Processing Systems,”” IEEE
Trans. Software Engineering, Vol. SE-3, No. 1, Jan. 1977,
pp. 41-48.

10. F. P. Brooks, Jr., The Mythical Man-Month., Addison-
Wesley, Reading, Mass., 1975.

11. G. M. McCue, ‘““IBM’s Santa Teresa Laboratory—Ar-
chitectural Design for Program Development,”” IBM
Systems J., Vol. 17, No. 1, Jan. 1978, pp. 4-25.

12. A. J. Thadani, ‘“Interactive User Productivity,”” IBM
Systems J., Vol. 20, No. 4, Apr. 1981, pp. 407-423.

13. T. Teitelbaum and T. Reps, ‘““CPS—The Cornell Program
Synthesizer,”” Comm. ACM, Vol. 24, No. 9, Sept. 1981, pp.
563-573.

14. V. R. Basili, Models and Metrics for Software Management
and Engineering, IEEE-CS Press, Los Alamitos, Calif.
1980.

15. M. V. Zelkowitz, ‘‘A Small Contribution to Editing with a
Syntax-Directed Editor,”” Proc. ACM Sigsoft Symp. Prac-
tical Software Development Environments, Apr. 1984, pp.
1-6.

16. V. R. Basili and A. J. Turner, ‘‘Iterative Enhancement: A
Practical Technique for Software Development,”’ IEEE
Trans. Software Engineering, Vol. SE-1, No. 4, Dec. 1975,
pp. 390-396.

17. H. Karatsu, “What Is Required of the Fifth Generation
Computer—Social Needs and Its Impact,” Fifth Genera-
tion Computer Systems, North-Holland, Amsterdam, 1982.

18. “ACM SIGSOFT Software Engineering Symposium:
Workshop on Rapid Prototyping,”” ACM Sigsoft Software
Engineering Notes, Vol. 7, No. 5, Dec. 1982.

19. A. Duncan and J. Hutchinson, ‘““Using Attributed Gram-
mars To Test Design and Implementation,”’ Proc. IEEE
Fifth Int’l Conf. Software Engineering, 1981, pp. 170-178.

Martin V. Zelkowitz has been with the
Computer Science Department of the Uni-
versity of Maryland since 1971 where he is
an associate professor and, since August
1982, an associate chairman for education.
His research interests include compiler and
language design and the building of in-
tegrated tools for software development.
He has also worked with the Institute for
: Computer Sciences and Technology of the
National Bureau of Standards since 1976 and is the chairman of
the Computer Society’s Technical Committee on Software
Engineering. He is past chairman of ACM Sigsoft and is now on
the Sigsoft Executive Committee.
He received a BS in mathematics from Rensselaer Polytechnic
Institute in 1967 and an MS and PhD in computer science from
Cornell University in 1969 and 1971.

Raymond T. Yeh is professor of computer
sciences at the University of Maryland. He
has served as chairman of the Computer
Science Departments at the Universities of
Maryland and Texas at Austin. He was
also director of the Center for Information
Sciences Research at Maryland. Yeh re-
ceived a BS in electrical engineering, an
MA in mathematics, and a PhD in mathe-
matics from the University of Illinois. He is
the founding editor-in-chief of JEEE Transactions on Software
Engineering.

Richard G. Hamlet has been with the
_ University of Maryland since 1971 and is
now associate professor. He will move to
the Oregon Graduate Center in July 1984.
His research interests include computability
theory, programming languages, and soft-
ware engineering, particularly testing
theory. Hamlet received a BS in electrical
engineering in 1959 from the University of
Wisconsin in Madison, an MS in engi-

neering physics in 1964 from Cornell University, and a PhD in
computer science in 1971 from the University of Washington in
Seattle.

John D. Gannon has been with the Univer-
sity of Maryland since 1975 and is now
associate professor. His research interests
| include human-factors approaches to pro-
- gramming language design, formal specifi-
cation and validation, and distributed com-
puting. Gannon received an AB in mathe-
matical economics in 1970 and an MS in
y _computer science in 1972 from Brown
(- University in Providence, R.I., and a PhD
in computer science in 1975 from the University of Toronto.

Victor R. Basili is professor and chairman
of the Computer Science Department at the
University of Maryland in College Park,
where he has been involved in the design
and development of several software proj-
ects, including the SIMPL family of pro-
gramming languages. He is currently
measuring and evaluating software devel-
opment in industrial settings and has con-
sulted with many agencies and organiza-
tions, mcludlng IBM, GE, CSC, Naval Research Laboratory,
Naval Surface Weapons Center, and NASA. Basili has published
over 50 papers on the methodology, the quantitative analysis, and
the evaluation of the software development process and product.
In 1982, he received the Outstanding Paper Award from [EEE
Transactions on Software Engineering. He serves on the editorial
boards of the Journal of Systems and Software and IEEE Trans-
actions on Software Engineering. He is a member of the ACM
and the IEEE-CS Executive Committee of the Technical Commit-
tee on Software Engineering.

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 10, 2008 at 13:32 from IEEE Xplore. Restrictions apply.

