IEEE TRANSACTIONS ON SOFTWARE ENGINEERING; VOL. SE-11, NO. 2, FEBRUARY 1985

Evaluating Software Development by Analysis .éf
Changes: Some Data from the Software
Engineering Laboratory

DAVID M. WEISS anp VICTOR R. BASILI, MEMBER , IEEE

Abstract—An effective data collection methodology for evaluating
software development methodologies was applied to five different soft-
ware development projects. Results and data from three of the projects
are presented. Goals of the data collection included characterizing
changes, errors, projects, and programmers, identifying effective error
detection and correction techniques, and investigating ripple effects.

The data collected consisted of changes (including error corrections)
made to the software after code was written and baselined, but before
testing began. Data collection and validation were concurrent with
software development. Changes reported were verified by interviews
with programmers. Analysis of the data showed patterns that were
used in satisfying the goals of the data collection, Some of the results
are summarized in the following.

1) Error corrections aside, the most frequent type of change was an
unplanned design modification.

2) The most common type of error was one made in the design or
implementation of a single component of the system. Incorrect re-
quirements, misunderstandings of functional specifications, interfaces,
support software and hardware, and languages and compilers were gen-
erally not significant sources of errors.

3) Despite a significant number of requirements changes imposed on
some projects, there was no corresponding increase in frequency ‘of
requirements misunderstandings.

4) More than 75 percent of all changes took a day or less to. make.

5) Changes tended to be nonlocalized with respect to individual
components but localized with respect to subsystems. k

6) Relatively few changes resulted in errors. Relatively few errors
required more than one attempt at correction.

7) Most errors were detected by executing the program. The cause
of most errors was found by reading code. Support facilities and tech-
niques such as traces, dumps, crossreference and attribute listings,
and program proving were rarely used.

Manuscript received December 13, 1982; revised April 25, 1984. This
work was supported in part by the National Aeronautics and Space
Administration under Grant NSG-5123 to the University of Maryland.

V. R. Basili is with the Department of Computer Science, University
of Maryland, College Park, MD 20742.

D. M. Weiss is with the Naval Research Laboratory, Washington, DC
20375.)

Index Terms—Software change analysis, software change data, soft-
ware errors, software measurement.

IN previous and

I. INTRODUCTION

companion, papers [1]-[4] we have dis-

cussed how to obtain valid data that may be used to evalu-
ate software development methodologies in a production en-

yironment. Briefly
five elements. '
1) Identify goals.
are defined before
them to how well tk
2) Determine que
questions, derived f
and define the data
derived from each g
3) Develop a datd
used is tailored to {
the questions of int
4) Develop data
easiest when the dd
configuration contr
5) Validate and
the data are concu

‘the methodology consists of the following

The goals of the data collection effort
any data collection begins. We often relate
1€ goals for a product or process are met.
stions of interest from the goals. Specific
rom the goals, are used to sharpen the goals
to be collected, Answering the questions
oal satisfies the goal.

collection form. The data collection form
he product or process being studied and to
erest. ‘

collection procedures. Data collection is
ta collection procedures are part of normal
ol procedures. -

inalyze the data. Reviews and analyses of
rrent with software development. Valida-

tion includes exa

ining completed data collection forms for

completeness and Consistency. Where necessary, interviews
with the person(s) supplying the data are conducted.

The purpose of this paper is to present the results from such
an evaluation. The data presented here were collected as part
of the studies conducted by NASA’s Software Engineering

Laboratory [5]. 1
SEL and the projec

this section we present an overview of the
ts analyzed for this paper. Section II des-

cribes the application of the methodology described in the

0098-5589/85/0200-0157$01.00 © 1985 IEEE

158

foregoing to the SEL environment. Section III presents the
results of the data analysis. The analysis and data are con-
tained in the Appendix. Section IV contains conclusions
about the SEL environment and some observations on the
application of the experimental methodology.

Overview of the Projects Studied

The methodology described in [1] was used to study five
projects in two different environments: a research group at the
Naval Research Laboratory (NRL), and a NASA software pro-
duction environment at Goddard Space Flight Center (GSFC).
The NRL studies have been previously presented [2], [3],
[6], [7] and will not be discussed further here.
scription of the NASA projects follows.

The Software Engineering Laboratory

The Software Engineering Laboratory (SEL) is a NASA
sponsored project to investigate the software development
process, based at Goddard Space Flight Center (GSFC). A
number of different software development projects are being
studied as part of the SEL investigations [4], [5], [8]. Stud-
ies of changes made to the software as it is being developed
constitute one part of those investigations.

Typical projects studied by the SEL are medium size Fortran
programs that compute the orientation (known as attitude) of
unmanned spacecraft, based on data obtained from on-board
sensors. Attitude solutions are displayed to the user of the
program interactively on CRT terminals. Because the basic
functions of these attitude determination programs tend to
change slowly with time, large amounts of design and some-
times code are often reused from one program to the next.
The programs range in size from about 20 000 to about 120000
lines of source code. They include subsystems to perform
such functions as reading and decoding spacecraft telémetry
data, filtering sensor data, computing attitude solutions based
on the sensor data, and prov1d1ng an (interactive) interface to
the user.

Development is done by contractor personnel in a “produc-
tion” environment, and is often separated into two distinct
stages. The first stage is a high-level design stage. The system
to be developed is organized into subsystems, and then further
subdivided. Each subsystem generally performs a major system
function, such as processing telemetry data. The result of the
first stage is a tree chart showing the functional structure of
the subsystem, in some cases down to the subroutine level,
a system. functional specification describing, in English, the
functions of the system, and decisions as to what software
may be reused from other systems. For the purposes of the
SEL, each named entity in the system resultlng from this
process is called a component.

The second stage consists of completing the de’velopment
of the system. Different components are assigried to (teams
of) programmers, who' write, ‘debug, test, and integrate the
software. ~ Before delivery, the software must pass a formal
acceptance test. On some projects, programmers prodtiée no
intermediate - specification between the functional specifica-
tions produced as part of the first stage and the code.” Some
projects produce pseudocode specifications for individual
subroutines before coding them in Fortran. During the period

A brief de-,
~ list.
.. were.analyzed.to produce the results for this paper. Complete

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

of time that the SEL has been in existence, a structured For-
tran preprocessor hds come into general use.

The principal design goal of the major SEL projects is to
produce a working system in time for a spacecraft launch. In
addition, a continuing NASA goal is introducing improved
techniques into its| software development process. Results
from SEL studies of three different NASA projects, denoted
SEL1, SEL2, and SKL3, are included here.

II. APPLICATION OF THE EXPERIMENTAL PROCEDURE

A complete list of goals, as described in [1], for the SEL
projects is shown in Table I. The analysis presented in this
paper will-only be concerned with the first six goals from the
~Table' II shows the associated questions of interest that

lists of goals, questions of interest, and data categories are
shown in [9]. The SEL:studies represent a full-scale imple-
mentation of the data collection methodology in a software

production environment. Because the SEL environment is not

primarily devoted to developing and proving new methodol-
ogies, the emphasis| is more on investigating the software de-

velopment environ

SEL Goals

Since the pr1mar
veloping and provi
goals are generally

ent than in a study such as [3].

emphasis in SEL projects is not on de-
g new methodologies, the data collection
methodology-independent, Nevertheless,

many of the projects do use recently-developed software engi-

neering .technology

with ‘a view towards evaluating the tech-

nology in the NASA/GSFC environment. (An example is pro-
gram demgn language used in several SEL projects.)

SEL Questions of Interest

Since the softwar
ment with stringén
the overhead. involy

e was produced in a production environ-
t deadlines, it was desirable to minimize
ed in collecting and validating data. Be-

cause there were no. design goals with respect to the use of

particular methodol

ogies, questions relating to the success of

particular methodolpgies were generally not considered.

SEL Data Categorie

Selection of the
data needed to ansy
ing a reasonably sm

collecting and inter

mates of the unifg
subcategories. -
" The “catch-all”
changes that will n
categories selected
tion across the subc

S

data categories was based on acquiring the
wer.the questions of interest, on maintain-
all set of subcategories for convenience in
preting the data, and on subjective esti-
rmity of the data distribution across the

category “other” has been inserted for all

ot fit one of the other categories. If the
agree well with the actual change distribu-
ategories, few errors will fall into the other

subcategory. (The reverse situation is not necessarily a sign of
a poorly designed categorization scheme; the “other” changes

may provide the m

st insight into the development process.)

Data Collection, Validation, and Analysis

Formal procedures used for data collection and validation

are described in {1]

as is the data collection form.

WEISS AND BASILI: EVALUATING SOFTWARE DEVELOPMENT CHANGES

TABLE |
Data CorLecTioN Goats FOr THE SEL ProJecTs

1) Characterize changes (especially in ways that permit comparisons
across projects and environments).

2) Characterize errors (especially in ways that permit comparisons
across projects and environments).

3) Identify effective techniques for detecting errors.

4) Investigate the “ripple” effect, i.e., do most errors require more
than one attempt at correction or result in changes distributed over
several different components of the system?

5) Characterize projects.

6) Find factors that have significant effects on types and distribu-
tions of errors.

7) Evaluate effectiveness of methodologies in NASA/GSFC. en-
vironment. :

8) Identify effective techniques for obiaining the informatjon needed
to correct errors.

9) Suggest ways of improving NASA/GSFC software development
practices. ’

10) Verify that concurrent data validation is needed.

11) Characterize programmers.

12) Identify good measures of correctness.

TABLE 11
QUESTIONS OF INTEREST

1) What was the distribution of changes according to the reason for
the change? Reasons were considered to be one of the following:
a) a change in requirements or specifications;
b) a change in design;
¢) a change in hardware environment (e.g., a new piece of hardware
added to the system to be.used by the program);
d) a change in software environment (e.g., a new version of the
Fortran compiler);
¢) an optimization;
f) other. ’
2) What was the distribution of changes across system components?
3) What was the distribution of effort required to design changes?
For error corrections, the ‘effort required to design the change was
assumed to be the same as the effort required to understand the error
and propose a correction.
4) What was the distribution of errors according to the misunder-
standings that caused them? .
5) What was the distribution of effort required to correct errors?
6) How many errors were the result of software changes?
7) What was the distribution of errors across error detection tech-
niques?
8) What was the number of attempted error corrections per error?

Answering Questions of Interest

The questions of interest are answered by presenting and
analyzing the data distribution(s) associated with each ques-
tion. Because of space limitations, answers to- the individual
questions, and tables and histograms used in the data analysis
have been included in the Appendix.

Overview of the Data

Table III contains an overview of the data collected and a
summary of information about the projects. Changes are
divided into two categories: error corrections and modifica-
tions. Modifications are changes made for purposes other than
error correction. Values of parameters often thought to char-
acterize software . development projects are also shown in
Table III.

II1. INTERPRETATIONS

The research methodology permits at least one quite straight-
forward way of interpreting the data: using the distributions

159
TABLE III
PROJECT INFORMATION AND SUMMARY OF DATA COLLECTING
r [SELi | SEL2 . SEL3 |
I Effort (work-months) " 790 | 396 | 987 ;
! Nugnber jof Developers V5 - 4 .7
L Lines bf Code (K) 509 | 754 | 854
Developed Lines of Code* (K) L4685 . 311 78.6
| Number of Components 502 490 639
Number of Changes 281 229 780
Nurnber df Modifications 101 ;110 ; 483
Number of Errors 4180 ' 118 ¢ 307
Changes. Per K| Lines Of . Developed Il 80 b74 I 97 :
Code :] .
Errors Per K Lines Of Developed Code || 38 | 38 . 39
Error To Mod Raflio (NonClericals Only) | 1.3 92 ' 54
Frroneous Chajge Rate (Ratio Of | .025 | .081 | 041 |
Changes Resulting:In Errors To All ; :
Changes) .
Errors Resulting From Change (As 5 4 iR
Percentage Of NonClericals) : ;
‘Repeahed Errqr -Ratio (Average i 1.02 | 1.08** @ 1.06
Number Of Corrgetions Per Error)
Errors Per Person W28 . 25 44
Errors Per Work-Month 117 24 | 31
Changes Per Work-Month 138 8 17

* For the definition of developed lines of code, see {8].

** Upper bound. Exact nimber of repeated errors for SELR is unknown. By con-
servative means, the ratio could be estimated as :.04.
to answer the questions of interest, thereby satisfying the goals
of the study. One jmay also compare distributions across dif-
ferent projects, where appropriate, and look for common char-
acteristics. Both of these processes lead to new goals and
questions, some of which may be answerable with the available
data, and some requiring new studies. Examples of both will
be presented here.

Table IV shows, for each goal analyzed in this paper, the cor-
responding questions of interest. Where the same question(s)
are used to satisfy several goals, the goals are listed together.

Readers interestedl in the detailed analysis of the data distri-
butions used to arlswer the questions of interest are referred
to the Appendix. Based on the analysis in the Appendix, we
present here a summary of results for the goals.

In the following sections each goal is satisfied by: presenting
conclusions based on the answers to the questions correspond-
ing to the goal. A|short description of each goal precedes its
discussion. ' ‘

Goal: Characterize Changes

All three projects operated in a stable environment where
there were few changes to the support software and hardware;
none of them made many changes for the purpose of adding
or deleting debug|code. The results support the view that
the SEL designers| have organized their systems so that, for
purposes of redevelopment, most changes are confined to a
few subsystems. ' o

One way that the projects clearly differ is in their reasons for
making unplanned design changes. Some spend a great deal of
time on optimization and in.proving the services the system
offered to its users, others on attempting to improve the clar-
ity of the code and its documentation. It is interesting to note
that SE12 and SEL3, whose programmers had different rea-
sons for making unplanned design modifications, had the same
task leader and some of the same staff. ‘

Coupled .with the effort .and the component-wise change
analyses, the resylts suggest that most umplanned design
modifications are [small and only involve one component of
the system. Several explanations are possible; either the pro-

160

TABLE 1V
RELATIONSHIP BETWEEN GOALS AND QUESTIONS

Goal:)
Characterize changes.
Questions.
What was the distribution of modification according to the reason for
the modification?)
What was the distribution of changes across system components?
What was the distribution of effort required to design changes?
Goal:
Characterize errors.
Questions:
What was the distribution of errors according to the misunderstand-
ings that caused them?
What was the distribution of effort required to correct errors?
How many errors were the result of software changes?
Goal:
Characterize projects.
Goal:
Find factors that have significant effects on types and distributions of
€ITors.
Question:
All questions are used in satisfying this goal: See Table II.
Goal:
Identify effective techniques for detecting errors.
Question:
What was the distribution of errors across error detection techniques?
Goal:
Investigate the “ripple™ effect, i.e., do most.errors require more than
one attempt at correction or result in changes distributed over several
different components of the system?
Question:
What was the number of attempted error corrections per error?

grammers act as “filters,” rejecting unpianned modifications
that are not easy to make, or reasons for modifying the design
are not characteristic of the programmers, but rather of some
external source, '

Some Conclusions Concerning Characterization of Changes’

Although it is temipting to try to characterize a “typical”
modification, there is too much variability in the sources of
modifications for the different projects to do so safely. The
sources for most modifications fall into one of a small number
of subcategories, such as requirements modifications, planned
enhancements, improvements of clarity, improvements of user
services, and optimizations. The distributions over these cate-
gories distinguish one project from another.

The SEL projects are all similar with respect to the effort
required to modify the programs; most changes and modifica-
tions take a day or less to make. Furthermore, afthough the
changes tend to be nonlocalized with respect to individual
components (most components that are changed are only
changed once or twice), they are localized with respect to sub-
systems, i.e., the majority of changes are made in one or two
subsystems.

Goal: Characterize Errors

From the answers to the questions we may conclude that
the SEL programmers tend to spend their time finding and
correcting many ““small” errors made while designing or im-
plementing single routines, rather than struggling with a
few “large” errors, or trying to understand requirements or
interfaces. , ‘

All the SEL projects handled changes with little trouble;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

relatively few errors were the result of a change to the soft-
ware. Requirements appear to be well enough understood that
changes to them can be handled with little trouble. Interfaces,
often considered to be a major source of errors, do not seem
especially troublespme. There is some indication that the
interface and requirements understandings that do occur
are more difficult. to-correct than others. However, the small
number of errors involved makes it dangerous to draw such a
conclusion.

We believe there jare two factors that explain the shape of
the error distributions and their similarity across projects.

1) The SEL projects all have the same application. They
are essentially redevelopments, each using the same overall
design and often mpch of the same code as previous projects.
Although new individual programmers may be used from one
project to the next; the same people do the top level design.
Having found a successful design, they reuse it.

2) The SEL projects used programmers who were familiar
with the language they were using, and both were developed
in a stable environment, i.c., there were few changes in support
hardware or softwa

Some Conclusions Concerning Error Characterization

Based on the foregoing analysis, one might characterize a
“typical” error as ope that occurs in the design or implement-
tation of a single component, is easy to correct, and whose
cause is easy to find '

Goal: Identify Effective Error Detection Techniques

Executing the program was the most successful means for
detecting errors. The distributions show what might be called
a traditional approach to error detection: either test runs or a
programmer reading|over her own code. '

Goal: Investigate the Ripple Effect

There is nothing in the data to suggest a ripple effect of any
significance. The lack of such an effect may be the result of
the SEL experience with the application. It may also be a
result of monitoring the projects primarily through the de-
velopment phase. Continued monitoring throughout the proj-
ect lifetime might reveal such an effect as the software under-
goes further change.

Goal: Characterize Projects

Inspection of the change distributions shows that, despite
the similarities in application, environment, and personnel,
there are distinct differences among SEL projects. Some pro-
jects, notably SEL3} seem to have considerably less trouble in
the development phase than others.

There are two possible explanations: 1) the SEL 3 devel-
opers did a better job in producing correct software, or 2) the
SEL3 system was rot subjected to a thorough inspection for
errors. Discussions with SEL personnel indicate that SEL3
Was no more error| prone in operation than either SEL1 or
SEL2, suggesting that 1) is the correct explanation.

Examination of the data shows that it is risky to characterize
a project with a single parameter or distribution. Further-
more, it is difficult to predict the effect that a particular proj-
cct characteristic will have on any particular change distribu-

WEISS AND. BASILI: EVALUATING SOETWARE: DEVELOPMENT CHANGES

tion. We can identify variations in distributions that seem to
distinguish some projects from ‘others, and use the distinguish-
ing distributions as the basis for more detailed expenments
A list of candidate distributions follows.

Sources of Modifications: The sources of modlﬁcatmns dis-
tributions all show their strongest peaks in the same-places,
but have secondary peaks in different places. These sécondary
peaks may be used to distinguish among projects.. SEL2 and
SEL3 both show strong peaks in requirements changes.' SEL1
and SEL3 both show peaks in the planned enhancement cate-
gory. SELI has a much stronger peak in the design category
than either of the others.

Sources of Nonclerical Errors: All projects show a strong
peak in the same place in the sources of nonclerical errors dis-
tributions. SEL3 may be distinguished from the other SEL
projects by its secondary peak in the “Design MultiComp”
category. SELI1 shows a somewhat stronger peak in the “Fnl
Spec” category than the other projects.

Effort to Design Change: All SEL projects have design effort
distributions of about the same shape. The only variation is in
the proportion of the distribution contained in each category.
SEL1 shows a considerably stronger peak in the Easy category
than any of the other projects.

Frequency Distribution of Changes: The SEL1 and SEL2
component change frequency distributions show a generally
similar shape except for the first category.

Characteristics of the SEL Projects

By analyzing the appropriate distributions, the SEL projects
may be characterized as follows.

1) Software production takes place in an environment stable
with respect to hardware and software support.

2) Programs are produced by making many small changes to
a set of initial code. A significant number (40 percent or
more) of these changes are error corrections. Most of the
changes are not planned in advance. Relatively few of them
result in errors.

3) Most changes that are not error corrections are design
changes made for the purposes of optimization, improving
the clarity and maintainability of the code, improving the
documentation (including comments in the code), or improv-
ing the services provided to the user by the program.

4) Most errors occur in the design or implementation of one
component of the system, and are easy to find and easy to
correct. Errors are usually corrected on the first try.

5) Although most changes are concentrated in two or three
subsystems, few individual components are changed more than
three or four times.

6) Although a project may have relatively many require-
ments changes, these changes do not constitute a major source
of errors. Interface errors are also not especially troublesome.

Goal: Find Factors That Significantly Affect Distributions
of Errors

It is not possible in these studies to isolate particular factors
and examine their effect on the various error distributions.
Nevertheless, it was expected that patterns of influence would
be visible. One expected pattern was that the distribution of
sources of modifications would affect the distribution of

161

seurces of: errors,.e.g., the greater the number of requirements
changes, the greater the number of requirements errors.. This

-expectation was not confirimed; the sources of errors seem to

be relativelysindependent of the sources of modifications.

..:Other -factors: that were expected. to. contribute heavily as
error sources;<but -apparently - did not,.include thé software
development . environment, the programming language used,
migunderstandings of interfaces, project size, and |misunder-

‘standings-of specifications.

The error distributions for the SEL pI‘O]eCtS 1nd1cate that the
single most important factor is the method used by the indi-
vidual programmer in designing and coding individual routines.
More detailed studies of individual programmer techniques in
the SEL environment might indicate particular methodological
weaknesses.

Generalization of| these results to other environments may
not be possible. In the SEL projects certain circumstances
may have acted to decrease the effects of certain factors. SEL
experience with the application, and the adaptation of pre-
vious .designs in the development of new systems: are in this
category :

NCLUSIONS AND SUMMARY

The SEL data collection projects showed that it was feasible
to collect and validate data on all changes concurrently with
software development. (A companion paper [1] shows that
it was necessary to perform validation by means of developer
interviews:) The data collected permit the following charac-
terization of the SEL environment, projects, and programmers.

1) Error corrections aside, the most frequent type of change
is an unplanned design modification. Such modifications are
usually made for one of the following reasons:

a) to optimize the program,

b) to improve the services the program offers to its users, or

¢) to improve the ¢larity and maintainability of the pro-
gram and its documentation. '

~2) The most common type of error is one made in the de-
sign or implementation of a single component of the system.
Incorrect requirements and misunderstandings of functional
specifications, interfaces, support software and hardware, and
languages and compilers are generally not significant sources
of errors.

3) Despite a significant number of requirements changes

imposed on some f

in frequency of requirements misunderstandings.

explanation is that

rojects, there is no corresponding increase
A possible
the developers understand the application

sufficiently well that their design is easily adaptable to most

requirements chang
to expect and have
4) More than 75
make.
many small change
ones.
5) Changes tend

Most progra

es, i.e., they know what kinds of changes

des1gned for them.

percent of all changes take a day or less to
mmers apparently spend their time making
$ to their programs, rather than few large

to be nonlocalized with respect to individ-

ual components (most components that are changed are only
changed once or r’{‘wice), but localized with respect to sub-

162

systems (the majority of changes are made in one or two
subsystems). ‘

6) Relatively few changes result in errors.. Relatively
errors require more than one attempt at correction.

7) Most errors are detected by executing the program. The
cause of most errors is found by reading code. Techniques
and support facilities such as program proving, cross-reference
and attribute lists, and dumps (that were once so popular
that papers, such as [10], were published on how to read
them) are rarely used. R

few

Opportunities Missed

The data presented here and in [2], [3], [6], and [7] repre-
sent five years of data collection. During that time there was
considerable and continuing consideration given to the ap-
propriate goals and questions of interest. Nonetheless, as data
were analyzed, it became clear that there was information that
was never requested but that would have been useful. An
example is the length of time each error remained in the sys-
tem. Programmers correcting their own errors, which was the
usual case, could supply these data easily. One could then iso-
late errors that were not easily susceptible to detection by pro-
gram execution or code reading. This example underscores the
need for careful planning prior to the start of data collection.

Understanding and Improving the Environment

Knowing the kinds of changes and errors made to the soft-
ware is a key to understanding the software development
environment. Obstacles to change, methods and designs that
facilitate change, implementation difficulties, and troublesome
components. are examples of elements highlighted by appro-
priate data collection. The knowledge gained enables one to
work effectively to increase productivity and improve software
quality.

Comparing Environments

In most sciences, valuable information is gained from repeat-
ing experiments, sometimes to confirm new results, other times

to refine them. We believe this should be the case in Com-

puter Science. Although some interesting patterns are exhi-
bited in the SEL data, it would be useful to seek similar trends
in data from other environments. Unfortunately, there exists
little comparable data ([4] is one exception). A primary rea-
son for devising the data collection methodology used here is
to show how comparable data from different environments
may be collected. Common goals, questions of interest, and
data categorization may be used to ensure comparability.

APPENDIX
Answering Questions of Interest

The questions of interest are answered by presenting and
analyzing the data distribution(s) associated with each ques-
tion. For each question there is a short discussion of the asso-
ciated distributions, The main purpose of the discussions is
to point out various features of the distributions that are of
significance in answering the questions. Table V shows the
relation between the questions and the distributions. Only
those questions used to derive conclusions in the body of this
paper are discussed here.

IEEE TRANSACTIONS ON SOFTWARE ENGINE

detection techniques?
8) What was the number of attempted error cor-

FiGures/]

ERING, VOL. SE-11, NO. 2, FEBRUARY 1985

cording to the reason fj
2) What was the di;
tem components?
.3) What was the di
design changes?
'4) What was the d

1) What was the dsk

to the misunderstandings that caused them?

5) What was the
to correct errors?

'6) How many errors were the tesult of software

changes?
7). What was the di

rections per error?

TABLE V- -~

ABLES USED IN ANSWERING QUESTIONS

stribution of modifications ac- = Figs. 3,5

1 the modification?

ribution of changes across sys- Figs. 6,7

tribution of effort required to Fig. 8

stribution of errors according Figs. 1,9

istribution of effort. required Fig. 2
Table 111

tribution of errors across error Table VI
Table 11T

One purpose of

his research is to provide a set of empiri-

cally derived data that others may use in constructing models
and deriving hypotheses. The data presented here may be so

used. Most of the

presentations are in the form of histograms

based on data categorizations previously discussed. The fol-

lowing sections are

intended to help the reader understand the

organization and content of the various histograms.

Organization of Data Presentation.

In general, the h
each figure contain
ects. An example
clerical errors for 4
ects are represented
relevant or available

istograms are organized into figures, with
ing corresponding histograms for all proj-
is Fig. 1, which shows the sources of non-
It projects. For some figures, not all proj-
, since a particular set of data may not be
for some projects.

Labels on histograms are generally mnemonic abbreviations

of descriptions of ¢
hancement). Keys
the complete name

Data Categorization

'During the data
were made to the
of the projects co
second result is t
names and meaning;
ects within a partic
tion are discussed in

Changes in Measure
Data categories fi

quantifications than others.

ata categories (e.g., PE means planned en-
,. supplied for nonobvious labels, provide
for each mnemonic.

collection period, several improvements
forms. One result is that forms for some
tain more categories than for others. A
t. there are occasional differences in the
5 of similar subcategories for different proj-
plar figure. Such differences in categoriza-
the next few sections.

ment Precision

or some of the projects contain finer data
An example is the SEL1 and

SEL3 categories shown in Fig. 2, “Effort To Change NonCler-

ical Errors.” The

SEL3 figure has a larger set of categories

than the SEL1 figure. After analyzing the results of our early
data collection effqrts, we realized it was possible to and of
interest to use a fingr measure of effort.

Insufficient Subcatégorization

As a result of ingxperience, some data categories were too

broad, and some to
collection forms. A
included on the for

0 narrow on the early versions of the data
5 an example, a design change category was
m at one time. So many changes were re-

WEISS AND ‘BASILI: EVALUATING SOFTWARE DEVELOPMENT CHANGES

Fig. 1. Sources of nonclerical errors.

N
PO
e 8 67
RL 60
CL 50
1%
L 4 '
i] E 18 2 [-i i —— 1 L —%
Fg Req Fnl DesignOesign Lang Env . Other
Spec Multi- Slng?e
Comp Comp
Type Of Error
SELT
el
en 9
RC 80 ¥i
CL 50
EE 40
L]
¢ oL s
og 19 3 3 1
FL&_; Req Fnl DesignOesign Lang = Env Other
Spee Multi- Single
Comp Comp
Type OFf Error
SEL3
P
E
¢
4 80
Booror e
50+
0 0
F 50T
8 401
E‘ 30 29
e 20
Ff 12 5 2
% Easy Med tum Hard Unknown
g LE 1 HR 1 HR To GT 1 Day
5 1 Day
Effort
SEL! Effort to Design Change
P
E
€
E 80
o
g
L 48
F 50 4
N 40
g 30
k 20
101 . .
I 3
¢ Easy Medtum Hard Formid = Unknown
£ LE 1 HR To 1 Day To
5 1R 1 Bay 3 Cays 3 Days
Effort

SEL3 Effort to Make Change

Fig. 2. Effort to change nonclerical errors.

ported in this category that it was important to subcategorize
further. (The next version of the form contained the new sub-
categories explicitly.) Fig. 3 shows the subcategories for all
SEL projects. Conversely, environment changes occured suf-
ficiently rarely so that it was unnecessary to distinguish be-
tween hardware and software environment changes. These
categories were merged during data analysis. ‘

The “Unknown” Category

Despite the intensive review and interview process used for
validation, there were still cases where it was not possible to
categorize certain changes. This occurred most often for the
various effort categories when forms were generated. These
cases are categorized as unknown in the histograms where they
appear.

163
N
PO - 78
En 5
RC 60t
CL 50
£ E 301
v
ot
kB, 5 ol e, |
F‘g Req Fnl Design Design Lang’ Env Other
< Spec Multit Single .
Comp

Comp
.Typs 0Of Error
SEL?

Key
Oesigh erron thuolving several components
Design Single Error in the design or implementation
Comp of a single |component
Env Misunderstanding of external
envirohment, except language

Design Multi-Comp

Frl Spec Functional specifications incorrect or
misinterprete .

Lang Error in use of programfitng language
or compller

Req Requirements incorrect or misinterpreted

P
R
C
ﬁ 80
0 704

80T 51
E 50
N 40T |3
g 30
[
% 20

10 —v__‘_iﬂ_._
R 4
T 1
g Easy Medifim Hard Unknown
N LE 1 HR I HR|To GT 1 Bay
S 1 Day

Effort

SEL2 Effort to Design Changs

Fine Distinctions That Can Be Made

For much of the data, the variety of data categorizations,
the comments supplied by the programmers, and the informa-
tion gained from validation permit certain fine distinctions
to be drawn during analysis. An example is the distinction
among errors affecting more than one component, design er-
rors involving several components, and interface errors.

Interface errors may be divided into two classes. The first
class consists of incorrect assumptions between modules and
routines. An example involved an assumption about initiali-
zation. The programmer of one module assumed that it was
necessary to invoke |an initialization routine from a second
module each time he used certain routines from the second
module. This assumption was incorrect. The second class
consists of errors in| using interfaces, where such errors are

164
40
30+ 28
9 20+ 2L :
10t -] A
E 0 - . l
Clarity us Opt Other Unknouwn
Type Of Oesign Chengs
SELL
e d01 -
R 32
% 30
T 201
o}
F
" 104 ‘_L]__—J—‘
g
0
S 0

Clarity us

Opt

Type Of Desigh Change
SEL3

Fig. 3. Sources of design modifications.

not the result of incorrect assumptions. An example is a pro-
grammer forgetting to include a paramster in a calling sequence.

Design errors involving several components are errors in the
organization of the software into components, including the
specifications that describe that organization. Although this
category includes many interface errors, it also includes errors
that are not interface errors.

Errors affecting more than one component are errors whose
corrections require changes to be made in more than one com-
ponent. These errors may fit any of the categories of mis-
understandings, and are not necessarily interface errors.

Distinctions That Were Too Fine

For some categories, developers were asked to make fine
distinctions in supplying the data. The metric used for mea-
suring difficulty of fixing nonclerical errors (see Fig. 2) is an
example. For SELI and SEL2, programmers were asked to
separate the effort just to design the change from the effort
to make the change. This distinction was too fine for the
programmers reporting the effort, and during SEL3 data col-
lection just the total effort was requested.

Comparing Distributions—Arithmetic Considerations

To convert raw data counts into measures that could be used
to compare projects, percentage of changes in a particular
category is usually used. As an example, in Fig. 1, values
in the distributions are shown as percentages of nonclerical
errors. Because there are generally large differences in values
within any distribution, the values are rounded to whole per-
cents. For each distribution, any category that is nonempty
is assigned a nonzero value. As a result, some categories that
contain less than 0.5 percent of the distribution are shown as
containing 1 percent. (Categories that contain no data do not
appear in the distributions.) For no distribution does this
make a difference of more than 1 percent in any category.
For some distributions, there is a resulting roundoff error.

IEEE TRANSACTIONS ON-SOFTWARE; ENGH

“and parameters i

- What was the Dis

NEERING, VOL:. SE-11, NO. 2, FEBRUARY .1985

101
B 0

1

Clarity

Other Unknown

L oet

Type Of Design Change

SEL2
Key
Clartty Improvement of clarity, maintainability, or
documentation
Opt Optimization of time/space/accuracy

Unknouwn Causes of
us

these design changes are not known

Improvement of user services

Answers to the Questions

In the following sections we discuss the answers to the ques-

tions of interest.
questions.

Overview of SEL

Sections are headed by short descriptions of

Changes

There is no question that deals with all changes; modifica-

tions and errors

are characterized separately. Nevertheless,

analysis of the data showed that it was of interest to look at
the overall change distributions and compare them across

projects.

Fig. 4 shows some interesting differences among the three

projects. ‘The pr

bportion of both ail errors and of nonclerical

errors declines from SEL1 (64 and 47 percent, respectively)

through SEL3 (4
developers also 4

cupied with maki

clerical errors. 'V
changes and error
lines of code sho

among SEL proje
siderably less trou

the Reason for t}
Modification di
show a strong spi
considerable vari
SEL3 both expe
ments changes.

of planned enhan

Slmllarltles in’

0 and 32 percent, respectively). The SEL3
ppear to have been considerably more oc-
ng modifications than with correcting non-
arious parameters that normalize number of
s with respect to size in terms of effort and
w the same trend. From these distributions
t appears that there are distinct differences
cts, and that some projects seem to have con-
ble in the development phase than others.

tribution of Modifications According to

e Modification?

tributions are shown in Fig. 5. All projects
e in the design change subcategory. There is
bility in several other categories. SEL2 and
ienced relatively large numbers of require-
EL1 and SEL3 both show considerable use
ements.

he dlstnbutlons show that all three projects

operated in a stab e environment, where there were few changes
to the support SO twar(; and hardware, and that none of them

WEISS AND BASILI: EVALUATING SOFTWARE DEVELOPMENT CHANGES 165
4 P
R
g 70 g 70
X B
0 47 0 50+ 48 44
Fooaot 36 | F a0
A 304 F 30
t 20 201
€ ot £ |
H TR (o1] _‘Jﬁ
g 0 ﬂ oL—
Mods NonClerical Clericel Mods MonClerical Clerical
% Errors Errors E Errors Errors
Change Type Change Type
SEL SEL2
E 707
B e 59
¥
50
P
E 30 32
20
§E 10 _.__9_4'
0
E Mods NonClerical Clericel
Errors Errors
Change Type
SEL3
Fig. 4. Changes.
707 70T
P P
E 601 — g 60
£ 5o £ so 19
¥ 4of ¥ 4
P 301 0 30429
201 20 Fogl
B ot —lLl_L_ ' 8 o} m
. 4 4
g 0 3 —— E ° I 1
Req Oesign Debug Env PE Other Req Design . Debug Env PE Unknown
Change Type Change Type
SELL SEL2
P 707
k60
£ sor 5
o Key
9 30T 24 Design Modifications causéd by changes in design
9 q
20 Debug Modifications to ifsert or delete debug code
il ’ Env Modifications caused by changes . in the
8 101 _6_] N harduare or software environment
g 0 : PE Planned Enhancements
Req Design Debug Env PE Other Req Modifications caused by changes in requirements
or functional specifications
Unknown -Causes of these madifications are not knoun
Change Type
SEL3
Fig. 5. Sources of modifications.
made many changes for the purpose of adding or deleting de- the emphasis is reversed; there were relatively few attempts
bug code. ' ’ at optimization, but| many at improving clarity, maintain-

Fig. 3 is an analysis of design modifications only. Again,
there is considerable variability in the distributions. SEL1
programmers were considerably concerned with optimization,
i.e., improving the efficiency of use of memory and processor
time, and improving the services the system offered to its
users. :

The SEL2 distribution, whose pattern is somewhat less clear
because of the large size of the ‘“unknown” category, also
shows emphasis on optimization, and, to a considerably lesser
degree, on improving user services and the clarity and main-
tainability of the program and its documentation. In SEL3,

ability, and documentation. It is interesting to note that SEL3
had the same task leader and some of the same staff as SEL2.

What Was the Distribution of Changes Across
System Components?

In other discussions of changes, we view a change as a logical
unit, independent of how much code or documentation, or
how many components were involved. For purposes of ana-
lyzing frequency distributions of changes, we consider the
number of changes made to each component. The number of
changes made to a component is considered to be the number

166

Fig. 6. Frequency distribution of changes

ﬁSO
]
PG40
gg »
M 20
P
28 10
0) |
] 2 3 4 5 6 7 ¢ {0 12 24
Number Of Changes
SELL
ESO
g
PG 40
1
¢ 30 A2
NG
TR 20
98
FHN 10 5
1 Lt 1 1 1 1
7 O
5 1 2 3 4 5 6 7 8 1011 12 13 18
Number of Changes
SEL3
607
5
50 L
P
£
R
£ 40
0 L
F 30
5
a 20T
N
5
£
S 101

0
DA AD TP IC 6 1B SY EM FI MA %

Subsystem (% = All Others)
SELT

Fig. 7. Changes by subsystem.

of change report forms on which that component is named as
being changed. Using this definition of change, Fig. 6 shows
the percentage of components that were changed once, twice,
etc. As an example, for SEL1, 29 percent of the components
were changed once, and 30 percent were changed twice.

The frequency distributions for all the SEL projects show
the same pattern: 50 percent or more of the components that
were changed were only changed once or twice, and more than
90 percent were changed six times or less.

Fig. 7 shows the patterns of subsystems that are changed
most often. (The distributions are obtained by grouping the
data for the components into subsystems.) Tt is clear from
these distributions that at most two or three of the subsystems
receive the most attention.

What Was the Distribution of Effort Required to
Design Changes?

Change effort distributions are shown in Fig. 8 which shows
the effort for all changes except clerical errors. Examining
Fig. 8, one can see that most (more than 75 percent) of changes
fall into the easy or medium categories for all SEL projects.

50

40

30

20

mO —ZMOomTg

_k

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

W—ZMZODION DMO2ZDIM

~
w

801

50

40138

301

207

VIMGZDIM 70 —ZMOSomTo

Jna I ENE NP
4 5 6

7 8 9 10 15 16

Number Of Changes
BEL2

0
FS TP &4

What Was the Di
Misunderstanding

Inspection of
ical errors (Fig.
ects. The distr
places; it is evidl
design and imple

Factors such a
ifications are m
shows significant

BL DR G2 61 UA AS ML ¥

bsystem (% = All Others)
BELZ

stribution of Errors According to the
rs ‘That Caused Them?

the distributions showing sources of noncler-
1) shows noteworthy similarities across proj-
butions all show strong spikes in the same
ent that the major source of errors is in the
mentation of single components.

s misunderstandings of requirements and spec-
inor sources of errors. (Note that Fig. 5
numbers of requirements changes for proj-

ects SEL2 and SEL3. The SEL developers apparently under-

stand . their requ
changes to them
a minor error sou

What Was the Di
Correct Errors?
Effort distribu
(Note that there
sured for SEL3 {
distributions, mg

irements well enough that they can handle
without much trouble.) Interfaces are also
rce (Fig. 9).

stribution of Effort Required to

ions for correcting errors are shown in Fig. 2.
is a slight difference in the type of effort mea-
han for SEL1 and SEL2.) Asshown by these
st error corrections take little effort. For all

WEISS AND BASILI: EVALUATING SOFTWARE DEVELOPMENT CHANGES 167
P
£ 6o —59 E 50+
c 1 C 5
£ 50 £ 0T .
¥ g0 T 404 5
31 ;
1] 1] i
9 3 U
c 201 c- 20t
A H 13
ﬂ 101 ﬂ 10+ ‘U__‘
6 o —— G 0
k Easy Med tum Hard Unknown g Easy Mediuh . Hord Unknown
LE 1R I HR To GT 1 Day LE | HR {HR To BT IDay
1 Day 1 Da
Effort Effort
SEL1 Effort to Destgn Change SEL2 Effort to Design Change
E sop
E ol
£ 50+ 42
T 34
0 4
g
C 20
A
8 10 J_‘__s_)—lﬁ
5
3 Easy Medtum Hard Formid Unknown
LEITHR 1 HRTo | Day To
1 Day 3 Days 3 Days
Effort
SEL3 Effort to Make Change
Fig. 8. Effort to change. .
307
27
p B 20t
ERN
RC
[Pl
EE
NR ..
T1 ;
gh
FL 10 10 10
5
0
SEL1 SEL2 SEL3
PROJECT

Fig. 9. Interface errors.

projects, approximately 50 percent or more of the errors were
corrected in one hour or less, and more than 85 percent were
corrected in one day or less.

How Many Errors Were the Result of a Software Change?

Table III shows that the SEL projects handled changes with
little trouble; relatively few errors were the result of a change
to the software.

What Was the Distribution of Errors Across Error
Detection Techniques?

The relative frequency of use of various error detection tech-
niques are shown in Table VI for the SEL projects. While
examining the distributions, one must recall that SEL change
monitoring did not begin until code was baselined and had
already undergone debugging. Otherwise, error messages
might rank higher as a detection technique.

Executing the program was the most successful means for
detecting errors. The distributions show what might be called
a traditional approach to error detection: either test runs, or a
programmer reading over her own code.

What Was the Number

Per Error?

of Attempted Error Corrections

If any of the projects suffers from a ripple effect, we expect

to see many errors re

quiring repeated attempts at correction,

and many changes each resulting in several errors. As can be
seen from Table TII, both of these effects appear quite small.

The worst case is abo

ut 6 pér’ce’nt of the changes resulting in

errors (SEL2). The errors resulting from change for the worst
case (SEL2) comprised 14 percent of all errors. Finally, very
few errors required motre than one attempt at correction (these

are a subset of the err

ors resulting from change, since each at-

tempted correction is ¢onsidered to be a change).

A

The authors thank
Computer Sciences Cqg
mitted to interviews, ¢
and the librarians, espe
We thank Dr. J. Ga
G. Page, Dr. D. Parnas

CKNOWLEDGMENT

the many people at NASA/GSFC and
rporation who filled out forms and sub-
especially J. Grondalski and Dr. G. Page,
cially S. DePriest.

nnon, Dr. R. Meltzer, F. McGarry, Dr.
, Dr. J. Shore, and Dr. M. Zelkowitz for

their many helpful suggestions.

168

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

TABLE VI
FreQuency oF Use oF ERROR DETECTION TECHNI

QUES

Error Detection Activities

Error First Detected by

SEL2 SEL3 SEL1 SEL2 SEL3
83 * 93 46 *
EE 3 162 ¥k &k 96
*% 27 *k £33 21
73 188 40 18 88
56 115 15 22 17

4 3 1 2

. :
5 4 1 4
3 6 1 1 6
4 12 3 3
12 15 1 5 13
2 5 1 5
46 143 7 33 129
4 7 4

SEL1
Test Runs 128
Preacceptance Test Runs **
Acceptance Testing *%
Code Reading by Programmer 59
Code Reading by Other Person 21
Reading Documentation 1
Trace
Dump 1
Cross Referencc or Attribute List 6
Special Debug Code 11
General/System Error Message 3
Project Specific Error Messages
Inspection of output 12
Proof Technique
Other 4

*This category was subdivided into the categories Preacceptancée

Te*siing for SEL3.

Deserving of special mention is F. McGarry, who had suffi-
cient foresight and confidence to sponsor much of this work
and to offer his projects for study.

Finally, we thank C. Hinson, T. {Lewis, and the other pro-
grammers who worked on the programs used to display the

data.

(1]
(2]
[3]
(4]
g

(6]

7]

(8l
{91

{10]

REFERENCES

V. Basili and D. Weiss, “A methodology for collecting valid soft-
ware engineering data,” IFEE Trans. Software Eng., vol. SE-
10, pp. 728-738, Nov. 1984.
——, “Evaluation of a software requirements document by analy-
sis of change data,” in Proc. Sth Int. Conf. Software Engineering,
Mar. 1981, pp. 314-323.
D. Weiss, “Evaluating software development by error analysis:
The data from the architecture research facility,” J. Syst. Soft-
ware, vol. 1, pp. 57-70, 1979.
—, “A comparison of software errorsin different environments,”
presented at the NASA Software Engineering Workshop, Nov.
1981. ‘
V. Basili, M. Zelkowitz, F. McGarry et al., “The software engi-
neering laboratory,” Univ. Maryland, College Park, Rep. TR-535,
May 1977.
S. Fryer and D. Weiss, “Evaluation of the A-7E software require-
ments document by analysis of change data: Two years of change
data,” in Proc. 15th Annu. Asilomar Conf. Circuits, Systems, and
Computers, Nov. 1981. :
L. Chmura and D. Weiss, “Evaluation of the A-7E software re-
quirements document by .analysis of changes: Three years of
data,” presented at the NATO AGARD Avionics Symp., Sept.
1982.
J. Bailey and V. Basili, “A meta-model for software development
resource expenditures,” in Proc. 5th Int. Conf, Software Engi-
neering, Mar. 1981, pp. 107-116.
D. Weiss, “Evaluating software development by analysis of
change data,” Univ. Maryland Coniput. Sci. Center, College Park,
Rep. TR-1120, Nov. 1981.
D. Norris, “An introduction to 0S8/360 MVT control logic and
?ebugging with MVT core dumps,” IBM Tech. Inform. Exchange,
an. 1969.

Test Runs and Acceptance

This category was not used for SEL1 and SEL2. See preceding note.

David M. Weiss received the B.S. degree in
mathematics in 1964 from Union College and
the M.S. and Ph.D. degrees in computer science
from the University of Maryland, College Park,
in 1974 and 1981, respectively.

Since 1975 he has been on the research staff
at the Naval Research Laboratory, Washington,
DC, currently with the Computer Science and
Systems Branch. His research interests are in
software engineering, software change analysis,
and formal specification. He is a member of

the software cost réduction project whose purpose is to provide a well-

engineered model o

[a complex real-time system.

Victor R. Basili (M’83) received the Ph.D. de-
gree in computer science from the University
of Texas at Austin.

He is currently a Professor and Chairman of
the Department of Computer- Science at the
University of Maryland, College Park, where he
has been since 1970. He has been involved in
the design and development of several software
projects, including the SIMPL family of struc-
tured programming languages, and is currently
involved in the measurement and evaluation of

software development at the NASA/Goddard Space Flight Center. His

interests lie in the
tative analysis and
product.

agencies and indus
NSWC; and NASA.

oftware development methodology and the quanti-
evaluation of the software development process and

This includes such- specialized areas as cost modeling, error
analysis, and complexity.

He has consulted for several government
rial organizations, including IBM, GE, CSC, NRL,

Dr. Basili is a m¢mber of the Association for Computing Machinery
and the IEEE Computer Society. He has been Program Chairman for

several conferences

and has served on several editorial boards.

