Generalizing Specifications for Uniformly
Implemented Loops

DOUGLAS D. DUNLOP and VICTOR R. BASILI
University of Maryland

The problem of generalizing functional specifications for while loops is considered. This problem
occurs frequently when trying to verify that an initialized loop satisfies some functional specification,
i.e., produces outputs which are some function of the program inputs.

The notion of a valid generalization of a loop specification is defined. A particularly simple valid
generalization, a base generalization, is discussed. A property of many commonly occurring while
loops, that of being uniformly implemented, is defined. A technique is presented which exploits this
property in order to systematically achieve a valid generalization of the loop specification. Two classes
of uniformly implemented loops that are particularly susceptible to this form of analysis are defined
and discussed. The use of the proposed technique is illustrated with a number of applications. Finally,
an implication of the concept of uniform loop implementation for the validation of the obtained
generalization is explained.

Categories and Subject Descriptors: D.2.4 [Sofware Engineering]: Program Verification—assertion
checkers, correctness proofs, validation; F.3.1 [Logics and Meanings of Programs): Specifying and
Verifying and Reasoning about Programs—invariants

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Generalizing specifications, uniformly implemented loops,
iteration condition

1. INTRODUCTION

Consider the problem of proving/disproving a while loop correct with respect to
some functional specification, f, i.e., f requires the output variable (or variables)
to be some function of the inputs to the loop. If the loop precondition is weak
enough so that the domain of f contains the intermediate states which appear
after each loop iteration (i.e., if the loop precondition is a loop invariant), the
loop is said to be closed for the domain of f. An important result in program
verification is that if the loop. is closed for the domain of its specification, there
are two easily constructed verification conditions based solely on the specifica-
tion, loop predicate, and loop body which are necessary and sufficient conditions
for the correctness of the loop (assuming termination) with respect to its
specification [9, 10]. If the loop is not closed for the domain of the specification

This work was supported in part by the Air Force Office of Scientific Research Contract AFOSR-
F49620-80-C-001 to the University of Maryland.

Authors’ current addresses: D.D. Dunlop, Intermetrics, Inc., 4733 Bethesda Ave., Suite 415, Bethesda,
MD 20814; V.R. Basili, Department of Computer Science, College Park, MD 20742.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1985 ACM 0164-0925/85/0100-0137 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985, Pages 137-158.

138 Douglas D. Dunlop and Victor R. Basili

function, a generalized specification (i.e., one that implies the origin

specifica-

1
tion) which satisfies the closure requirement must be discoverd %fore these

verification conditions can be constructed. This problem is analogou

discovering an adequate loop invariant for an inductive assertion prog

program. These two alternative approaches for verifying looping pr
compared and contrasted in [1, 5].

We remark that the restricted specification often occurs in the
analyzing an initialized while loop, that is, one that consists of a

to that of
f [7] of the
pgrams are

process of
hile loop

preceded by some initialization code. This initialization typically takes the form
of assignments of constant values to some of the variables manipulated by the
loop. Examples include setting a counter to zero, a search flag to FALSE, a queue
variable to some particular configuration, etc. It is clear that the initialized loop
is correct with respect to some specification if and only if the while loop by
itself is correct with respect to a slightly modified specification. This specification

has the same postcondition as the original specification and a preco
is the original precondition together with the condition that the
variables have their initialized values. Since the initialized variables w
assume other values as the loop iterates, the loop most likely will ng
for the domain of this specification, and a generalization of it will b
in order to verify the correctness of the program.

Example 1. 'The following program multiplies natural numbers usil
addition:

{v=0,k=0}
z:=0
while v > 0 do
z:=z+k;
v:i=v-—1
od
{z=100 = k}.

The term v0 appearing in the postcondition refers to the initial valu
program is correct if and only if

{z=0,v=0, k= 0}

while v > 0 do
z2:=z+k;
vi=v-—1
od

{z =00 * k}

is correct. Since this loop precondition requires z to have the valy
assumes other values as the loop executes, the loop is not clos
precondition. Thus, before this program can be verified using the afore
technique, this specification must be generalized to something like
{v=0,kz=0}
while v > 0 do

z:=z+k;

v:i=v-—1

od
{z2=20 + v0 * k}

where z0 refers to the initial value of the variable z.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

dition that
initialized
ill typically
t be closed
> necessary

ng repeated

e of v. The

e 0, and 2
ed for this
ementioned

Generalizing Specifications for Uniformly Implemented Loops . 139

The approach to this problem suggested in this paper is one of observing how
particular changes in the value of some input variable (e.g., z in the example)
affect the result produced by the loop body of the loop under consideration.
Clearly, in general, a change in the value of an input variable may cause an
arbitrary (and seemingly unrelated) change in the loop-body result. In | many
commonly occurring cases, however, the result produced by the loop body is
“uniform” across the entire spectrum of possible values for the input variable.
The primary purpose of this paper is to present a formal characterization of this
type of loop-body behavior. Our experience suggests that loops satisfying the
property are susceptible to a routine form of analysis, and hence the formalization
is offered as one characterization of a “well-structured” (in the semantic sense)
loop. The property is exploited specifically here in order to obtain a generalized
specification for the loop being analyzed.

The generalizations considered here have the property that the loop is correct
with respect to the generalization if and only if the loop is correct with respect
to the original specification. Thus if the loop is closed for the domain of the
generalization, the program can be proved/disproved by verifying it relative to
the generalization.

It is natural to expect that the ease with which a generalized specification may
be obtained for a loop would depend largely on the nature of the loop. Results in
[13], for example, show that the problem of generalizing the loop specification
for any program in a particular class of programs is NP-complete. On the other
hand, work presented here and elsewhere {2, 4, 11] indicates that there do¢ exist
categories of loops for which generalized specifications can be obtained in a
direct, routine manner. We feel that the notion of “uniform” loop-body behavior
discussed in this paper is valuable not only as a tool by which such generalizations
may be obtained, but also as an attempt at a characterization of loops which are
susceptible to routine analysis, and hence in this sense, easy to verify and
comprehend.

The following section defines the necessary notation and terminology and then
introduces the idea of a generalized loop specification. Section 3 defines a
uniformly implemented loop and states several implications of this definition for
the problem of generalizing a specification for such a loop. These results are
applied in several example programs in Section 4. In Section 5, a simplified
procedure is suggested for proving/disproving a uniformly implemented loop
correct with respect to the obtained generalization. Finally, several guidelines for
recognizing uniformly implemented loops are presented in Section 6.

2. PRELIMINARIES

We consider a verification'problem of the form

{(2, x) € D(f)}

while B({z, x)) do
z,x:=h'(z,x), h" (2, x)
od

{(z, x) = f((20, x0))}.

In this problem, f is a data-state-to-data-state function. The data state consists
of two variables, z and x. The notation D (f) means the set of states in the domain
of f (i.e., the set of states for which f is defined). The terms 20 and x0 refer to the

ACM Transactions on Programming Languages and Systems, Vol, 7, No. 1, Janyary 1985

140 . Douglas D. Dunlop and Victor R. Basili

initial values of z and x, respectively. The effect of the loop body is partitioned
into two functions A’ and h” which describe the new values of| z and «x,
respectively.

The loop is referred to as P. The data-state-to-data-state function computed
by the loop (which, presmmably, is not explicitly known) is denoted by|[P]. Thus
D([P]) is the set of states for which P terminates. As a shorthand notation, we
use Y for the state (z, x) and H for the data-state-to-data-state function/computed
by the loop body, i.e.,

H(Y)=H({z, x)) = (h'(z, x), h" (2, x)).

Note that the important assumption being made is that the complete semantics
of the loop body in question are understood, that is, that the definition of H (and,
in turn, h’ and k") is known over the entire loop-body input domain. Depending
on the nature of an actual loop appearing in a program; deriving H from the
loop-body text may be an arbitrarily complex problem (e.g., the loop body may
itself be a nested while-do loop). We do not address this problem here; we
assume the loop being analyzed has been transformed by some technique into
the above program schema.

Suppose the loop is not closed for D(f) in that this set contains only a
restricted collection of values (maybe only one) of z and that other intermediate
values of z occur as the loop iterates. The variable z is called the key variable.
Our goal here is to discover some more general specification f’ which includes
each of these intermediate values of the key variable in its domain. This
generalization process (in one form or another) is necessary for g proof of
correctness of the program under consideration.

Definition. P is correct with respect to (wrt) a function f if and only|if (iff) for
all Yin D(f), [P)(Y) is defined and [P](Y) = f(Y).

Definition. A superset f’ of fis a valid generalization of f iff P is correct wrt f,
then P is correct wrt f'.

Note that the collection of supersets of f is partially ordered by “is a valid
generalization of.” The following definition supplies the notation we use to
describe generalizations of the specification function f.

Definition. If S is a set of ordered pairs of data states, f’ is the extension of f
defined by S iff f ' is a function and f’ is the union of f and S.

Definition. If g is the extension of f defined by
(Y, V)| "B(Y)} (1)
then g is the base generalization of f.
Thus, if g is the base generalization of f, then
g(Y1) = Y2 & (f(Y1) = Y2 or (B(Y1) & Y1 = Y2)).

Throughout this paper, we continue to use the function symbol g for the base
generalization of f. We remark that g exists provided the union of f and (1) is a

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

Generalizing Specifications for Uniformly Implemented Loops 1 141

function, i.e., provided
YED(f) & BY)—=f(Y)=Y

holds. If this condition is not satisfied, P must not be correct wrt f. Hence, if P
is correct wrt f, the base generalization of f exists.

THEOREM 1. If g is the base generalization of f, then g is a valid generalization

of f.

PROOF. Suppose P is correct wrt f. We must show that P is correct wrt g. Let
Y € D(g). If Y € D(f), the loop handles the input correctly by hypothesis. If Y
is not in D(f), we must have "B(Y) and g(Y) = Y. The program and g map Y
to itself, and thus are in agreement. Consequently P is correct wrt g, a dgisa
valid generalization of f. [J

The theorem utilizes the fact that the loop must compute the identity function
over inputs where the loop predicate is false. Combining this information with
the program specification f results in a valid generalization of f.

Definition. A valid generalization f’ of f is adequate if the loop is closed for

D(f").

The important characteristic of an adequate valid generalization f’ is that it
can be used to prove/disprove the correctness of P wrt the original specification
f. Since the loop is closed for D(f’), P can be proved/disproved correct wrt f’
using standard techniques [3, 8-10, 12, 13]. Specifically, P is correct wrt f’ iff
each of the following conditions hold:

forall Y& D(f’) the loop terminates (2)
YED(f')& B(Y)->f'(Y)=Y (3)
YED(f’) & B(Y) = f'(Y) = f (H(Y)). (4)

If P is correct wrt f’, then P is necessarily correct wrt any subset of f’, including
f. If P is not correct wrt f’, then by the definition of a valid generalization, P
must not be correct wrt f.

Example 2. The following program tests whether a particular key appears in
an ordered binary tree:

{success = FALSE}

while tree # NULL and “success do
if name(tree) = key then success := TRUE
elseif name(tree) < key then tree := right(tree)
else tree .= left(tree) fi
od

{success = IN (tree0, key)}

The function IN (tree0, key) appearing in the postcondition is a predicate which
means “the ordered binary tree tree0 contains a node with name field key.” The
Boolean variable success is chosen as the key variable since it is constrained to
the value FALSE in the input specification. Thus success plays the role of z and

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

142 . Douglas D. Duniop and Victor R. Basili

the pair of variables (iree, key) correspond to x in the program schema discussed
above. The specification function f is

f((FALSE, tree,key)) = (IN(tree, key), tree’, key’)

where tree’ and key’ are the final values of the variables tree and key computed
by the loop, respectively. That is, since the final values of these variables are not
of interest in this example, we specify these final values so as to be automatically
correct. Using Theorem 1, a valid generalization of this specification is
2 ({success, tree, key)) = if “success then

{IN (tree, key), tree’, key’)

elseif tree = NULL or success then
(success, tree, key)

which is equivalent to the following.
g({success, tree, key)) = (success or IN(tree, key), tree’, key').

In this example, the domain of the base generalization g of f includes each
value of the key variable (i.e., FALSE and TRUE) and is thus adequate.
Consequently, this generalization can be used to prove/disprove the correctness
of the program.

In most cases, however, the heuristic suggested in Theorem 1 is insufficient to
generate an adequate generalization. Indeed, the base generalization is an ade-
quate generalization only in the case when the sole reason for the closure
condition not holding is the existence of potential final values of the key variable
(e.g., TRUE in the example) which are absent from D(f). In order to obtain a
generalization that includes general values of the key variable, an important
characteristic of the loop body which seems to be present in many commonly
occurring loops will be exploited.

3. UNIFORMLY IMPLEMENTED LOOPS

Definition. Let P be a loop of the form described above. Let C be a set, let Z
be the set of values the key variable z may assume, and let X be the set of values
the remaining variable or variables x may assume. Let

$:CxXZ—>2Z7

be an infix binary operator. The loop P is uniformly implemented wrt $’ iff each
of the following conditions hold

B({z,x)) > h'(c$'2z, x) =c$'h' (2 x) 1 (5)
B((z,x)) > h"(c$'2,x) = h"(z x) (6)
B((z, x)) > B((c$’ z, x)) ‘ (7

forallce(C,zeZ, andx € X.

Conditions (5) and (6) of this definition state that a modification to the key
variable by the operation $ causes a slight but orderly change in the result
produced by the loop body. The change is slight because the only difference in
the result produced by the loop body occurs in the key variable. The difference

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

Generalizing Specifications for Uniformly implemented Loops . 143

is orderly because it corresponds precisely to the same $’ operation that:served

to modify the input value of the key variable. Condition (7) specifies that such a

modification does not cause the loop predicate B to change from true to false.
As a shorthand notation, we define the infix operator $ as

c3Y=1c8${(z,x) =(c¥ 2z x).
In this notation, (5)-(7) are equivalent to
B(Y) > c$H(Y) = H(c$Y) (8)
and
B(Y) —> B(c$Y). 9)
Example 3. Consider again the program from Example 1 which multiplies
natural numbers using repeated addition:

{z=0,v=0, k= 0}
while v > 0 do

z2:=z+k;

vi=p-—1

od
{z=100 = k}.

Let 2 be the key variable. The pair (v, k) corresponds to the variable x occurring
in the above schema. The loop is uniformly implemented wrt +, where C and Z
are both the set of natural numbers. Note that adding some constant to the input
value of z has the effect of adding the same constant to the value of z output by
the loop body. Now consider the following alternative implementation of multi-
plication:
{z=0,v=0k =0}
while v > 0 do
ifk=0andz=0 thenz:=v—1
elseif k=0and z# O then z:=2 -1
elseif z < k thenz:=z+k

elseif z = k thenz:=zx+2=xv
else z:=2z—kfi
vi=p—1
od

{z=100 = k}.

Again, let z be the key variable. This loop is not uniformly implemented wrt +.
Intuitively, this is due to the high degree of dependence of the loop-body behavior
on the value of the key variable. The result of this dependence is that adding
some constant to the value of z causes an unorderly change in the value of 2z
output by the loop body.

The reader may wonder whether the second multiplication program above
might be uniformly implemented with respect to some operation other than +.
We remark that any loop is uniformly implemented wrt$’: C X Z —» Z defined
by

c$’'z=2

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

144 . Dougias D. Dunlop and Victor R. Basili

for all ¢ € C and z € Z. For the purpose of this paper, we rule out such trivial
operations, i.e., we require that for some z € Z, there exists some ¢ € C such that

c$’z# 2.

With this assumption, there does not exist an operation with respect to which
the second of the above loops is uniformly implemented (or more briefly, the
loop is not uniformly implemented). To see this, suppose the loop were uniformly
implemented wrt$’: C X Z — Z. Let 0 and 20 be some fixed elements of C and
Z, respectively, which satisfy

c0$’ 20 # 20.

Since (5) must hold for all ¢ € C, z € Z, and x € X, we choose z = 20, ¢ = ¢0, and
k= c0$’20. Applying (5) gives

v>0— h'(c0$’ 20, (v, c0$’20)) =08’ h’ (20, (v, c0$’20))

for all v. We consider three exhaustive cases based on the values of c0 and 20.
First, suppose c0$’ 20 = 0. Then we must have (since z0 # 0).

v>0—-0v—-1=¢08"(20 —1).

Since this must hold for all v, and since the value of c0$’ (20— 1) is fixed by the
original selection of c0 and 20, this is a contradiction. Next, suppose c0$’ 20 # 0
and 20 < ¢0$’ 20. Then

v>0—> (c08'20) + 2+ v=12c08'(20+(c0$’ 20))

for all v. Again, since the expression to the right of the equality sign is fixed and
(c0$’ 20) * 2 = v varies with different values of v (c0$’ 20 is nonzero), this is a
contradiction. The third case, where c0$’ 20 # 0 and 20 > c0$’ 20, leads to a
similar contradiction, and thus (5) does not hold. We conclude that the second
multiplication program above is not uniformly implemented. That is, there does
not exist a nontrivial modification that can be applied to the variable z which
always results in a slight and orderly change in the result produced by the loop
body.

The results presented here are based on the following lemma concerning
uniformly implemented loops. The lemma describes the output of a uniformly
implemented loop P for some modified input ¢$ Y (ie., [P](c$ Y)) in terms of
the output of the loop for the input Y (i.e., [P](Y)) and the output of the loop
for the input ¢$[P](Y) (i.e., [Pl(c$[PI(Y))).

LEMMA 1. Let P be uniformly implemented wrt $’. Then
Y € D([P]) — [P)(c$ Y) = [P)(c$[P)(Y)). o)

ProoF. We use induction on the number of iterations of P on Y. For the base
case of 0 iterations, [P](Y) = Y, and the lemma holds. Suppose it holds for all
input data states Y requiring n — 1 iterations where n > 0. Let Y1 require n
iterations. Since n > 0, B(Y1) holds. By (9), B(c$ Y1). Note that H(Y1) requires
n — 1 iterations on P; thus by the inductive hypothesis,

[Pl(c$ H(Y1)) = [PNc$ [PI(H(YD))).

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

Generalizing Specifications for Uniformly Implemented Loops . 145

Due to the uniform implementation this is
[P}(H(c$ Y1) = [Pl(c$[PI(H(Y1))).
Using the loop property B(Y) — [P}(Y) = [P](H(Y)) on both sides, we g
[Pl(c$ Y1) = [P](c$[P](Y1)).
Thus the inductive step holds and the lemma is proved. O

394
—+

The general idea behind our use of the lemma is as follows. Suppose the value
[P1(Y) is known for some particular Y; that is, suppose we know what the loop
produces for the input Y. In addition, suppose that, given the result [P](Y), the
quantity [P](c$[P](Y)) is also known. With this information, we can then use
Lemma 1 to “solve” for the (possibly unknown) value [P](c$ Y). This additional
information concerning the input/output behavior of the loop can be used as an
aid in constructing a valid generalization of the specification f.

How can we find the value [P](Y) and then the value [P](c$[P](Y)) for some
Y? The key lies in assuming the loop P is correct wrt f. If P is not correct wrt f,
any generalization of f obtained by the technique will be a valid generalization
by definition. Under this assumption, [P](Y) is known for Y € D(f), that is, Y
€ D(f) — [P](Y) = f(Y), and hence Lemma 1 implies

Y € D(f) — [P](c8 Y) = [Pl(c$f(Y)). (11)

Consider now the base generalization g of f defined in Section 2. Recall that g
is simply f augmented with the identity function over the domain where the loop
predicate B is false. Assuming as before that P is correct wrt f, P is then correct
wrt g by Theorem 1; hence Y € D(g) — [P](Y) = g(Y). Thus (11) implies

Y € D(f) and c$/(Y) € D(g) — [Pl(c$Y) = g(c$/(Y)). (12)

Thus we can “solve” for the behavior of the loop on the input ¢$ Y, assuming Y
€ D(f), c$f(Y) € D(g), and P is correct wrt f. This suggests that if f’ is the
extension of f defined by

{(c$Y, g(c$f(Y))]Y € D(f) and c$f(Y) € D(g)} (13)

then f’ is a valid generalization of f. Before giving a formal proof of this result,
however, we first consider the question of the existence of such an extension of
f. Specifically, it could be that for some ¢ and Y satisfying Y € D(f) and ¢$f(Y)
€ D(g),c$ Y ED(f) and f(c$Y) # g(c$f(Y)). This would imply that the
extension of f defined by (13) does not exist. The following theorem states that
this implies P is not correct wrt f.

THEOREM 2. Let P be uniformly implemented wrt$’. Let g be the base| gener-
alization of f. If P is correct wrt f, then there exists a function f' which is the
extension of f defined by (13), that is,

{(c$Y, g(c$f(Y))Y € D(f) and c$/(Y) € D(g)}.

PROOF. Let f’ be the function computed by the loop, i.e., [P]. Since P is
correct wrt f, P is correct wrt g, and f’ is a superset of both f and g. By the

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

146 - Douglas D. Dunlop and Victor R. Basili

lemma,
f'c$Y)=f"(c$f (Y))

for all Y € D(f). Since f/(Y) = f(Y) for YE D(f) and f'(Y) = g(Y) for Y €
D(g),

Y € D(f) and ¢$f(Y) € D(g) = f'(c$Y) = g(c$f(Y))

holds. Thus (13) is a subset of f . Since f is a subset of f’, the union of f and (13)
is a subset of f’. Hence this union is a function and is thus the extension of f

defined by (13). I

The following theorem is the central result presented here. The theorem
formalizes the use of Lemma 1 in the manner suggested above, that is, that the
extension of f described in the previous theorem is a valid generalization of the
original specification.

THEOREM 3. Let P be uniformly implemented wrt $’. Let g be the base
generalization of f. If f ' is the extension of f defined by (13), that is,

{(c8Y, 2(c$f(Y)))| Y € D(f) and c$/(Y) € D(g)}
then f’ is a valid generalization of f.

PROOF. Suppose P is correct wrt f. We must show P is correct wrt f'. Let Y
€ D(f’). If Y € D(f), the loop handles the input correctly by hypothesis. If Y
is not in D(f), we must have Y =c¢$ Y1 where Y1 € D(f) and c$f(Y1) € D(g).
By Lemma 1, [P](Y) = [P](c$[P](Y1)). Since P is correct wrt f, this is [P](Y)
= [P](c$f(Y1)). By Theorem 1, P is correct wrt g. Using this, the equality can
be written as [P](Y) = g(c$f(Y1)). By the definition of f’, this implies [P](Y)
= f’(Y). Thus P and f’ are in agreement on the input Y and consequently are
in agreement on any input in D(f’). Hence P is correct wrt f " and thus f’ is a
valid generalization of f. ;

The significance of Theorem 3 is that it provides a guideline for generalizing
the specification of a uniformly implemented loop. If the loop is closed for the
domain of the resulting specification, the generalization can then be used to
prove/disprove the program correct wrt the original specification.

4. APPLICATIONS

In this section we illustrate the use of Theorem 3 with a number of example
programs which fall into either of two subclasses of uniformly implemented loops.
The subclasses correspond to the two possible circumstances which can occur
when ¢$7(Y) of set definition (13) belongs to the set D(g): the first because
"B(c$/(Y)), and the second because ¢$f(Y) € D(f). In each of these situations,
the set definition (13) takes on a particularly simple form.

Definition. A uniformly implemented loop satisfying
"B(Y) > "B(c$Y)

is a Type A loop.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

Generalizing Specifications for Uniformly Implemented Loops . 147

Observe that this condition along with (9) indicates that a Type A uniformly
implemented loop satisfies

B(Y) <> B(c$Y)

i.e., the value of the loop predicate B is independent of a change to the data state
by the operator $. .

The intuition behind a Type A uniformly implemented loop is as follows.
Whenever an execution of a Type A loop terminates (i.e., B(Y) holds) and the
resulting data state is modified by the operator $, the result is a new data state
which, when viewed as a loop input, corresponds to zero iterations of the loop
(i.e., the predicate B is still false despite the modification). This property is
reflected in the following corollary.

COROLLARY 1. Let P be a Type A loop. If ' is the extension of f defined by
{(c8Y,c$f(Y)|YED(f)} (14)
then f' is a valid generalization of f.

ProoF. The proof consists of showing that (13) and (14) are equivalent for a
Type A loop which is correct wrt f. By Theorem 3, the corollary then holds. Let
P be a Type A loop which is correct wrt f. A consequence of the correctness
property is that B(f(Y)) for all Y € D(f). Since P is a Type A loop, this implies
B(c$f(Y)). Thus c¢$f(Y) € D(g) and g(c$£(Y)) = ¢$(Y). Consequently, (13)
and (14) are equivalent.

Of course, once a generalization f’ has been obtained via Corollary 1, there is
no reason that result cannot be fed back into the corollary to obtain a (possibly)
further generalization f” (using f’ for f, f” for f’). This notion suggests the
following general case of Corollary 1. [

COROLLARY 2. Let P be a Type A loop. If f’ is the extension of f defined by
{(c1$(c2$... (cn8Y)...),c18(c2$...(cn$f(Y))...))|YED(f) andn = 0}
then f’ is a valid generalization of f.

Example 4. Consider the following program to compute exponentiation:

fw=1,e>0,d = 0}
while d > 0 do
if odd(d) then w = w=e fi;
e:=exre;d:=d/2
od
{w=e0 dO}

The infix operator, denoted by a caret appearing in the postcondition, represents
integer exponentiation. In this example, w plays the role of the key variable z,
and the pair (e, d) corresponds to the variable x. We now consider with respect
to what operations the loop might be uniformly implemented. For any operation
$’, (7) holds (because w does not appear in the loop predicate) as does (6) (because
the values produced in e and d are independent of w). Furthermore, (5) must
hold for inputs which bypass the updating of w. Thus the uniformity conditions

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

148 . Douglas D. Dunlop and Victor R. Basili

reduce to
d>0and odd(d) —» (c$ w)re=c$ (w=e).

Due to its associativity, it is clear the loop is uniformly implemented with respect
to =, where the sets C and Z are the set of integers. Since they key variable does
not appear in the loop predicate, it is necessarily a Type A loop. The specification
function here is

f((1,e,d)) =(e d,e’,d")

where e > 0, d = 0, and e’ and d’ are the final values computed by the loop for
the variables e and d. Applying Corollary 1, the function f’ defined by

f'((cx1,e,d)) = (cx(e "d),e’,d’)

where e > 0 and d = 0 is a valid generalization of f. Since this holds for all ¢, the
definition of f’ can be rewritten as

f'w, e,d)) = (w=x(e d),e’,d’)

where w is an arbitrary integer, e > 0 and d = 0. The generalization f’ is adequate
and can thus be used to test the correctness of the program wrt the original
specification. Applying (2), (3), and (4), these necessary and sufficient verification
conditions are

(i) the loop terminatesAfor alle>0,d =0,
(ii)d=0:—->w=w*(e d),) .
(iii) w=*(e d) is a loop constant (i.e.,, 0 d0=w=(e d) is aloop invariant),

respectively. In Section 5, we discuss a simplification of the last of these
verification conditions which applies for uniformly implemented loops.

Example 5 [11]. The following program constructs the preorder traversal of a
binary tree with root node r. The program uses a stack variable st and records
the traversal in a sequence variable seq.

{seq = NULL, st = (r) * stack st contains only the root node r*/}
while st # EMPTY do
p <st; /*pop the top off the stack */
seq := seq || name(p); /* concatenate name of p onto seq */
if right(p) # NIL then st < right(p) fi; /* push onto st */
if left(p) # NIL then st < left(p) fi
od
{seq = PREORDER(r)}

The function PREORDER(r) appearing in the postcondition is the sequence
consisting of the preorder traversal of the binary tree with root node r. Let seq
be the key variable. Reasoning similar to that employed in Example 4 indicates
here that the loop is uniformly implemented wrt ||, where the sets C and Z are
the set of all sequences. It is a Type A loop. The specification function is

fNULL, (r))) = (PREORDER(r), st’}).

Again, the prime notation is used to represent the final values of variables that
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

Generalizing Specifications for Uniformly Implemented Loops . 149

are of no interest. Applying Corollary 1 we obtain
f'((seq, (r))) = (seq | PREORDER(r), st")

as a valid generalization of /. In this case, f’ is not adequate since it does not
specify a behavior of the loop for arbitrary values of the stack st. We will return
to this example after considering another subclass of uniformly implemented
loops.

Definition. A uniformly implemented loop satisfying
B(Y)—>c$YED(f)
is a T'ype B loop.

The intuition behind a Type B uniformly implemented loop is as follows.
Whenever an execution of a Type B loop terminates (i.e., B(Y) holds) and the
resulting data state is modified by the operator $, the result is a new data state
which is a “valid” starting point for a new execution of the loop (i.e., this new
state is in D(f)). This property is reflected in the following corollary.

COROLLARY 8. Let P be a Type B loop. If f’ is the extension of f defined by
{(c8Y,fc$f(Y))|YED(f)} (15)
then f' is a valid generalization of f.

PrOOF. The proof consists of showing that (13) and (15) are equivalent for a
Type B loop which is correct wrt f. By Theorem 3, the corollary then holds. Let
P be a Type B loop which is correct wrt f. A consequence of the correctness
property is that "B(f(Y)) for all Y € D(f). Since P is a Type B loop, this implies
c$f(Y) € D(f). Thus c$f(Y) € D(g) and g(c$f(Y)) = f(c$/(Y)). Consequently,
(13) and (15) are equivalent.

As before, a general case of this corollary can be stated which corresponds to
an arbitrary number of its applications.

COROLLARY 4. Let P be a Type B loop. If ' is the extension of f defined by
{c1$(c28(...8(cnY)..), f(c18f(c28f(...8f(cn$f(Y))...))) | YED(f)and

n = 0},
then f' is a valid generalization of f.

Example 5 (continued). We now consider the problem of further generalizing
the derived specification in the previous example. The variable for which the
loop is not closed, st, will now be the key variable. Consider an operation c$’ st
that has the effect of adding an element ¢ to the stack st. Before being more
precise about this operation, we consider how the loop body works and how its
output depends on the value of the key variable st.

We observe that the loop-body behavior relies heavily on the characteristics of
the node on the top of the stack. Consequently, a modification ¢ $’ st to st which
pushed a new node ¢ onto the top of st would not cause a slight and orderly
change in the result produced by the loop body, and the uniformity conditions

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

150 . Douglas D. Dunlop and Victor R. Basili

(5)-(7) would not hold. However, because the loop-body behavior seems to be
independent of what lies underneath the top of the stack, we suspect the loop is
uniformly implemented wrt ADDUNDER, where C is the set of binary tree nodes,
7 is the set of stacks of binary tree nodes, and ¢ ADDUNDER st is the stack
that results from adding c to the bottom of st. Conditions (5)-(7) for this operation
indicate that, indeed, this is the case. ,

Let f be the generalization f’ from the previous example. In keeping with the
convention described above, since st is now the key variable, we reverse the order
in which the two variables appear in the data state, that is, we will write (st, seq)
instead of {seq, st).

The program is a Type B uniformly implemented loop since

st = EMPTY — (c ADDUNDER st, seq) € D(f)
where c is a node of a binary tree, and specifically
st = EMPTY — f((c ADDUNDER st, seq)) = (st’, seq | PREORDER(c)). (16)

Applying Corollary 4, if (r, ¢n, . . ., c1) is an arbitrary stack (with r on top, c1 on
the bottom, n = 0), then

f'((r, cn, ..., cl), seq))
=f"(c1$(c28(...$(cn$((r), seq)) ...))
= f(c1$f(c2$/(...$f(n$f((r), seq))) ...)))
= f(c1$f(c2$7(...8$f(cn$(st’, seq| PREORDER(r))) ...)))-

Recall that st’ refers to the final value of st computed by the loop. The loop
predicate indicates this will always be the value EMPTY. Hence (16) can be
applied to this expression from inside out, giving

f(c1$f(c2$f(...$(st’, seq || PREORDER(r)| PREORDER(cn)) ..)

(st’, seq || PREORDER(r)| PREORDER(cn) |l . . .| PREORDER(c1)).

Note that f’ now defines a loop behavior for all sequences seq and nonempty
stacks st. The base generalization of f’ supplements f’ with a behavior for the
empty stack st and is thus an adequate generalization.

Example 6 [6]. The following program computes Ackermann’s function using
a sequence variable s of natural numbers. The notation s(1) is the rightmost
element of s and s(2) is the second rightmost, etc. The sequence s(..3) is s with
s(2) and s(1) removed.

fs=(m,n),m=0,n=0|
while size(s) # 1 do
if s(2) = 0 thens := s(..3)[| (s(1) + 1)
elseif s(1) = 0 thens := s(..3)|| (s(2) — 1, 1)
else s:=s(..3)(s(2) — 1, s(2), s(1) — 1) fi
od
{s = (A(m, n))}

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

B

Generalizing Specifications for Uniformly implemented Loops .

The function A(m, n) appearing in the postcondition is Ackermann’s fu
The specification function is

f((s(2), s(1))) = (A(s(2), s(1))).

Let s be the key variable. Because the loop-body behavior is independent
leftmost portion of s, the loop is uniformly implemented wrt |, where C is
of natural numbers, Z is the set of nonempty sequences of natural numbe
c|s = {c)| s. The program is also a Type B loop. By Corollary 4 (where #

f'(s(n), s(n — 1), ..., s(1)))
=f"(s(n)$(s(n — 1)$(...8(s(3)$(s(2), 5(1))) ...))
=f(s(n)$f(s(n — 1)$f(...$f(s(3)$1((s(2), s(1)))) .. .)))
=f(s(n)$f(s(n — 1)$1(...$f(s(3) $ (A(s(2), s(1))) ...)))
= f(s(n)$f(s(n —)$F(...$f((s(3), A(s(2), 5(1)))) ...)))
= f(s(n)$f(s(n — 1)$7(...$(A(s(3), A(s(2), 5(1)))) ...)))

(A(s(n), A(s(n — 1), ..., A(s(3), A(s(2), s(1))) .. .)))

151

nction.

of the
the set
rs, and
> 1),

is a valid generalization of f. As in the previous example, the base generalization

of this function is adequate.

5. SIMPLIFYING THE ITERATION CONDITION

The view of while loop verification presented here is one of a two step p
the first step being the discovery of an adequate valid generalization f’
loop specification f, the second being the proof of three basic conditions (i
(4)) based on this generalization. We have seen that the uniform nature of
implementation may be used in the first step as an aid in discover|
appropriate generalization. In this section, we exploit the same loop charac
to substantially simplify one of the conditions which must be proven
second step of this process.
The verification condition of interest is (4) above, that is,

Y € D(f") and B(Y) = f'(Y) = f*(H(Y))

and is labeled the iteration condition in [10]. This condition assures that
loop executes, the intermediate values of Y remain in the same level se
that is, the value of f’ is constant across the loop iterations. Previously we
that if P is uniformly implemented wrt $’, a change in the key variable
causes a slight but orderly change in the result produced by H. Roughly sp
then, the behavior of H is largely independent of the key variable. If f is
s0 as to be equally independent of the key variable, and the -above co1
holds for Y = (z, x), where x is arbitrary but the key variable z has a g
simple value, we might expect the condition to hold for all Y. Such an expe
would be based on the belief that the truth or falsity of this condition wou
be largely independent of the key variable.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, Jan

rocess,
of the

L., (2)-

a loop
Ing an
teristic
in the

as the
tof f/,
argued
> by $/
eaking
chosen
ndition
pecific
ctation
1d also

uary 1985

152 - Douglas D. Dunlop and Victor R. Basili

We formally characterize this circumstance in the following definition

Definition. Let P be a loop of the form described above. A generalization f’ of

f is represented by f iff
Y € D(f) and B(Y) = f(Y) = f'(H(Y))

(17)
implies
Y € D(f’) and B(Y) — f'(Y) = f' (H(Y)). (18)

Thus if f’ is represented by f, condition (17) can be used in place of the
iteration condition (18) in proving the loop is correct wrt f’ (and hence wrt f).
The significance of this situation is that the iteration condition can be tested
with the key variable constrained by initialization (as prescribed in D(f)). In
practice, the result is one of having to prove a substantially simpler verification
condition.

The following theorems state that the use of Corollaries 2 and 4|lead to
generalizations which are represented by the original specification.

THEOREM 4. Let P be a T'ype A loop. Suppose [’ is the valid generalization of f
defined in Corollary 2 and suppose f' is adequate. Then f’ is represented by f.

PROOF. Suppose (17) holds and select some arbitrary Y’ from D(f’) satisfying
B(Y’). Thus there exists c1,...,cn € C,n=0,and Y € D(f) such tha

Y’ =¢1$(c2$(...$(cns$Y)...)).

By the definition of a Type A loop, we must have B(Y). Applying the definition
of f’ yields

f(Y') =c1$(c28(..$(cn$f(Y)...))
which is equal to
c1$(c28(...$(n$f (H(Y)) ...)

by (17) since B(Y) holds. Since H(Y) € D(f’) (since f' is adequate), there exists
dl,...,dmeC,m=0,and Y1 E D(f) such that

H(Y)=d1$(d2$(...$(dm$Y1)...).

Furthermore,
fH(Y) =d1$(d28(...$@dm$f(Y1))...).
Hence, continuing from above, k
f(Y)=c1$(..$(cn$(d1$(...$(dm$f(Y1).. 3)))
which is equal to
F(c1$(...$(cn$(d1$(...$(dm$Y1)..))...)

from the definition of f’. Thus

YY) =F"(c1$(..$(cn$H(Y))...)

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

Generalizing Specifications for Uniformly Implemented Loops -« 153

which is equal to
f/(H(1$(..$(cn$Y)..)))
from the uniformity condition (8). Hence
1Y)y =f"(H(Y'"))
and the theorem is proved. O

THEOREM 5. Let P be a Type B loop. Suppose f’ is the valid generalization of f
defined in Corollary 4 and suppose f’ is adequate. Then [’ is represented by f.

PROOF. Suppose (17) holds and select some arbitrary Y’ from D(f’) satisfying
B(Y’). Thus there exists c1,...,cn € C,n= 0, and Y € D(f) such that

Y =¢1$(c28(..8(cn$Y)...).

We make the assumption that B(Y). Otherwise, by the definition of a Type B
loop, the term c¢n$ Y can be replaced by another Y € D(f). Since B(Y"’), this
process can be continued until Y’ is written in the form above, with Y € D(f)
and B(Y). Applying the definition of f yields

f/(Y')=f(c18f(c28f(...$f(cn$f(Y))...))
which is equal to '
flc1$f(c28f(...8f(cn$f (H(Y)))...)))

by (17) since B(Y) holds. Since H(Y) € D(f’) (since f' is adequate), there exists
dl,...,dmeC,m=0,and Y1 € D(f) such that

H(Y)=d1$(d2%$(...$(dm$Y1)...)).

Furthermore,
frH(Y) =f(d1$f(d28f(...8f(dm$f(Y1))...))).
Hence, continuing from above,
frY)=Ffc1$f(...8f(en$f(d18f(...8f(dmSf(Y1))..)))...)
which is equal to ‘
fc18(..8(cn$(d13(...$(dm$Y1)..)))...))

from the definition of f’. Thus

fY)=f(1$(..$(cn$H(Y))...)
which is equal to

f(H(c1$(..$(cn$Y)...))
from the uniformity condition (8). Hence
f (Y =f(H(Y")
and theorem is proved. [J
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

154 . Douglas D. Dunlop and Victor R. Basili

ExAMPLE 7. Consider the exponentiation program of Example 4. The gener-
alization obtained from Corollary 2 is

f'(w, e, d)) = (wx(ed),e’,d’)
where e > 0, d = 0. Since f’ is represented by f, the iteration condition
corresponding to (17) is
¢>0andd >0 and odd(d) — e d = ex((exe) (d/2))
¢>0and d>0and odd(d) — e d=1x((exe) (d/2))
can be used in place of that corresponding to (18)

¢>0andd>0and qdd(d) —w=(e Aﬁl) = (w*e)*((e*Ae) “(d/2))
¢>0and d>0and odd(d) » ws(e d) = w=((exe) (d/2)).
The benefits of this simplification are more striking for more complex types of
key variables. To illustrate, consider the program to compute Ackermann’s

function in Example 6. Applying Corollary 4 to the base generalization g of f
yields the generalization defined by

n>1-f'{(sn),sn—1),...,s1)))
(A(s(n), As(n — 1), ..., A(s(3), A(s(2), (1)) .. .)))

and
f{s(1))) = (s(1)).
Since f’ is represented by g, the iteration condition
s(2) = 0 — (A(s(2), s(1))) = (s(1) + 1)
$(2) # 0 and s(1) = 0 — (A(s(2), s(1))) = (A(s(2) — 1, 1))
s(2) # 0 and s(1) # 0 — (A(s(2), s(1))) = (A(s(2) — 1, A(s(2), s(1) - 1))
can be used in place of

n>1lands(2)=0—
(A(s(n), A(s(n — 1), ..., A(s(3), A(s(2), 5(1))) .. .)))

=(A(s(n), A(s(n — 1), ..., A(s(3),5(1) + 1) .. }))
n>1lands(2)#0ands(1l)=0
—(A(s(n), A(s(n = 1), ..., A(s(3), A(s(2), s(1)}) .. .)))

=(A(s(n), A(s(n — 1), ..., A(s(3), A(s(2) — 1, 1)) ...)))

n >1ands(2)# 0and s(1) #0
—(A(s(n), A(s(n — 1), ..., A(s(3), A(s(2), 5(1))) .. .)))

=(A(s(n), A(s(n — 1), ..., A(s(3), A(s(2) — 1, A(s(2), s(1) = 1))) ..).

6. RECOGNIZING UNIFORMLY IMPLEMENTED LOOPS

Although the problem of recognizing uniformly implemented loops is in general
an unsolvable problem, the following guidelines seem useful in a large number of
situations.

Recognizing uniformly implemented loops can be viewed as a search for an
operation with respect to which the loop is uniformly implemented. In practice,

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

s

Generalizing Specifications for Uniformly Implemented Loops .

155

condition (5) is the most demanding constraint on this operation. An effective

strategy, therefore, is to use (5) as a guideline to suggest candidate oper.

tions.

Conditions (6) and (7) must be proved to show that the loop is uniformly

implemented with respect to some particular candidate.
Often the modification to the key variable z in the loop body is perfor:
a statement of the form

z:=zf#e(x)

ed by

for some dyadic operation # and some function e. In this case, condition (5)
suggests the loop may be uniformly implemented wrt # or some directly related
operation. For example, if # is associative, condition (5) holds for #. If # satisfies

(a# b)ftc=(afc)#b

(e.g., subtraction), and an inverse #’ of # exists satisfying
afb=ceb# ' c=a

(e.g., addition if # is subtraction), condition (5) holds for #’.

Another case commonly occurs when the future values of the key variable z

are independent of x, that is,

h'(z, x1) = h'(z, x2)

for all z, x1, and x2. This situation arises most frequently when z is some data
structure which varies dynamically as the loop iterates. Typically, there exists
some particular aspect or portion of the data structure (e.g., the top of a stack,

the end of a sequence, the leaf nodes in a tree) which guides its modificati

on. A

useful heuristic that can be employed in this circumstance is to consider only
operations which maintain (i.e., keep invariant) this particular aspect of the data
structure. Selecting such an operation $’ guarantees that the “change” experi-

enced by the data structure in the loop body will be independent of any m
cation $’ and thus ensures that condition (5) will hold.
In any case, recognizing uniformly implemented loops and determinin,

odifi-

g the

operation with respect to which they are uniformly implemented is often facili-
tated when the intended effect of the loop body (as regards the key variable) is
documented in the program source text. Such documentation abstracts what the
loop body does from the method employed to achieve this result and thus makes

analysis of the loop as a whole easier.
To illustrate, consider the following program to compute the maximum
in a subarray ali . . n] of natural numbers:

{m = 0}

whilei < n do
if m < q[i] then m := q[i] fi;
1=1+1
od

{m=MAXIMUM(a, i0, n)}.

If the effect on m in the loop body were documented as

m = MAX(m, a[i])

value

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

156 . Douglas D. Duniop and Victor R. Basili

its updating would be of the form m:=m #a[i] and the heuristic discussed above
could be employed to help determine that the loop is uniformly impleme nted wrt
#=MAX.

7. RELATED WORK

The first work on generalizing functional specifications for loops appe
These results are refined in [10] and are studied in considerable detail in [11].
The major contribution of this research seems to be the identification of two
loop classes or schemas which are “naturally provable.” The first class|is called
the accumulating loop schema and can be viewed as a (commonly occurring)
special case of the Type A loops discussed here. Specifically, a program in the
accumulating loop schema with associative binary operation $’ in the sense of
[4] is necessarily uniformly implemented wrt $’ and meets the criterion for a
Type A loop presented here.

The second of these classes is called the structured data schema. A loop in this
class is uniformly implemented with respect to an operator which adds an element
to the data structure being processed in such a way that it is not the “next”
element to be removed from the structure (e.g., recall the use of ADDUNDER in
the tree traversal example). A loop in this class necessarily meets the|criterion
for a Type B loop presented here. The program to compute Ackermann’s function
does not fit in the structured data schema. We remark that the analysis presented
here relies on the loop body computing a function, i.e., it relies on the loop body
being deterministic. Consequently, the above comments do not apply to the
nondeterministic structured data loops analyzed in [11].

In [11] Misra states that the important common feature between these program
classes is that “ .. they act upon data in a ‘uniform’ manner; changes in the
input data lead to certain predictable changes in the result obtained.” The work
we have described can be viewed as an attempt to characterize this commonality
and to generalize the work in [11] based on this characterization.

More recently, Basu in [2] considers the problem of generalizing logp specifi-
cations and uses the idea of a loop being “uniform over a linear data|domain.”
One difference between Basu’s work and that presented here is that Basu
considers only programs in the accumulating loop schema (in the sense of [4]
without the closure requirement). More importantly, Basu’s idea of uniform
behavior is based on the behavior of the loop as a whole and seems to be largely
independent of the loop body. Our approach relies solely on the char. cteristics
of the loop body.

Misra points out in [10, 11] that the iteration condition for his structured data
schema can be simplified in a manner similar to that presented here; our results
show that the same simplification can be applied to his accumulating loop schema.
Again, an appropriate view of our research is one of generalizing this earlier work
by investigating the theory which underlies these phenomena.

8. SUMMARY AND CONCLUSIONS

It is felt that a critical aspect of reading, understanding, and verifying program
loops is generalizing the behavior of a loop over a restricted set of inputs to that

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

L &

Generalizing Specifications for Uniformly Implemented Loops . 157

over a more general set of inputs. The view of the generalization process presented
here is one of ascertaining how changes in values of particular input variables
affect the subsequent computation of the loop. This process is facilitated if these
changes correspond to particularly simple modifications in the result produced
by the loop body.

Of course, the simplest possible modifications in the result produced by the
loop body would be no modification at all, i.e., when the output of the loop body
(and hence the loop) is completely independent of changes in these input
variables. This situation, however, rarely occurs in practice since it implies that
the input values of these variables serve no purpose in view of the intended effect
of the loop. It is felt that the definition of a uniformly implemented loop presented
here is the “next best” alternative, and yet a large number of commonly occurring
loops seem to possess this property. The definition states that in terms of the
execution of the loop body, prescribed changes in the input value of the key
variable affect only the final value of the key variable; all other final values are
independent of the change. Just as importantly, the modification caused in the
final value of the key variable is necessarily the same as the change in its
corresponding input value. This property is analogous to that possessed by a
function of one variable with unit slope in analytic geometry: increasing the input
argument by some constant causes the function value to be increased by exactly
the same quantity. Taken together, these factors account for the pleasing sym-
metry between $ and H in condition (8).

Viewed as a verification technique for uniformly implemented loops, the
procedure described here can be thought of as transforming the problem of
discovering the general loop specification into the problem of discovering the
operation with respect to which the loop is uniformly implemented. Clearly, this
is of no benefit if the latter is no easier to solve than the former. In many cases,
however, it seems that simple syntactic checks are sufficient for identifying this
operation. For example, in the tree traversal program, the fact that the loop body
does not test the stack for emptiness [4] is a sufficient condition for the loop
being uniformly implemented with respect to ADDUNDER.

It is felt that the notion of uniformly implemented loops may have an appli-
cation in the program development process. Specifically, when designing an
initialized loop to compute some function, the programmer should attempt to
construct the loop in such a way that it is uniformly implemented with respect
to some easily stated operation. Qur work indicates that these loops are suscep-
tible to a rather routine form of analysis. Furthermore, implementing a loop in a
uniform fashion requires maintaining a certain amount of independence between
program variables (or perhaps portions of program variables in the case of
structures) and a simple dependence between the input/output values computed
by the loop body. Such programs are desirable since the ease with which a loop
can be understood depends largely on the complexity of the interactions and
interconnections among program variables. We remark that the question of
whether a given program is “well structured” has been viewed largely as a syntactic
issue (e.g., use of a restricted set of control structures); we offer the definition of
a uniformly implemented loop as an attempt at a characterization of a semanti-
cally well-structured program.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

158 . Douglas D. Dunlop and Victor R. Basili
REFERENCES
1. BasiLl, V.R., AND NoONAN, R.E. A comparison of the axiomatic and functional

2.

11.

12.
13.

Received January 1982; revised October 1983 and July 1984; accepted July 1984

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

. Basu, S.K., AND MisRA, J. Proving loop programs. IEEE Trans. Softw. Eng. SE

. DuNLoP, D., AND BasiLl, V.R. A comparative analysis of functional correctness. Com
. GRIES, D. Is sometime ever better than alway? ACM Trans. Program. Lang. Syst. 1 ((
. HoARE, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12 ((
. MiLLs, H.D. Mathematical foundations for structured programming. Rept. FSC 72-

. MiLLs, HD. The new math of computer programming. Commun. ACM 18 (Jan. 197
. MISRA, J. Some aspects of the verification of loop computations. IEEE Trans. Softw

structured programming. IEEE Trans. Softw. Eng. SE-6 (Sept. 1980), 454-465.
Basvu, S. A note on synthesis of inductive assertions. IEEE Trans. Softw. Eng. S
1980), 32-39.

1975), 76-86.

. Basu, S.K., AND MISRA, J. Some classes of naturally provable programs. In Proceed)

g

models of

E-6 (Jan.
1 (March

ngs of the

2nd International Conference on Software Engineering (San Francisco, Oct. 13-15). IEEE, New

York, 1976, pp. 400-406.

14, 2 (June 1982), 229-244.

258-265.

576-583.

Federal Systems Division, Bethesda, MD, 1972.

4 (Nov. 1978), 478-486.

MISRA, J. Systematic verification of simple loops. Tech. Rep. TR-97, University
Austin, Tex., March 1979.

MORRIS, J.H., AND WEGBREIT, B. Subgoal induction. Commun. ACM 20 (April 1977
WEeBREIT, B. Complexity of synthesizing inductive assertions. J. ACM 24 (July 1977

iput. Surv.
Det. 1979),
Dct. 1969),
6012, IBM

5), 43-48.

Eng. SE-
of Texas,

, 209-222.
, 504-512.

