IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 8, AUGUST 1985

749

System Structure Analysis: Clustering with

Data Bindings

DAVID H. HUTCHENS, MEMBER, IEEE, AND VICTOR R. BASILI, SENIOR MEMBER, IEEE

Abstract—This paper examines the use of cluster analysis as a tool for
system modularization. Several clustering techniques are discussed and
used on two medium-size systems and a group of small projects. The
small projects are presented because they provide examples (that will
fit into a paper) of certain types of phenomena. Data bindings between
the routines of the system provide the basis for the bindings. 1t appears
that the clustering of data bindings provides a meaningful view of sys-
tem modularization. .

Index Terms—Cluster, coupling, data binding, module, measurement,
system structure.

I. INTRODUCTION

N aspect of complexity that has long been recognized,

but seldom measured, is the complexity associated with
system modularization, i.e., the grouping of procedures into
modules within the system. It has been argued by many [1],
[2] that system modules should have small interfaces (param-
eters and shared data) and that the internal components of the
modules should be strongly connected. It has also been sug-
gested that modules should be developed so that a fault is con-
tained within a small module. Faults might be used as a means
of determining if modularization techniques have placed to-
gether those procedures that are often sharing faults.

The analysis of the interface between the small components
of the system can be used to determine the modularization that
those interfaces define. This analysis is called clustering, and
the modules so defined will be referred to as clusters. Armed
with this knowledge, one might ask questions about how closely
the current modularization (as described in the documenta-
tion) corresponds with the modularization defined by the clus-
tering. One might also consider the strength and coupling of
the modularization ‘of the system defined by the clustering.
The information gained from this work should be of interest
to designers and maintainers. It may also be used to obtain a
modularization of a system that has no (or little) existing high
level documentation, giving maintainers a handle on the struc-
ture of the system.

The closer that the objectively defined modules: correspond
to the modules defined by the developer, the better one should
feel about the design. However, it is unlikely that the two
views of the system will correspond exactly. Something can
be learned about a system from the differences. It may also

Manuscript received August 31, 1983; revised April 10, 1985.

This work was supported in part by the Air Force Office of Scientific
Research under Contract AFOSR-F49620-80-C-001 to the University
of Maryland. Computer support was provided in part by the Computer
Science Center at the University of Maryland.

D. H. Hutchens is with the Department of Computer Science, Clem-
son University, Clemson, SC 29631. : ‘

V. R. Basili is with the Department of Computer Science, University
of Maryland, College Park, MD 20742,

be possible to derive some basic measurements of the quality
of the modularity from the results of this analysis. These mea-
sures may provide a means of comparing various design pro-
posals and monitoring systems during maintenance.

Each of these possibilities will be considered in the following
sections. Having stated the research goals, it is now appropri-
ate to consider the work that has been done by others and pro-
vide the foundations of this work.

II. BACKGROUND

Data organization metrics are measures of data use and visi-
bility. Several types of data organization metrics appear in the
literature. Some of these are briefly mentioned here. Data
binding [3], [4] is an example of a module interaction metric.
Span [5] measures the proximity of references to each data
item. As such it qualifies as a data organization metric. Slic-
ing [6] can also be considered a data organization metric. A
slice is that (not necessarily consecutive) portion of code that
is necessary to produce some prescribed partial output from
the program. Fan-In [7] measures the number of procedures
that pass data, through parameters or globals, into a given pro-
cedure. Fan-Out is the number of procedures receiving data
from the given procedure. Yao and Collofello [8] use detailed
data flow analysis to determine a measure they call stability.

A. Data Bindings

Data bindings will be used in this paper to measure the inter-
face between the components of a system. In order to com-
pare this work to other work that has used data bindings, sev-
eral levels of data bindings will be defined.

A potential data binding is defined as an ordered triple (p,x,q)
where p and g are| procedures and x is a variable within the
static scope of both p and q. Potential data bindings reflect
the possibility of a|data interaction between two components,
based upon the locations of p, ¢, and x. That is, there is a pos-
sibility that p and g can communicate via the variable x with-
out changing or moving the definition of x. Whether or not
x is mentioned inside of p or q is irrelevant in the computation
of potential data bindings. ‘

A used data binding is a potential data binding where p and
q use x for either reference or assignment. The used| data bind-
ing requires more work to calculate than the potential data
binding as it is necessary to look inside the compdnents p and
q. It reflects a similarity between p and g (they both use the
variable x). ‘

An - actual data
where p assigns a
data binding is sli
tion between refe

inding is defined as a used data binding
alue to x and g references x. The actual
tly more difficult to calculate as a distinc-
nce and assignment must be maintained.

0098-5589/85/0800-0749801.00 © 1985 I%EE

750

Thus more memory is required but there is little difference
in computation time. The actual data binding only counts
those used data bindings where there may be a flow of in-
formation from p to q via the variable x. The possible orders
of execution for p and ¢ are not considered.

A control flow data binding is defined as an actual data bind-
ing where there is a “possibility”” of control passing to g after
p has had control. The possibility is based on a fairly simple
control flow analysis of the program. To be more precise, a
possibility is said to exist whenever either 1) there exists a
chain of calls from p to g or vice versa, or 2) there-exists a pro-
cedure r such that there are chains of calls from r to p and
from 7 to g and there exists a path in the directed control flow
graph of r connecting the call chain p with the call chain to q.
The solution to the general problem of allowable control flow
sequences (where allowable means there exists data which will
cause the sequence to be followed) is known to be uncomput-
able. However, one might improve on this measure by using
techniques of data flow analysis to prove more paths impos-
sible and thereby remove more data bindings. It seems un-
likely that this added effort will yield enough improvement
to justify the effort. This binding requires considerably more
computation effort than actual data bindings because static
data flow analysis must be performed. Note that a control
flow data binding of the form (p, x, g) may exist even though
q can never execute after p (because of the dynamic properties
of the program).

As an example consider the following portions of code. The
parameter of the call is assumed to be call by value.

INTa,b,c,d

PROC p1
[*usesa, b */
* assigns a */
CALL p2

PROC p2
/* uses a, b */
[* assigns b */
CALL p3 (x)
CALL p4

PROC p3 (int e)
[*usesc,d, e */
[/* assigns ¢ */

PROC p4
[*usesc,d*/
/* assigns d */
START p1
In this example, the potential data bindings are
(p1, a,p2), (p1, a,p3), (p1, a, p4),
(p2, a,p1), (P2, a,p3), (P2, 4, p4),
(p3, a,p1), (p3, a,p2), (p3, a, p4),

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 8, AUGUST 1985

(P4, a,p1),(p4, a,p2), (p4, a,p3),
(p1,5,p2),(p1, b,p3),(p1, b, p4),
(#2, b, p1), (p2, b, p3), (92, b, p4),
(p3,b,p1), (p3, b, p2), (3, b, p4),
(p4,b,p1), (P4, b, p2), (P4, b, p3),
(p1, ¢,p2),(p1, ¢, p3), (P1, ¢, p4),
(92, ¢, p1), (P2, ¢, p3), (P2, c, p4),
(13, ¢, p1), (13, ¢, P2), (3, , P4),
(P4, c, p1), (P4, c, p2), (P4, ¢, p3),
(r1,d,p2),(p1,d,p3),(p1,d, p4),
(p2,d,p1),(p2,d, p3), (p2,d, p4),
(p3,d,pl), (p3,d, p2), (p3,d, p4),
(»4,d,p1),(p4,d, p2), (p4,d, p3),
(p1, e, p3), (p2, e, p3), (P4, e, p3).

However, the used data bindings are only

(r1,a,p2),(p2,a,pl),(pl, b, p2), (p2, b, p1),
(93, ¢,p4), (P4, ¢, p3), (p3,d, p4), (p4,d, p3),
(r2,e,p3)

actual data bindings are
(p1,4,p2), (p2, b, p1), (p3, ¢, p4), (P4, d, p3), (P2, e, p3)
and control flow data bindings restricts the set to just
(p1,a,p2), (p2,b,p1), (P3, ¢, %), (P2, €, p3).

1) Using Data Bindings: The Belady and Evangelisti study
[9] applied used data bindings in determining modules for a
system. Based on the study of an IBM operating system, they
concluded that certain metrics of modularity could be derived
from clustering. They used a technique that gave a flat (nonhi-
erarchic) partitioning of the components of the system into
modules. ,

The use of data bindings to determine the appropriate modu-
larization has its drawbacks. A module that hides a data struc-
ture is easily found by a data bindings modularization tech-
nique. However, a module that defines an abstract data type
and has no local data that is shared among the operations on
the type will not be located using this method. The reason is
that there is no direct data binding between the operations of
the module. All of the interactions are indirect through the
procedures that use the abstraction. Hence, there are rela-
tively few data bindings between them, and they do not tend
to cluster.

It would seem that the abstract data type modules need a
different measure of connectivity, However, only explicit
syntax such as the package of Ada (TM) [10] or the module
of MODULA [11] allow abstract data types to be automati-
cally recognized as utility functions and removed from the
analysis. Except as noted for specific utility routines, this
issue will be ignored in the rest of this paper.

HUTCHENS AND BASILI: SYSTEM STRUCTURE ANALYSIS

B. Definition of Clustering

Since the components will be grouped based on the strength
of their relationships with each other, a reasonable starting
point is mathematical taxonomy, often referred to as clus-
tering. The idea has been used [9] to partition a large system
into subsystems. '

Because there are so many clustering methods dnd algo-
rithms that have been published, e.g., [12]-[15], the choice
of techniques to use is not easy. Due to the authors’ belief
that systems and programs are best viewed as a hierarchy of
modules and their hope that the levels of the hierarchy will
provide fertile ground for the definition of measures, this
paper will concentrate on clustering methods that exhibit their
results in this fashion. This section will give a formal defi-
nition of & hierarchic clustering method based on the one
presented in [16].

A dissimilarity matrix d for an ordered set P of n elements
is defined to be an » X n matrix such that

1) d(a,b)=20
2) d(a,b)=d(b,a)
3) d(a,a)=0

foralle, b 1 <a<n, 1 <b<n. Thatis, d is a nonnegative,
real, symmetric matrix with zeros on the main diagonal.
D is defined to be a dendrogram over P if

1) D: [0, infinity) —> E(P)

2) 0<x<y=>D(Xx)<D(p)

3) there exists x > 0 such that D(x) =P X P

4) given x = 0 there exists y > 0 such that D(x + y) = D(x)

where E(P) is the set of equivalence relations on P. That is,
1) given any nonnegative real number x (a level), D yields an
equivalence relation. The clusters defined for level x are the
equivalence partitions of P defined by D(x). Furthermore,
2) given level y >x, each cluster at level x is contained in
some cluster at level y. Also, 3) there exists some level at
which all of P is in a single cluster. Lastly, 4) is just a unique-
ness technicality to handle the ambiguity at those levels where
D is discontinuous. Hence a dendrogram might be pictured as
follows:

0 5 10 15 20 25
This dendrogram shows (@), (b, ¢), and (d, e) forming clusters
at level 5, (a, b, ¢) and (d, e) at level 10, and all collapsing to-
gether at level 20.

A dendrogram may be represented as a tree where the branches
of the tree are the clusters with associated levels and the leaves
are the elements of P. The tree for the above dendrogram
might be given in Lisp-like notation as

(20(102(5bc))(Sde)).

751

A hierarchic cluster method is a function from the set of
dissimilarity matrices to the set of dendrograms over an or-
dered set P. The basic algorithms that will be used to imple-
ment- the cluster methods are agglomerative, or bottom-up.
They: iteratively create larger and larger groups, until the ele-
ments have coalesced into a single cluster. The elements cho-
sen for grouping are the ones with the smallest dissimilarity.
Given an. algorithm, a cluster method is determined, although
the converse is not true. Algorithms are introduced here be-
cause they provide a reasonable way of specifying the cluster
methods.

The character of the individual algorithms is determined by
the method used to compute the new dissimilarity matrix at
each iteration. The dissimilarity between two elements should
not change during an iteration. However, at each iteration
some elements are replaced by a single element representing
a newly formed cluster. It is the dissimilarity between the
newly formed clusters and the other elements (including other
newly formed clusters) that must be specified.

The classical algorithms include “single-link” which takes
the smallest dissimilarity between the elements of each pair
of newly formed clusters as the new dissimilarity coefficient
between the them. This gives clusters whose elements are con-
nected at the given level. Another algorithm uses the largest
dissimilarity between the elements as the new coefficient and
gives clusters that are completely connected at the given level.
(Strictly speaking, the clusters are completely connected only
if all of the elements that combine into a single cluster during
one iteration are pairwise related by the same dissimilarity.)
Other well-known algorithms. use the average dissimilarity or
the weighted average dissimilarity as the new coefficient.

C. Data Sources

The Software Engineering Laboratory (SEL) [17] data were
collected during the development of production software for
the NASA Goddard Space Flight Center. The systems used
in this work are ground-support systems for satellites and were
written in Fortran by Computer Sciences Corporation. The
developers have a large amount of experience in building this
type of system. Both the users and the developers feel that
the overall system designs are fairly good.

Data concerning effort, errors, methods, reused ‘code, and
other relevant information have been collected for several proj-
ects. Most of the data are supplied by the developer on forms
prepared for use by the SEL. These forms are normally filled
out by the. programmer or manager most closely involved with
the subject of the form as the knowledge required becomes
available. The data have been used to investigate many aspects
of system development.

III. A MODULARITY Stupy

A technique will be presented that automatically: produces
a hierarchic module decomposition for a system. The tech-
nique is based on data bindings and clustering algorithms.
There are several choices to be made in determining the best
technique for this application. Some reasonable choices are
presented and analyzed. The techniques are then used on
some sample systems and the results are given.

752

A. Specialized Clustering Techniques

The use of data bindings to determine dissimilarity requires
that we abstract the data to give a symmetric matrix. Let
b(i, j)-be the number of control flow data bindings of the
form (i, x, j) or (j, x, i) for some program variable x. ‘A dis-
similarity matrix may be computed from the binding matrix
b in several ways.

1) Recomputed Bindings: One way was chosen that cap-
tures the intuitive notion that if a component of the system
is entirely connected to just one other component, that con-
nection should be computed as a lower dissimilarity than any
connection that is not complete. It is based on the percentage
of the bindings that connect to either of the two components
and are shared by the two components. That is, let p be the
dissimilarity matrix defined by

(sumi + sumj - 2 b(i, j))
(sumi + sumj - b(7, j))

p(,j)=

where sum/ is the number of data bindings in which 7 occurs
and sumj is the number of data bindings in which j occurs.
Since

sumi + sumj - b(i,)
is the number of data bindings in which either i or j occur and
sumi + sumj - 2 b(i,j)

is the number of data bindings in which either i or j occur but
not both, p(i,) is the probability that a random data binding
chosen from the union of all bindings associated with i orj is
not in the intersection of all bindings associated with 7 and j.
Note that if components i and j have no external connections,
then

sumi = sumj = b(i, f)
and p(i, j) = 0. Note also that if / and j share no common data
then b(i,/)=0and p(i,j)=1.

For an example, consider the program in Section II-A
with the actual bindings

(p1,4a,p2),(p2, b, p1), (P3, c, p4), (P4,d, p3), (P2, e, P3).

A binding matrix can be computed such that the (7, j)th entry
is the number of data bindings between the ith and the jth
procedures giving

pl p2 p3 p4
rl 0 2 0 O
p2 2 0 1 0
p3 0 1 0 2
p4 0 0 2 O

Then the dissimilarity matrix computed as outlined above is

pl p2 p3 p4
pl 0 1/3 1 1

p2 13 0 4/5 1
p3 1 4/5 0 1/3
pd 1 113 o.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 8, AUGUST 1985

Another degree of freedom in clustering is the choice of the
algorithm. While any of the previously presented algorithms
might be used, they do not correspond to the intuitive notion
that the dissimilarity between two clusters should be directly
related to the number of data bindings that cross the bound-
ary. To achieve this property, a new dissimilarity matrix is
computed from the bindings matrix at each iteration in the
clustering process. This, however, introduces another prob-
lem. Each of the algorithms stated earlier has the property
that if the elements with least dissimilarity are merged (into
perhaps several clusters) at one iteration, then the next dis-
similarity matrix will have entries that are all greater than the
least nondiagonal entry of the last matrix. If the dissimilarity
matrix is recomputed at each iteration based on the bindings
matrix, it is possible that the new matrix will contain values
that are smaller than any that existed in the last matrix. The
resulting tree from this new approach is not a dendrogram.

As an. example, start with the following binding matrix for
the elements (4, B, C):

012
1 03
2 3 0.

That is, there are three procedures, 4, B, and C, with 1 data
binding between 4 and B, 2 between 4 and C, and 3 between
B and C. This produces the dissimilarity matrix

0 5/6 4/6
5/6 0 3/6
4/6 3/6 0.
Joining B and C into a cluster produces a new binding matrix:
03
30
The new dissimilarity matrix is
00
00
causing (B.C) to be united with (4) at level 0 toget the tree
©0A4A1/2B0C))

which is clearly not a dendrogram (since the level of a node
must be greater than the level of a son and 0 < 1/2).

The tree can be converted to a dendrogram in a natural way.
If it is assumed that any cluster that was created with a lower
value than its son was really included in the same cluster (at
the same level) as its son, the tree can be collapsed into a
dendrogram.

The above example would thus give the simple dendrogram
described by ‘

(/24 BC).

The dendrogram obtained from the latter approach has many
good properties. Each cluster is based on the bindings to the
other. clusters regardless of how late in the clustering process
it was formed. This method will be called Recomputed Bind-
ing Clustering.

HUTCHENS AND BASILI: SYSTEM STRUCTURE ANALYSIS

2) Expected Bindings: A problem with the proposed cluster-
ing method is that the levels are somewhat incomparable. That
is, at a point in the algorithm where there are a large number
of elements (e.g., 50) there is less likelihood that two compo-
nents will have a very large percentage of their total bindings
occur between them than when there are few elements (e.g., 3).
It seems reasonable to attempt to weight the binding levels
relative to the total number of elements under consideration in
a given iteration. In particular, if there are n elements under
consideration and there are k bindings involving either element
i or element j, one would expect k/(n - 1) of the bindings to
be between i and j were the bindings to be distributed in a uni-
formly random way. Hence, those with exactly k/(n - 1) in-
terconnections should have a similar level whether n=5orn =
250. One might therefore compute the new dissimilarity as

d(i, j)= (k/(n - 1))/bind @, /)
for each i not equal to j at each iteration. This method will be
referred to as Expected Binding Clustering.

Consider the example of the 4 procedures p1,p2,p3,andp4
from Section II-A. If we take the used data bindings, the bind-
ing matrix is ‘

rl p2 p3 p4
rlt 0 2 0 O
p2 2.0 1 0
r3 0 1 0 2
pd 0 0 2 0.

This gives the dissimilarity matrix of

rl p2 p3 p4
pl 012 I 1[I
p2 12 0 53 I
p3 I 53 0 1/2
p4d I 1172 0

where [is infinity. The first iteration combines (p1, p2) and
(r3, p4) at level 1/2 giving the new binding matrix

01

1 0.
The new dissimilarity matrix ‘happens to be the same as the

binding matrix and we get the Expected Binding dendrogram
(1 (1/2p1p2)(1/2p3 p4)).

This dendrogram is intuitively satisfying asp1 and p2 seem to
be closely bound and p3 and p4 seem to be closely bound. Note
that if we use the control flow data bindings, p3 and p4 no
longer seem so closely bound. Computing the Expécted Bind-
ing dendrogram for these bindings yields

(1p3p4(1/2p1p2)
reflecting the reduced cohesion between p3 and p4. k
B. System Fingerprints

The clusters that are derived from a systém are analogous to
a star system. That is, there may be several small subsystems

753

that revolve around the main subsystem. This analogy leads to
the naming of some various types of system fingerprints.

Each of these fingerprints will be illustrated by a program
chosen from the group of class projects used by the [18] study.
These programs implement a small language -on a stack based
machine, simulated for the students by the three procedures
POP, PUSH, and INTERP. Not surprisingly, these/three pro-
cedures tend to cluster quickly. Control-flow data bindings
were computed for these projects and form the basis for the
analysis.” -

Indentation will take the place of parentheses in the examples.
That is, the dendrogram

(84 (G BC)

will be given as
8 4

5SBC.

Planetary systems are those that have several subsystems that
are connected to form the whole system. These systems may
(although not necessarily) have a larger subsystem that acts as
the core of the system.

As an example, the following is an Expected Binding Cluster
of one of the 19 compiler projects. For Expected Binding
Clusters in the following examples, all level numbers were mul-
tiplied by 100 and hence are expressed as percentages.

66 COMMENT ASIMPID BACKUP
54 HASH ALLOCATERETURN DUMPSYMBOLS FINDIT
LOOKUP ALLOCATESEGMENT ALLOCATEARG
ADDRESS
27 ACONST
24 AARRID AID
19 AFUNCID ASCAN ARPAREN
AEVALEXP EXPRESSION ALPAREN
AFLUSH APRODCODE ASTACKOR
ADOIFLUSH
45
42 DCL CODEGEN SEGMENT
7 POP INTERP PUSH
41 PROGRAM
32 STMT CONSTGEN
13 NEXTCHAR SCAN NEXTSYMB
SPECIALCHAR IDENTIFIER CONSTANT
Notice how the clusters tend to.form distinct parts of the com-
piler. The group at the bottom (at level 13)is the scanner. The
group a few lines above it (at level 7) is the interpreter. An
interesting group is the large cluster close to the top (at level
27). This cluster was written by one of the members of the
programming team (his name began with an A). Also notice
how all of the routines fall togethér when the symbol table
routines are added (at level 54).
Black Hole systems have no visible planets. The clustering

" process finds one key subsystem that then absorbs the rest of
‘the system. This may be a natural phenomenon associated

with the way the system is built, or it may be a bias of the
clustering scheme. - Since the bindings are recomputed at each
iteration in the process, a cluster that has already been formed
may contain more bindings with other elements than do small
elements. Hence the strongest connection that exists may be
with the already formed and growing Black Hole. If this hap-

754

pens, the Black Hole may tend to absorb procedures before
their relationships with other parts of the system are discovered.

The following example is also an Expected Binding Cluster
of one of the 19 compiler projects.

100 STMTLIST DCLLIST
87 HEADING ACTUALLIST
86 CODEDUMP INPUTCHAR ASSIGN IFSTMT
WHILESTMT RETURNSTMT. READSTMT
WRITESTMT EXP LOGICALPROD RELATION
ADDEXP MULTEXP FACTOR
24 popP
16 INTERP PUSH
71 CALLSTMT
65 SCANNER
55 PROGRAM
53 ACTUAL VARIABLE
PRIMARY
46 SEGMENTLIST
FORMALPARM
41 SEARCHSYMTAB
SYMTABDUMP
36 ARRAYDCL-
LIST IDLIST

The symbol table routines, SEARCHSYMTAB, SYMTABDUMP,
ARRAYDCLLIST, and IDLIST, seem to dominate this program
in a different way from the previous one. Here they are the
quickest to cluster and then they form a nucleus about which
everything else revolves. It would seem that this group was
less effective in isolating the symbol table from the other rou-
tines. One might guess, just from the appearance of the clusters,
that many of the routines in this progrant have intimate knowl-
edge of the structure of the symbol table. This is most clearly
true of ARRAYDCLLIST and IDLIST which build entries directly
in the table.

Gas Cloud systems are those that show no tendency to cluster.
These systems are possibly poorly: designed as there is no
strength to the modules and a large degree of coupling between
them. None of the compilers provide a clear example of this
type of system. However, the following dendrogram has some
of the properties.

87 MAIN ASSIGNMENT SEGRETURN STATEMENT IO
EXPRESSION PROGRAM WHILESTMT IFSTMT LOAD
JUMP PARSE INITIALIZE DECLARATION SEGMENT
SEARCH SEGCALL PRIMARY
76 ropP

73 INTERP PUSH
83 SCAN NUMBER IDENTIFIER GETNEXTNONBLANK

This dendrogram is a recomputed binding clustering of one
of the compiler projects. Note that the majority of the proce-
dures fall together at one level. While this system does show
modularity with the scanner and interpreter, the rest of the
system does not display much modularity.

C. Using Weighted Clustering

If the Black Hole Syndrome is caused by the clustering
method, a reasonable approach to correct its bias is changing
the weighting of the bindings when producing the dissimilarity
matrix for the next iteration. The weighting would cause bind-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 8, AUGUST 1985

ings to large clusters to be discounted slightly to allow the
planets to form. This could be done by replacing each occur-
rence of b(i, /) in the equation that computes the dissimilarity
matrix with b(i, j) # w(i, /) where w(i, /) depends on the size of
element i and elém entj.

D. Measurements

Several measurements can be taken on the clustered system.
The more obvious ones include the number and sizes of the
clusters. Other interesting measurements that may be taken
from the dendrogram are the strength and coupling levels of
the clusters. These are available from the levels at which the
clusters form. If |several clusters form at level 76 and then
collapse into a single cluster at level 87 then it may be said
that they have a strength of 76 and a coupling of 87. For
example, note how the preceding compiler examples have a
module of the interpreter (containing POP, PUSH, and INTERP)
that has a low degree of coupling and a high degree of strength.
The numbers just given are from the last example. Note also
that even though the interpreter module is essentially the same
in all of the projects, the measurements are quite different.
This type of analysis appears to be sensitive to the environment
of the module. The values of these measures may have more
meaning if they are viewed for a single system as it changes
over time.

The stability of the system with respect to data interactions
can be examined by evaluating the changes in the dendrograms
as data bindings are added or removed from the bmqlmg matrix.
In fact, whole procedures could be removed from the analysis
to see what the system structure is without them. This may be
particularly useful if parts of the system are built as virtual
machines, utility functions, or data abstractions. A particular
layer of the system could then be examined while assuming all
of the lower layers act as primitives. This approach is best
taken by removing the lower layers of the system and treating
calls to them as references and definitions of the global vari-
ables that they use. ‘ "

E. Case Studies

The clustering techniques presented have been applied to
two medium size systems that are part of the SEL [17] data
collection effort.| The systems consist of approximately
100 000 and 64 000 lines of Fortran source code, including
comments. The larger one was designed as two distinct load
modules, one of which has two distinct functions which are
not used together |in a single execution. Thus there are essen-
tially three programs to analyze. The three programs were not
independent, however, as they contained several common sub-
systems. The actual data bindings between the routines were
computed for each of the two systems and used as the basis
for the clustering. | Actual data bindings were used because they
are much cheaper to calculate than control flow data bindings.

Several routines|that were designated as utility routines were
removed from the analysis as described in the preceding sec-
tion. Thisremoval was helpful in determining the true relation-
ships among the remaining routines. Without the removal of
the utility routines, they provided a second-order relationship
between the routines that called them. For example, there
was a user-written utility routine that converted one form of
date to another. When two very different routines both called

HUTCHENS AND BASILI: SYSTEM STRUCTURE ANALYSIS

this date routine, a two step path was created between them
(e.g. (p, x, date) and (g, x, date) are data bindings where p and
q each call date with parameter x). Even though there was no
actual data relationship between them, they were pulled to-
gether in the clustering algorithm. After removal of the utility
routine, their direct relationship emerged. The location and
removal of utility routines is not automatable. However, these
routines tend to be ones that do all of their communication via
parameters and return values and are called by more than one
other routine. Hence it is possible to automate part of the
search for these routines.

The second project, while smaller than the first, is not broken
into independent portions so it actually provides a larger ex-
ample. The second project also has more errors which involve
multiple modules so it is better suited for some of the analysis
which follows.

1) Finding Functional Clusters: One of the goals of the study
was to determine if any of the methods were able to pick out
logical modules in the software. The system was designed as
several subsystems, and these subsystems were further refined
with the major emphasis of design placed on functionality. If
the clustering approach is to be useful, the modularization given
by the clustering techniques should be similar to the developers’
subsystems. There was a close correspondence between the
two views of the system. This may be seen by the dendrogram
of the smaller system in the Appendix. The two capital letters
preceding each of the Fortran procedure names designate the
subsystem in which the designers placed the routine.

An interesting note can be made about the places where the
cluster and the subsystem designation differ. In a talk with
one of the developers, it became clear that these differences
occurred with routines which operated on data which were dif-
ferent from those used by the rest of the routinesin the subsys-
tem. From this it may be concluded that there is, in this envi-
ronment, a strong relationship between the functionality of
routines and the data usage of the routines. But at the same
time, something can be gained by looking at the system from
another viewpoint. That is, functionality is not the only view
of the system. The maintainer should also be aware of the
data usage that actually exists. This information is not neces-
sarily contained in the calling chart documentation even if the
documentation is current.

2) Error Analysis: The study of errors involving changes to
more than one routine can yield insights into the effectiveness
of the clustering techniques. The NASA-SEL database con-
tains error histories for the systems being studied. For a given
clustering, the errors that involved more than one routine were
attached to the smallest cluster that contained all of the rou-
tines involved (that is, it is attached to the smallest cluster
which covers the error). The number of errors attached to
each cluster was multiplied by the number of routines in the
cluster and the products summed over the clusters. The resul-
tant number is an indication of how well a given technique
places all of the routines that were involved in a given error
into a single cluster at a low level. A low number indicates
that many errors were contained in small clusters.

The results of the error study were inconclusive because the
NASA-SEL environment tends to generate a small number of
interface errors and because only two projects have been ex-
amined. The majority of such errors were confined to the

‘For the large syste

| 155
\

\
developers’ subsystems so they tended to be somewhat localized
by the clustering tec jl.m ques as well.

3) Clustering Technique Comparison: Another goal of this
study was to determine if there was a difference between clus-
ters ‘that are generated by the various clustering techniques
presented earlier. B#sed on these two case studies, it appears
that the Expected Binding Cluster and the Recomputed Binding
Cluster are similar to each other and better than the other
methods tested. Better here refers to 1) locality of errors and
2) clusters that capture the developers’ subsystems and place
the individual routines with reasonable siblings at the lower
clustering levels. |

The following chart illustrates the differences among the
clustering techniques as measured by error *module_size count.
Smaller values indicate that errors were contained in smaller

modules. }

Sﬁ RB EB WB

Large-1 780 571 653 605
Large-2 §27 571 629 727
Large-3 Gp 14 4635 5172 6462
Small 13571 14765 14175 25321

ing, EB = expected binding, and WB = weighted binding. The
weighted binding did not perform well according to!this test.
recomputed binding seems to have been
superior, but for the small system single link did better. It
must be remembered that Large-1, Large-2, and Large-3 con-
tain portions of common code so there are not four indepen-
dent observations in these results.

The abbreviations aif SL = single-link, RB = recomputed bind-

1 VI..CONCLUSIONS

Several clustering methods have been presented and analyzed
on some small and medium size programs. It appears that clus-
tering by data ‘bindings can select the logical modules of a
system.

This study has not produced sufficient evidence to determme
which module generating techniques are best at reducing the
scope (i.e., the size |of an encompassing module) of develop-
ment errors. All three subsystems of the larger case study favor
the recomputed bindings technique. Howevér, the other case
study favors the standard shortest link method. Further work
in this area should focus on the selection of the algorithm. In
particular, the algorithms should be tried on some very large
systems to see if they still work well. One should be wary of
the application of andom cluster methods to this: (or any)
domain.

The dendrograms ‘resultmg from the data bindings counts
can provide fingerprints of some basic design decisions. In
particular, exa‘mpleséwere shown which distinguish: between

the use of data hiding versus the global use of data structures.

The case studies show a large degree of correspondence be-
tween the automatically generated module structures and those
defined by the developers. The places where these differ are
instructive in the ex{lanatwn of procedure connectivity.

The value of clustering may be greatest when it is used on a
single system as it e\Lolves over time. Such a use would allow
the maintenance pe#sonnel to be aware of the changing rela-
tionships among the components of the system. Clustering
may also be used to ﬁest the hypothesis that system modularity

756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 8, AUGUST 1985

tends to deteriorate over time. Once the modules have been
determined it is possible to use clustering to determine mea-
sures of the strengthand coupling of the modules. The dendro-
gram gives a fingerprint or classification of the system.

Several measures have been proposed for evaluating the auto-
matically derived module hierarchy. These measures have not
been adequately evaluated due to the lack of a proper set of
data.

There were some inconclusive tests conducted with respect
to modularization. Among these is the question of which
technique provides the best description of the system modu-
larity. Perhaps the choice should depend on whether the goal
is to localize errors, mimic the designer, or compute measures
of strength and coupling. Indeed, the question of how to com-
pute measures of strength and coupling is still unresolved. The
use of clustering analysis and data bindings holds promise of
providing meaningful pictures of high level system interactions.
One might readily ask if these pictures are useful to the de-
signer or maintainer of the software. The answer lies in further
research and experimentation.

APPENDIX

The following is an expected binding dendrogram of the
small system. The numbers before the parentheses are the
levels defined and discussed in the paper. The two numbers
inside the parentheses are 1) the number of errors for which
this cluster is a minimal cover and 2) the number of subroutines
in the cluster.

50(11, 246) UAcvtgra TPhex Blbiasin O Aopinit
45(13, 217) TPinitr8 TPchkmod TPlodipd
42(4,209) TPmbhs TPhskbhs TPiniti4 TPhsksyn
TPtimpos TPcrinit TPhexdmp TPhbhs
41(22, 55)
40(3, 53) TPspnprd TPcosync TPconadr
1(0, 3) TPunhedm TPhedck TPunhedp
39(0, 39) TPqalchk TPconbhs
31(4, 37) TPstore TPmsun
30(8, 35) TPmnfchk
2(11,34)
7(0, 12) TPtpread
2(2,4)
1(0, 2) TPrdtelm UAadichk
1(0, 2) TPdrvadl TPredadl
3(0,7)
2(3, 5) TPtrans ’IPpretrn
TPtpinit
1(0, 2) TPdsktap TPrevse
19(5,22)
18(0,9)
3(0, 3) TPpltmsn
2(0, 2) TPlodmsn
TPunpmsn
5(0, 6) TPintvr8
1(0,2) TPcreint TPintvi4

2(0, 3) TPunpack
TPlodhsk
TPunphsk

18(45,13)

7(2, 11) TPcodsai TPcvtipd

N3

7(0

TPhsun TPcvthsk
TPtppocc
4(2,4)
0(0, 2) TPtpfnal
TPtpwrsm
3(0, 2) TPdrivtp
TPtpdisp
5(0,2) TPcvtmsn
TPtpipd
3(0,2) TPpocbld TPsungmt
0, 2) TPchktim TPmilsec
0, 6) TPprered
1(0, 5) TPmxmni4 TPnomint TPnorm14
TPnormr8 TPmxmnr8
2) TPdebug TPplthsk

34(2, 146) UAcurtim DAadjin

22(0
21

144) DCgstat1
(2, 143) DAadtape
18(8, 142) OCplotin
13(6, 141) Blbset Blbprint Blbrecur
'BIbinit Blbobsp Blbstate
Blbdisp BIbfprt DAnadang
OAdtchck V
12(0, 118) OAeph DRstatus BIbupdat
4(7, 32) DRreport ‘
3(1, 31) AZchkgap AZgapfil
AZrdhdrs AZazcomp
AZrecur AZsumary
AZexpwrt AZallpts
AZazlist
2(0, 2) AZpresmo AZextend
2(0, 3) AZazdriv AZazview
AZoveral
1(0, 2) AZreadat AZpadgap
2(0,9) AZazrate
1(0, 8) AZredriv TPreinit
AZobsmod AZrefilt
AZabinit AZabdriv
AZabfilt AZsmooth
1(0, 4) AZazmuth AZhsaz
AZsunaz AZprovec
1(0, 2) AZinitop AZmemnam
11(19, 81)
2(1, 6) OCocobs OCocprnt
OCocstat
1(0, 3) OCplotoc OCzeroxo
OCocpre
8(1, 38) OAattdt3 OAattdt4
OAattone OAuncl
OAconel OAcones
7(0, 7) OAunccon
3(0, 4) OAroots2 OAunc2
OAattdt7 OAattdi6
2(0, 2) OAattdet OAattdtl
7(0, 2) OArootsl.OAattdt5
5(0,7) DCdcdriv
2(1, 6) DCdcinpt
1(0, 5) DCdcangl
DCid1hor
DClddih

HUTCHENS AND BASILI: SYSTEM STRUCTURE ANALYSIS

DCldcone
DClddual
7(0, 16) OAsindis
4(0, 15) OAoawrit
3(0,6) OAoasys
OAuarfix
2(0, 4) OAoasmon
1(0, 3) OAblkavg
OAspnavg
OAchoose
1(0,6) OAdisplt
OA(fill2 OAfillup
OAfilll
OAfootnt
OAcba921
0(0, 2) OAoaplot
OAoapitl
7(7, 37) DAephem DAinitcf
DAwrtazm
DAwrtoab DAdaint
DAadjust
1(1, 5) DAedit DAfree
DAcopyb
0(0, 2) DAsmthvl
DAfitdri
5(7,24) DAfirst
3(5,9)
0(0, 2) DAdurat
DAdurchk
1(0, 5) DAnadir
DAdangle
DAdotdri
DAdottst
DAuvaldat
0(0, 2) DAchklm
DAlimchk
3(1, 7) DAoutat
DAtwerk
DAoutoab
DAtimsel
DAoutaz
1(0, 2) DAdatadj
DAoutput
1(1, 3) DApreavg
DAreduce
DAsift
3(0,2) DAdaread
DAplotz
0(0, 2) DArddata
DAsample
6(0, 2) DAcopya
DAadjint
5(0, 2) Blbframe Bloabias
0(0, 2) TPrdadl Blbobs
4(0, 6) DRdridea DRresult
3(0, 4) DRdschck DRtiming

2(1, 2) DRdeadri DRdrinit

1(0, 5) DCfinal2 DCgdccon
DCblkinv
0(0, 2) DCcofsm DCdccons

(1]
(2]
3]

[4]
(5]
(6]
(71
(8]

[9]
[10]
(11]

[12]
[13]
(14]

[15]
(16]

(17]

(18]

1(0, 3) TPtplang TPtptolr TPtolspn
0(0, 2) TPdrvucl TPucltrn
18(0, 10) DRnladj DRnlaz DRnldcc DRnldri DRnloab

DRnloas DRaloc DRnltp

- 3(0, 2) UArename DRwritit

0(0, 15) DRrewine DRrecall UAmodd TPtpsupr TPtpnld

DRdafile DAinitfg DAprcent DCunitdc
TPovride TPselgmt TPtimseq UAintcnv
UAdspshr UAdspmod

REFERENCES

G. J. Myers, Composite/Structured Design. New York Van Nos-
strand Reinhold, 1978.

E. Yourdon, Techniques of Program Structure and Delwgn En-
glewood Cliffs, NJ: Prentice-Hall, 1975.

V. R. Basili and A, J. Turner, “Iterative enhancement: A practical
technique for software development,” JEEE Trans. So, ftWare Eng.,
vol. SE-1, pp. 3901396, Dec. 1975.

W. P. Stevens, G. §. Myers, and L. L. Constantine, “Structural de-
sign,” IBM Syst. J., vol. 13, no. 2, pp. 115-139, 1974.

J. L. Elshoff, “An analysis of some commercial PL/1 programs,”
IEEE Trans. Software Eng., vol. SE-2, pp. 113-120, JurJ:. 1976.
M. D. Weiser “Pragram slicing,” in Proc. Sth Int. Conf. Software

Eng., San Diego, CA, 1981.

S. Henry and D. Kafura, “Software quality metrics based on inter-
connectivity,” J, Syst. Software,vol. 2,no. 2, pp. 121-131,1981.
S.'S. Yau and J. S. Collofello, “Some stability measures for soft-
ware mamtenance”, IEEE Trans. Software Eng., vol. SE-6, pp.
545-552, Nov. 1980.

L. A. Belady and|C. J. Evangelisti, “System partitioning and its
measure,” J. Syst. \Software, vol. 2, no. 1, pp. 23-29, Feb. 1982.
Reference Manual for the Ada Programming Language, U.S. Dep.
Defense, draft revised MIL-STD 1815, July 1982. :

N. Wirth, “MODULA: A programming language for modular multi-
programming,” Software Practice Experience, vol. 7, pp. 3-35,
Jan. 1977.

M. R. Anderberg, |Cluster Analysis for Applications. New York:
Academic, 1973.

B. S. Duran and P. L. Odell, Cluster Analysis: A Survey. New
York: Springer-Verlag, 1974.

M. H. Van Emden| An Analysis of Complexity. Amsterdam, The
Netherlands: Mathematical Centre Tracts, 1975.

B. Everitt, Cluster Analysis. London, England: Heinemann, 1974.
N. Jardine and R.|Sibson, Mathematical Taxonomy. New York:
Wiley, 1971.
The Software Engineering Laboratory, Software Eng. Lab., NASA
ight Center, Rep. SEL-81-104, Feb. 1982.

V. R. Basili and R, 'W. Reiter, “A controlled experiment quantita-
tively comparing software development approaches,” IEEE Trans.
Software Eng., vol. SE-7, May 1981.

vid H. Hutchens (M’84) received the B.S. de-
ee in mathematics from Western Carolina Uni-
Slty, Cullowhee, NC, in 1977, the M.S. de-
e in mathematical sciences from Clemson
niversity, Clemson, SC, in 1979, and the Ph.D.
gree in computer science from the University
f Maryland, College Park, in 1983.
He is currently an Assistant Professor of Com-
uter Science at Clemson University. His re-
ch interests include measurement, evalua-
jon, and modeling of the software develop-

ment process and its product.
Dr. Hutchens is a member of the Association for Com puting Machinery
and the IEEE Computer Society.

Victor R. Basili (M’83-SM’84), for a photograph and biography, see
p. 168 of the February 1985 issue of this TRANSACTIONS.

