Characterization of an Ada
Software Development

Victor R. Basili, Elizabeth E. Katz, Nora Monina Pantilio-Yap, Connie Loggia Ramsey, and Shih Chang

The University of
Maryland and General
Electric monitored an

industrial software
development project in
Ada at GE. The findings
will aid in the training,
tool support, and
methodology for future
Ada projects.

September 1985

University of Maryland

da is already required for use in

embedded software of the
United States Department of Defense.
In time, more government agencies
and private-sector companies will be
using Ada, yet it is not without its
problems. Though praised for being
comprehensive, Ada has also been
criticized. for being cumbersome. Its
effective use by people with varied
backgrounds will depend on training,
available tools, and the application of
both to the project at hand.

This article examines the use of Ada
in a software project developed by the
General Electric Company. The proj-
ect was monitored by the University of
Maryland and GE to identify areas of
success and difficulty in learning and
using Ada as both a design and a
coding language. Since production-
quality Ada translators were not readi-
ly available, the study focused on
training and early software devel-
opment. We focus on the use and ef-
fect of Ada on this project, which was
conducted primarily in 1982. Our
study also presents the major factors
to consider before using Ada in soft-
ware development, particularly when
training in Ada is necessary. Although
many of our conclusions may seem ob-
vious now, they were unexpected when
this project began.

0018-49162/850900-0053301 0O . 1985 IFFE

Our study attempts to meet several
goals. The first focuses on characteri-
zation of the effort, the changes, and
the errors of the project. The second
considers how Ada was used on the
project. The third concerns evaluation
of the data collection and validation
process, while the fourth concentrates
on the development of measures for .
the Ada Programming Support Envi-
ronment. ‘ .

The development of metrics is an
on-going project discussed by Basili
and Katz! and Gannon et al.,? so
Ada-specific metrics will not be dis-
cussed here except as they apply to this
project.

Data sources and validation

From the start of the project, data
was collected from a variety of
sources. Change data, in particular, is
often gathered only after the code has
been compiled and entered into a
“system’’ for use by other project
members. In this project, however, all
changes made after the text was on-line
were included. Therefore, compari-
sons with data of other projects may
be misleading. However, some of the
data will be presented with compiler-
detectable faults eliminated so com-
parisons can be made with the early

53

g

CHANGE REQUEST #
d by. Date.

J. .

P

‘ Porson ing change
1, What ls theresson for thi ge?

? J.

J.

4 Wnen was ihe nesd for the change
L0 N

[}

: 4, To compilately lmpiement the desired changs, the highest level document that needs changing is:

! POL

code

1 ¢

standing what needs 10 be changed?
i t

5. When did the effort begin (o understend and isolate thischange? ./ /.
[mmmmmwtwmmm:mmwm
|

e, Anrs. 2days
7. This change is a/an icheck one)

1wk, 2whks, 1mo. 2mos.

oo OTOY COPTRCHION (attach %wm ERROR DESCRIPTION FORM)
— CDANOR A N0
planned snhancement

belgw)

v beiow)
be beiow)

JROSE. ofan ront with the
s SVOLSENICE OF 30O OLNOY in the
e S3AGABYON 10 8 ChANQE 0

ility or

JE— Clanity,

s ODtIEAIZENION Of time, Space OF acCuraCyY
s LNBOYYION OF Calation of debug code
cvmmenan OLHOF than above (describe balow)

8. List st known documents which will require:a change as a result of this changs request to maintain system consistency:

' . m‘ POL Code

section nos/module name

{tobe filled in by librarian)
date change
submitted to librarian

Il
i

;

:f

I

]
LT
T

I

i

L

T

L

[

{Note that esch of thase will recuire a separate Individuat Document Change Repart)

9. What additional ts were or will be

Ramis,. POL . Code

ined in g the change.
section nosimoduis name ’

i
I
|

v l.—_—-'—-——-

[N W
EoL

1T
il

Figure 1. Change request form.

stages of other early Ada projects. Our
data is, however, incomplete because
the project is incomplete; however, it
might be useful for comparison to
other projects.

Data sources. The programmers
were asked to complete various forms.
Each week, a component status report
form indicated how each programmer’s
effort was distributed by component
involved and by phase of devel-
opment. Each time a need for change
arose, a change-request form was
completed. If the change was an error

54

correction, an error description form
was also used. For every component
involved in a change, an individual
document change report form was

‘filled out indicating that the librarian

made the change and documenting the
time needed to put the change into the
code or design. Copies of the change
report form and the error report form
can be found in Figures 1 and 2.
Copies of the other forms can be
found in Basili et al.?

In addition, a copy of cach design
and code version of every module was
kept. The source code measures were

taken from the latest version for each
module.

A simple parser for Ada and the
PDL was written to gather the various
code measures and to check the syntax
of the PDL. It will be enhanced to
gather more complicated measures as
we understand more about Ada.

Data validation. Data collected on
forms-.is difficult to validate,* but
valid data is necessary for valid resuits;
therefore, the completed forms were
screened for inconsistencies. The pro-
grammers could then clarify discrep-
ancies before data was analyzed.
Screening should be done as soon as
possible in future studies. If the forms
could be completed on-line, checked
for-inconsistencies, and automatically
entered into a database, validation
could proceed more quickly. We sug-
gest that future data collectors create a
checklist of their expectations at each
milestone of the project.

The project ’,

This study was arranged to monitor
training, designing, coding, and unit
and system testing of a realistic in-
dustrial software development proj-
ect. We initially planned to study the
entire software development, but with-
out a production-quality Ada com-
piler; the task was nearly impossible.
However, many of our observations
about early development may apply to
other projects using Ada.

We emphasize that this project
began in January 1982, when many ex-
pected that a couple of weeks would be
sufficient for programmers to learn
Ada. Many of those expectations have
changed now that we, and others, have
used Ada. At least some of these
changes were caused by early observa-
tions of and discussions about this
project. However, this study provides
some -empirical evidence for certain
now widely-held observations.

COMPUTER

Programmers and training. Four
programmers with diverse back-
grounds were selected in order to
examine whether a programmer’s ex-
perience and education would in-
fluence his understanding and use of
Ada. Table 1 shows the education, ex-
perience, and language knowledge of
each programmer, but a sample of
four programmers can only hint at
possible influences. A more detailed
study of background and performance
is presented by Bailey.’

None of the programmers knew
Ada before the project began; they
volunteered to learn Ada. Therefore,
they were probably more enthusiastic
than most programmers about using
the language. Since this was an early
project, the training was longer (one
month) and more comprehensive than
the industry standard at the time.

The training began with 15 hours of
videotaped lectures by Ichbiah, Firth,
and Barnes over a period of four days.
Six days of in-house training by
George W. Cherry in Ada syntax and
basic concepts spread over the follow-
ing four weeks. During this time, the

- programmers also practiced writing
Ada programs, read the Ada reference
manual, and reviewed their class
notes. The NYU Ada/Ed interpreter
was used for programming assign-
ments, which included a 500-line team
project.

However, as usual, the program-
miers had little experience with many of
the software engineering practices that
Ada was designed to support.® They
did have varying degrees of experience
with structured software development
practices, e.g., design and code walk-
throughs, structured programming,
and program design language. They
were given a half-day review of soft-
ware development practices by Victor
R. Basili to provide them with a com-
mon perspective on these techniques.
At the time, such training in method-
ology was considered sufficient; how-
ever, further discussions on method-

September 1985

ERROR DESCRIPTICN FORM for CHANGE REQUEST #

1. Type of Error:
. tequiraments incorrect
requirernents misinterpreted
*design incorrect
*design misinterpreted
*code incorrect
—_ d (not language or ?
—— clericat error
“Was the ervor in the use of date or in tunction ?
2. Oid the use of Ada as a design and Quag tothisemor?
1 s0, was it only a syntax error? __
3. Whether retated 1o Ada or not, which language fealures weve | inthe error?
4. For an errar in tha PDL or code:
a. does the documentation explain the featurs clearty? Yes Na
b. which of the lollowing is most true?
- understood features separately, but act their interaction
understood features but didn't apply them correctly
didn’t understand features fully
—CONlused featuie with a feature in another language
¢. whers was the informaticn needed to correct the emor found?
e C128S RIOLES
e Ada reference manual
—___.another programmer
remembered
e _viewgraphs from tapes
—__test program
other.
5. Detecting error: Iscisting source:)
t Activities ‘Activities 1t Activities Activities 1
[Used for Successful tot Triedtc Successhut t
' Program in Detecting [Find Causs In Finding 1
1 Validation ErorSymptoms | 1 Cause |
Dasign reading ' ! P ! -
Design G ! [il 1]
- Coxle reading ! 1 (I ! '
Code watkthrough 1 1 11] 1
Talk wiother prog 1 ! ! 1 !
Reading d ! ! (.) |
[o ! f Pt 1! |
System error O [! 114 ! (]
Project egor Q 1 ! (] 1, 1
Trace ! 1 1t I i}
Oumo { 1 (| ! 1
inspection of output t f (] I]
Pre-acceptance test run ! i (I] 1} i
Acceptance test 1 $ U] t !
Ada runtime checking ! 1 vt 1 1
Other: ! 1 L | 1 !
8. What was the time used to Isolate the sourcs of the error?
1 1 } ! ! | |
thr, 4hrs. 2days 1wk, 2 wks, 1mo. 2mos,
if naver found, was a workaround used? (Explain in 8, betow.)
7. When did the error enter the system? ¢
requirements design ——Adacoding e 882N
impiementing another change, Change Report No. -
e Othr OF Can't tell (expain betow) L4

. Uss this space to give any additional Information that might hetp in understanding the cause of the change and its

ramifications:

Figure 2. Error report form.

Table 1. Backgrounds of programmers.

i PROGRAMMER

YEARS OF
PROFESSIONAL

" EXPERIENCE _ EDUCATION LANGUAGES KNOIS::: *

LEAD 9 B.S. FORTRAN. ASSEMBLE
(COMP. SCL)

SENIOR 7 M.S. FORTRAN, ASSEMBLER,
"(COMP. SCI.) SNOBOL, PL/1, LISP

JUNIOR 0 BS. FORTRAN, ASSEMBLER
(COMP. SCI.) PASCAL, PL/1, LISP

LIBRARIAN 0 HIGH SCHOOL FORTRAN

DEGREE

w
[,]

Table 2. Size characteristics of the product.

!

TSRS PROGRAMMER
- SIZE MEASURE LEAD SENIOR JUNIOR LIBRARIAN TOTAL |
oL o

NON-BLANK LINES 1364 2301 1430 203 5298

- TEXT LINES 560 978 891 17 2546
EXECUTABLE STATEMENTS 266 421 343 65 1085
COMPILATION UNITS 9 14 19 1 43

ADA

* NON-BLANK LINES 1247 3611 3509 145 8512

. TEXTLINES 706 1904 1648 117 4375

* EXECUTABLE STATEMENTS 200 718 661 62 1731
. COMPILATION UNITS 4 20 24 1 49

TOTAL (ADA AND

NON-EXPANDED POL)

- NON-BLANK LINES 1633 3611 4307 396 9899
“TEXT LINES 857 1904 2159 274 5154
EXECUTABLE STATEMENTS 3718 718 866 127 2089

9 20 36 2 67

COMPILATION UNITS

ology, especially the use of abstractions
during design, occurred during the
project as the programmers used the
techniques.

This approach (Ada first, software
engineering techniques later) did not
seem to give the programmers the
appropriate model for learning how to
use Ada to support the software engi-
neering concepts. They had only the
programming model from their pre-
vious language experience, predomi-
nantly Fortran. Prior training in the
software engineering concepts might
have better prepared them for learning
Ada. Bailey attempted to compare the
two training approaches (Ada first and
software engineering concepts second
versus the opposite ordering).’ His
study tried to correlate the program-
mers’ background and the order of
concept presentation with success in
the classes he studied. However, the
results were inconclusive and indicated
that more studies are needed to deter-
mine how Ada should be taught.

56

Development and product. The
project. under study involved the re-
design and implementation in Ada of a
portion of a satellite ground control
system originally written in Fortran. It
included an interactive operator inter-
face, graphic output routines, and
concurrent telemetry monitoring. The
programmers never saw the compar-
able Fortran source programs. Be-

cause pieces of the subset were scat-

tered throughout the original system
and the developed: system contained
some added features, determining the
precise size of the subset-as imple-
mented in Fortran was difficult. How-
ever; the subset was estimated to con-
tain between 5000 and 8000 text lines
of Fortran, including declarations but
not comments or blank lines.

The project began in February 1982
and ended in July 1983. However,
most of the development took place
between February and December
1982. Some testing was done between
May. and July 1983. Requirements

analysis was done prior to and concur-
rently with training, and an Ada-like
Program Design Language was used
to design the system.

The PDL has two levels. The first
describes the input, output, and excep-
tions for the module, includes a brief
abstract of what the module should
do, and outlines the algorithm. The
entire first level is written in Ada
comments.

The second level is a more detailed
description of the algorithm with a
combination of Ada and PDL escapes
enclosed in braces. These escapes can
replace any Ada nonterminal, though
they usually replace statements and
conditionals. The first level remains as
documentation for the code.

After design, the system was coded
in Ada, and some of it was unit tested.
As the project was begun before pro-
duction-quality Ada compilers were
available, it was'not completely coded
or tested. About 750 lines of PDL text
were left uncoded. Some unit testing
was done with the NYU Ada/Ed inter-
preter and the ROLM compiler, but
no system testing was conducted.

The product was examined by a
number of people interested in but not
associated with the project, such as the
developers of the original project. The
design was judged to be functional
rather than object-oriented. This: as-
sessment was not surprising since the
programmers were most familiar With
Fortran and its functional approach
and the requirements were functional
in nature. In fact, the high-level Ada
design was very similar to the original .
Fortran design.

In order to provide an initial
characterization of this project, Table
2 provides some size data for the
design and code. Note that some
desigh was never expanded into code
because the project was not com-
pleted. In addition, many sections of
code were copied almost verbatim
from the corresponding PDL. All but
four of the modules with both PDL

COMPUTER

and code had a text expansion ratio
below two to one. Of the remaining
four modules, three had expansion
ratios just over two to one, and one
module expanded from 29 text lines to
124. Therefore, the total section in-
cludes only code and non-expanded
design. Nonblank lines of source in-
clude comment lines but not blank
lines, Text lines must have some Ada
or PDL on them. Executable state-
ments do not include declarations
unless there is an initialization in the
declaration.

Factors affecting the data

Several factors affected the out-
come of this study, and understanding
them is important for proper inter-
pretation of the results. Many will not
be present in later Ada developments,
but the training and tool issues that
clearly affected this project will affect
others as Ada use increases.

The useful, but very slow, NYU
Ada/Ed interpreter became unusable

_toward the end of the project, as the
size of the developing system grew.

This difficulty had a demoralizing ef-
fect on the programmers, and they did
not finish coding or testing the project.
When the ROLM compiler became
available, further testing was done.

The results set forth are based on
data collected through coding and
some unit testing. In addition, the vast
majority of the Ada-related errors
either were or could have been detected
by a compiler. The dominance of these
errors might have diminished had the
code been executed and testing com-
pleted. Many more logic errors might
have been uncovered had all the
modules undergone error-free com-
pilation.

Many trivial errors. that might have
been detected by a PDL processor ap-
peared in the design. Some of these
were detected during design readings
and reviews and were removed. Others

September 1985

Table 3. Effort for each phase of the project.

AMOUNT OF TIME
PROJECT PHASE (IN HOURS) PERCENTAGE
REQUIREMENTS ANALYSIS 530.5 12.73
REQUIREMENTS WRITING 113.6 2.73
DESIGN CREATION 514.4 12.34
DESIGN READING 37.7 0.91
FORMAL DESIGN REVIEW 162.4 3.89
CODING 305.6 7.33
CODE READING 13.3 0.32
FORMAL CODING REVIEW 62.3 1.50
UNIT TESTING 332.7 7.98
INTEGRATION TESTING 0 0.00
REVIEW TESTING 0 0.00
TRAINING 849.1 20.38
OTHER ACTIVITY 1245.7 29.89
TOTAL REQUIREMENTS 644.1 15.46
TOTAL DESIGN 714.5 17.14
TOTAL CODE DEVELOPMENT 381.2 9.15 .
TOTAL TESTING 332.7 7.98
TOTAL TRAINING 849.1 20.38
TOTAL OTHER ACTIVITY 1245.7 29.89
ENTIRE PROJECT . 4167.3 100.00
remained until the code developed Effort

from the design was compiled. Many
of these later changes were not made in
the design; therefore, scme of the
design and code documents were in-
consistent. In addition, design reviews
tended to focus on the numerous, easi-
ly detected, trivial errors rather than
on the deeper design issues and, per-
haps, errors. A PDL processor would
have changed this focus.

Type and quantity of training were
other factors. Twenty percent of the
total effort was spent on training.
Software engineering concepts such as
data abstraction and information

hiding were not stressed during Ada

training, although they were presented
to the programmers afterward. The
programmers indicated that training
was insufficient, and their use of Ada
suggests that they probably needed
more. Therefore, we must conclude
that a sizable effort will be needed to
learn Ada and must be considered
when planning early projects using the
language.

The first goal'gf the study is to
characterize the effort expended on the
project. By doing so, we can provide
insight into how programmer time
might be used in future Ada projects
and a basis for comparison with later
Ada projects.

Table 3 shows the time spent on
each phase of the project, including
training. Productivity was calculated
from the total lines in Table 2 and the
total design and code development
time in Table 1. For each hour spent in
design and code development, 9.03
nonblank lines of code and 4.70 text
lines were developed. The values are
upper bounds (and may not be mean-
ingful since the project was not com-
pleted).

Changes

Our second goal is to characterize
the changes in the project in order to

57

Table 4. Breakdown of changes by type.

NUMBER !

TYPE OF CHANGE - OF CHANGES PERCENTAGE
ERROR CORRECTIONS 192 56.96
CHANGES IN PROBLEM DOMAIN 1 0.29
PLANNED ENHANCEMENTS 9 2.67
AVOIDANCES OF APPARENT PROBLEMS

WITH THE COMPILER 18 5.37
AVOIDANCES OF OTHER PROBLEMS IN
- THE DEVELOPING ENVIRONMENT 2 0.59
ADAPTATIONS TO A CHANGE IN THE
DEVELOPING ENVIRONMENT 7 2.08
IMPROVEMENTS OF DOCUMENTATION,
- CLARITY, OR MAINTAINABILITY 76 22.55
OPTIMIZATION OF TIME, SPACE, OR
ACCURACY 2 0.59
INSERTION OR DELETION OF DEBUG
CODE 9 2.67
21 6.23

OTHER THAN ABOVE

determine how the product evolves.
The classification of changes can in-
dicate which factors might have af-
fected the project. Information on how
easily the product was changed might
indicate the quality of the product.

Analysis of the 337 change request
forms (Figure 1) and the 439 individual
document change forms indicates that

 the effect of Ada on the changes made
in the project cannot be distinguished
from the effect of any other factor.
Code changes accounted for 61 per-
cent. As stated previously, however,
many of these changes were errors
which should have been caught at the
design stage. Thirty-two percent of the
changes were in design documents,
and only seven percent were in re-
quirements documents.

The breakdown by type of change is
shown in Table 4. The majority (57
percent) of the changes were error cor-
rections which will' be described in
detail later. Of the non-error changes,
52 percent were improvements of clari-
ty, maintainability, and documenta-
tion. The low number of planned
enhancements indicates that the pro-
grammers tried to implement portions
of the system immediately rather than
start with a subset and enhance it later.
The large number of improvements

58

show that they were concerned about
clarity and documentation.

The time to determine the need for
change was one hour or less in almost
all cases. In addition, 46 percent re-
quired only six minutes. The need for
these changes was easily determined.
Few changes took much longer than a
half hour, although four changes re-
quired more than one day to determine
they were needed: two were planned
enhancements; one was an avoidance
of a problem with the compiler; and
the last involved the creation of a
global definitions package that inter-
faced with several components.

The amount of time needed to

design and- implement changes was -

also minimal. The majority took one
hour or less. Of the code changes, all
but five took two hours or less. Two
changes, which took three hours and
one day, respectively, involved avoid-
ing problems with the compiler. One
change, which took one and a half
days, was an adaption to a change in
the development environment. One
code change, which took four hours,
was an error correction and will be
discussed in the errors section. The
global definitions package was imple-
mented in four days. The few other
changes which took much longer than

usual were mostly planned enhance-
ments and improvements of clarity,
maintainability, and documentation
of requirements documents. A change
that took one week was a planned en-
hancement in a requirements section.

The total time spent determining the
need for changes then implementing
them was 426.4 hours, 10 percent of
the total effort for the entire project.
The average cost was 1.27 hours per
change, but more than 80 percent of
the changes took much less time.:

Components involved. We deter-
mined the number of components
altered in each change. Seventy-seven
percent of the changes caused only one
component to be modified, but up to
five components were modified in
some changes. We also identified 70
interface chariges (21 percent of all
changes) defined as those that entail a
change in more than one component at
the same level of document. Only 2.9
percent of these were in the require-
ments; the rest were equally divided
between design and’code. As many as
five components were altered in these
interface changes. ,

From this data, we conclude that
most of the changes were trivial and
involved a single component. Ada
seemed to have little effect on the rion-
error changes. Most of the changes
were error corrections, but many were
improvements of documentation, clari-
ty, or maintainability. We do' not
know how this distribution would
change if more testing were done; but,
we strongly suspect that the number of
error corrections would increase.

Errors

Since Ada is a new language, pro-
grammers will make some errors when
using its new features. By determining
types of errors made, we can focus
training, tools, and techniques on
eliminating or detecting the most
prevalent or severe errors.

COMPUTER

We examined 192 error description
forms (Figure 2). Each corresponds to
a change request that falls into the er-

‘ror correction category. We used
several different error classification
schemes to understand which errors
occur and how to detect or prevent
them. Note that our figures (Table 5)
differ slightly from Basili and Per-
ricone3 because some classifications
were changed, and the data were inter-
preted in light of these changes.

We used the definitions of errors,
faults, and failures of the IEEE Gilos-
sary of Software Engineering.” A
“fault” is a specific manifestation in
the source code of a programmer “‘er-
ror.” A single “error’ can result in
many ‘““faults.” A ““fault’’ may cause a
“failure’’ when the program is exe-
cuted. Errors were reported for this
project, but few, if any, failures were
reported because little testing was
done.

Document type. A common classifi-
cation of errors is by type of document
and how it was involved. If we know

“the documents involved, we can ex-

" amine them more closely for faults or
concentrate on their careful devel-
opment. Table 5 shows a breakdown
of the errors by document type. We
can see that the majority (79 percent)
of errors were due to incorrect code.
Most of the remaining errors were at-
tributable to incorrect design. Few er-
rors involved those requirements,
probably because those requirements
had already been used on a previous
project and were fairly well written.

Detection and correction. If we
knew which activities were most often
successful at detecting errors, we could
concentrate training and tool devel-
opment to support them. In this proj-
ect, compilation, design reading,
design walkthroughs, and code read-
ing were most often used to detect er-
rors. Approximately half of the errors

September 1985

Table 5. Errors by type of document.

TYPE OF DOCUMENT NUMBER
AND HOW INVOLVED OF ERRORS PERCENTAGE
REQUIREMENTS INCORRECT 2 1.04
REQUIREMENTS MISINTERPRETED 4 2.08
DESIGN INCORRECT 29 15.10
DESIGN MISINTERPRETED 0 0.00
CODE INCORRECT 151 78.65
EXTERNAL ENVIRONMENT MISUNDERSTO0D

{NOT LANGUAGE OR COMPILER) 0 0.00
CLERICAL ERROR 6 3.12

were successfully detected through
compiler messages, and a slightly
smaller number were successfully de-
tected through readings and walk-
throughs. These same activities were
used to isolate the source of the error.
Code reading was more successful at
isolating than detecting the source,
and the opposite is true of compiler
messages. In the case of design reading
and walkthroughs, detection of the er-
rors and isolation of their sources
usually occurred simultaneously. This
information indicates that careful
design and code reading and walk-
throughs should be stressed and that
language processors should be used as
much as possible to detect errors.
However, results -of other activities,
such as test*runs, would surely have
appeared here if more testing had been
done.

As with the changes, most of the er-
rors were trivial. More than 80 percent
took 12 minutes at most to isolate.
Only seven errors took an hour or
more to either isolate or to correct.
One error—a design incorrect error
that involved renaming a file—took an
hour to isolate but only six minutes to
correct. Another, classified as code in-
correct, took two hours to isolate but
only twenty minutes to correct. An
undefined part of a string was passed
as an argument to a function. Two er-
rors involving incorrect design each re-
quired only six minutes to isolate but
more than an hour to correct. One of
these, a tasking error involving a syn-

chronization problem between two
components, took 5.2 hours. Another,
which required 1.5 hours, was a logic
error involving input/output. The re-
maining three errors took an hour or
more to isolate and another hour or
more to correct. One required the in-
sertion of error checks and exception
handlers in a routine conforming to
the specifications; this took one hour
to isolate and one hour to correct.
Another took four hours to isolate and
four hours to correct; it was an in-
put/output syntax error. The last er-
ror, which took oﬁepour toisolate and
one hour to correct, was a require-
ments incorrect error. A superfluous
requirements section was found and
eventually deleted.

Table 6 shows the number of com-
ponents changed to correct each error
as well as the number examined while
deciding how to make the correction.
(A distinction is made between errors

‘in general and those which caused

compiler-detectable faults. This dis-
tinction will be described in more
detail in the next section.) Since most
of the errors were trivial and involved
the syntax of a component, most of the
corrections caused only one compo-
nent to be changed or examined.

Possible detection by tools. Detec-
tion by tools is one method of classify-
ing faults. The classification will be ex-
panded in later studies, but we used it
here to separate compiler-detectable
from noncompiler-detectable faults.

59

},

Table 6. Number of components involved in error correction (with all errors

and without compiler detectable fauits).

: NUMBER OF MODULES ALL ERRORS W/0 COMPILER FAULTS
A5 INVOLVED _CHANGED _ EXAMINED CHANGED EXAMINED
1 173 167 35 3
2 16 20 7 9
5 2 4

3 3

Table 7. Errors classified by which tool would detect them.

ik WHICH TOOL NUMBEROF PERCENT OF
ke WOULD DETECT ERRORS TOTAL ERRORS
Compiler 148 77
BNF 80 42
Not BNF 68 35
Not Compiler 44 23
Table 8a. Number of reported errors in module.
. #ERRORS #MODULES WITH ERRORS TOTAL
- IN MODULE ADA POL ADA POL
0 SSSUJJIIII IRARNNRRR RN 1 13
1 LSSSJJJJ LLL 8 3
2 LsJ L 3 1
3 SSJ 3 0
4 $8SSJB B 8 1
5 SSJul 5 0
6 LssJ 4 0
7 SJ 2 0
- >10 LSSJJ 5 0

Table 8b. Number of reported errors in module (without faults detectable

by compiler).

st #~ERRORS - # MODULESWITH ERRORS TOTAL

%% IN MODULE ADA PDL ADA - PDL
0 LLSSSSSSSUJJIJIIIISIII LLLJJIISIIIGS 25 15
1 LLSSSSSSJJJJJIB L 15 1
2 $S4d 1B 4 2
3 SS 2.0
4 S 1 0
5 S 1 0
10 S 1 0

L: Lead programmer S: Senior programmer J: Junior programmer B: Librarian

The compiler-detectable faults are fur-
ther divided into those related to the
BNF of the language and those that
might require more information than
the BNF contains. Those faults detect-

60

able by a processor based on BNF
should be eliminated with a syntax-
oriented editor, which might also
eliminate some of the other faults.

Compiler-detectable faults have often

been removed by the time data collec-
tion begins on many projects. There-
fore, the data from which those faults
have been removed might be compar-
able to early development data in later
projects. Table 7 lists the data for this
project using this classification scheme.

Number of errors per module,
Tables 8a and b depict how many er-
rors were reported in each of the 67
modules (Ada and non-expanded
PDL). Table 8a shows the total errors
reported, and 8b itemizes the number
of errors reported in which the fault
was not detectable by a compiler. The
letters in each row indicate which pro-
grammer wrote the module. The mod-
ules with more than ten errors had 15,
11, 20, 12, and 27 reported errors,
respectively.

Further processing after project
completion showed that most of the
non-expanded PDL modules had
compiler-detectable faults even
though no errors in those modules
were reported. This‘ﬁnding indicates
that the modules were written, ex- .
panded into code, then essentially ig-
nored. The data in Tables 8a and 8b
reinforce this observation. The senior
programmer seems to have found
more of the less obvious errors than
other programmers since his modules
have more reported errors that were
not compiler-detectable.

Omission or commission. Another
type of error classification, presented
by Basili and Perricone,? divides er-
rors into the categories of omission
and commission. Errors of omission
leave out some portion of code while
errors of commission include errone-
ous or superfluous code. Table 9 pre-
sents the data for this project as well as
some of the data from Basili and Per-
ricone. Note that the percentages for
all errors from this study and in new
modules from the earlier study are
almost the same. This is probably
coincidence, since-the data was gath-
ered at different times during develop-

COMPUTER

Table 9. Comparison of errors of omission and commission.

_ERRORS _ . _RAWERRORS . ___PERCENTAGE
INVOLVED OMISSION i1 ¢ .. COMMISSION OMISSION | i | COMMISSION
This study - h
Al errors 89 103 46 54
w/o compiler fauits 23 21 52 48
Basili & Perricone
Al errors 79 143 36 64
New module errors 52 63 45 55
ment, and our data are incomplete. Table 10. Number of language, problem, and clerical errors.
This categorization will be included in . .
some of the following tabies. Errors of NUMBER OF ERRORS
omission generally will not be caught _CATEGORY L ___ALLERRORS ____ W/OCOMPILERFAULTS
by testing with a structural coverage .
criterion and may be overlooked in (anguage 160 18
code reading. Concept 8 8
Semantics 44 18
Language, problem, or clerical. We Prfglggx 122 %
developed yet another classification (jgrica - 6 0

scheme where the errors are identified
as language, problem, or clerical.
Language errors are closely related to
the use of Ada and are further classi-
fied as concept, semantics, or syntax.
A syntax error involves a misunder-
.standing or misuse of the syntax of a
feature; a semantics error involves a
misunderstanding of the meaning of a
feature in that language; and a concept
error involves a misunderstanding of a
feature’s use. The problem category
results from a misconception of the
problem domain or the environment.
Clerical errors include those due to
carelessness, e.g., typographical er-
rors. This classification is somewhat
subjective, however, since the project
monitors tried to determine what the
programmer was thinking when the er-
ror occurred.

Of the 192 error description forms
examined, 160 (83 percent) claimed
that the use of Ada contributed to the
error. As shown in Table 10, the ma-
jority of the errors were language er-
rors, and 67 percent of those were syn-
tax errors, which explains why so
many of the errors took so little time to
correct. Almost 21 syntax errors oc-

September 1985

curred per thousand lines of text (any
line containing part of an Ada state-
ment) and almost 11 syntax errors per
thousand non-blank lines.

The language-problem-clerical clas-
sification can be used in conjunction
with the document-type classification
as seen in Table 11. Not surprisingly,
most errors inveolving requirements
were problem errors, and most of the
errors involving incorrect design or
code were language-related errors.

Ada language features, Several Ada
language features were involved in er-
rors. Understanding the relationships
between errors and features may help
prevent the errors. Table 12 shows the
language features involved in errors,
with all reported errors included. In
Table 13, the errors that caused com-
piler-detectable faults have been
removed.

Low-level syntax {(e.g., semicolon,
parenthesis, assignment), loops, decla-
rations, and parameters were involved
in the most common language errors.

Several errors also involved tasks,
separate compilation, generics, and
procedures and functions. As pre-
viously stated, most of the errors were
compiler-detectable. Only eight con-
cept errors, which involved tasking,
exceptions, and packages, occurred.
Of the 44 semantics errors, nine in-
volved parameters; six, generics; five,
compilation units; four, declarations;
and three, overloading. However,
many of those could be detected by a
compiler. If the compiler-detectable
faults are removed, only 10 semantics
errors remain, and four of those in-
volve parameters.

In general, few serious errors were
reported in this project because little
testing was done. However, the data
reported suggests the types of errors to
expect when people given training
similar to that of our programmers
learn to use Ada. Similar errors might
be made when learning any new lan-
guage, however, particularly with such
a large number of new features and
concepts.

61

Table 11. Type of document vs. fanguage, problem, or clerical classification and
omission or commission classification (data excluding compiler detectable
faylts in ().

| TYPEOF DOCUMENT
AND HOW INVOLVED

LANG

" Requirements incorrect 0
Requirements misinterpreted 1(1)
Design incorrect 24(8)
Design. misinterpreted 0
Code incorrect 135(9)
External environment

misunderstood 0

PROB

NUMBER OF ERRORS
CLER _ OMISSION _ COMMISSION

22) 0 1(1) 1(1)
3(3) 0 33) 1(1)
5(5) 0 14(6) 15(7)

0 0 0 0
16(16) 0 70(13) 81(12)
0 0 0 0

0- 6(0) 1(0) 5(0)

321)

S

NUMBER OF ERRORS

_.SYN OM COM TOTAL

if
Begin/end
. Retumn

. Scoping
Typing
Aggregate
Arrays
Records
Declarations
Parameters
Procedures & functions

- Access typa
Tasking
Exceptions
Generics
Packages
Compilation units
Aftributes
Pragmas
.Overtoading

Ada use

A description of how the language is
used is the fourth goal. Since Ada is
complex; it was thought that the pro-

62

17
12
4

17 13
12 9
4

vy

B LOMN 4 YN0 WOANABNOR B DI ALADN AU NN

—
CONI AN O N b U b (IR G d N b ek et B IR — 8N D

WN 2 UIOMOO - NOBRNNNOOODOONNOODOOCO

HOOOMN =N DBONUOMNOMNOOIN B0 2L H

P U NWORORNWNN OO “OWR -~ MW N

4

]
-
e~

grammers might begin with a subset of
the language. Ada also supports a
number of software engineering con-
cepts such as information hiding and
abstraction. Assessing Ada use might

aid in the evaluation and modification
of training in Ada concepts and ap-
plications. In addition, tools might be
developed to help people learn to use
Ada’s more unusual features,

By examining its simplest features,
we discovered that except for the goto
and code statements and representa-
tion clauses, the programmers used all
of Ada’s syntactic features. Tasking,
generics, packages, exceptions, and
overloading ‘along with pragmas,
aborts, and delays were used nominal-
ly. However, when the system was
designed, the programmers did not
know how to use these concepts on this
application. Therefore, they might
have been uncomfortable basing their
design on some of Ada’s more ad-
vanced features. If the programmers
had more examples within their appli-
cation domain, they might be able to
take advantage of these features.

We also looked at the use of pack-
ages in the system to determine
whether concepts such as data encap-
sulation and information hiding were
used effectively. The senior and junior
programmers defined 11 packages for
use with this project; however, the lead
programmer and librarian defined
none. Two of those 11 packages served
as definition common blocks; three
were libraries of functions; four de-
fined encapsulated data types export-
ing private-type definitions and opera-
tions; and the remaining two defined
types but exported the representation
of the type. Of the four packages
which defined encapsulated data
types, two were device drivers and one
was a mathematical function; the re-
maining package definition had no
corresponding body. This indicates
that no new encapsulated data types
were defined. The programmers used
packages for types they had used in
other languages. While globally visi-
ble, many of these packages were not
needed globally, indicating that the
programmers did not understand the
concept of information hiding. Gan-

COMPUTER

non describes the use of packages in
greater detail.?

Most programmers are not ac-
customed to high-level language sup-
port for their concurrency needs.
Familiarity with concurrency in
another language would be of little
benefit, however, as Ada uses an
unusual model, rendezvous and tasks,
for concurrency. We wanted to know
how tasks were used in this system.
Although the system was designed
with communicating tasks, they were
at a high level and had little com-
munication. Ten tasks were defined:
one by the lead programmer, four by
the senior programmer, and five by the
junior programmer. Except for two
cases, each task had only one or two
entries, and since the systemn was not
tested, it is difficult to know whether
this use was appropriate or, indeed, if
it worked. Only further experience
with tasks would determine their use.
Training in tasks, like packages,
should probably include examples
from the appropriate application
domain.

We also sought an understanding of
* the exceptions used. However, it re-
mains unclear when exceptions should
be handled in the module raising them
and when they should be propagated.
Nevertheless, the programmers tried
to use exceptions, if only for passing
back error codes. Twenty-one of the
non-package modules had exception
handlers, and exceptions were raised
explicitly in 17 modules. Without
knowing whether the system runs, it is
difficult to ascertain whether this use
of exceptions is sufficient or ap-
propriate.

The results of this portion of the
study are mixed. While the program-
mers used many features of the lan-
guage, it is difficult to determine
whether that use was nominal or ap-
propriate. Furthermore, we know little
about how Ada should be used. Most
examples in the literature are too small
to compare with this project. How-

September 1985

Table 13. Errors categorized by Ada language feature (without compiler

detectable faults).

| ADALANGUAGE NUMBEROF ERRORS ,

i FEATURE CONCEPT SEMANTICS OMISSION COMMISSION TOTAL
Loop 0 2 2 0 2
Arrays 0 1 0 1 1
Parameters 0 4 0 4 4
Procedures &

functions 0 1 1 0 1

Tasking 5 0 2 3 5
Exceptions 2 0 0 2 2
Ganerics 0 2 2 0 2
Packages 1 0 1 0 1
[Totals 8 10 8 10 18 |

ever, no discernible subset was de-
fined. Other than the code statements
and representation clauses, which were
not needed for this application, most
of the language was used. Therefore,
use of a “‘subset compiler”’ would not
have been appropriate and might have
limited the programmers’ design of the
system.

Programmer differences

The fifth goal discussed includes a

description and evaluation of the dif-
ferences between programmers and
their use of Ada. Programmers with
varied backgrounds might use Ada
differently and might make different
types of errors. If these differences are
significant, they might suggest dif-
ferences to be seen in other environ-
ments. They might also suggest how to
tailor training to meet the needs of pro-
grammers with varied backgrounds.
We found that the programmers
used most of the language in basically
the same way. The librarian wrote so
little code that drawing any conclu-
sions about that code or programmer
would be presumptuous. Other than
their definition and use of packages,
the other programmers’ code is basi-
cally indistinguishable, Either we do
not have the appropriate techniques

for examining their code or they
worked so closely together that their
individual differences are hidden.

Productivity is one area where some
differences between programrmers sur-
faced. While the rest of the program-
ming team produced 7.3 lines of code
per hour spent in design and code de-
velopment, the senior programmer
produced 16.5 lines per hour. By all
reasonable measufes of productivity,
the senior programmer was most pro-
ductive. The junior programnmer was
somewhat more productive than the
lead programmer and the librarian.
The fact that the junior and senior pro-
grammers wrote the most code and
became most familiar with Ada may
explain the disparities in performance.

The only marked difference among
programmers’ errors was that the
junior programmer made the most
language, and particularly syntax, er-
rors. However, he performed the most
code testing and therefore had the
greatest opportunity to discover er-
rors. He also-had the most extensive
background in software engineering
methodology, which seemed to help
him understand how to use Ada and
offset his lack of experience in the ap-
plication area.

Overall, the programmers seemed
to write code using the features of the

63

language they thought they knew best.
The senior and junior programmers,
who had varied language experience,
used the more Ada-like features such
as packages, but the lead programmer
also used tasking and generics. The li-
brarian, with little language experi-
ence, used a simple subset of Ada. He
only wrote two modules, which re-
quired only a subset of Ada. None of
the programmer s made errors remark-
ably different from those of the others,
although further testing might have
shown otherwise, Productivity ap-
pears to be the only aspect of this proj-
ect that could be used to differentiate
programmers.

Ithough the project ended before
development was complete, the
results indicate what might happen in
early stages of development in other
projects. A number of results from this
project might prevent others from
making costly management mistakes.
Above all, it should be noted that
learning Ada takes time, a factor that
will influence any estimate of effort
for early projects using Ada. Training
will probably have to continue as team
members learn the finer points of the
language.

Ada is more than syntax and simple
examples. The underlying software en-
gineering concepts must be taught in
conjunction with the support Ada pro-
vides for those concepts. Examples
from the relevant problem domain will
help students fit Ada into their en-
vironment. Since most programmers
are not familiar with the methodol-
ogies developed in the 70’s, which Ada
supports, training in software engi-
neering methodology and its use in the
environment of a particular applica-
tion is an absolute necessity.

How Ada should be used remains
unclear. Ideally, our understanding of
the software engineering concepts that
Ada supports would simplify its use.
However, many people learn by exam-
ple, and good examples are lacking.

64

We neither know how nor when to use
exceptions, tasks, and generics, and
can only gain this knowledge by study-
ing various alternatives and showing
how they work with examples from
various environments. In this respect,
the project has raised more questions
than it has answered.

Design alternatives must be investi-
gated. The design for this project was
functional and more like than unlike
the earlier Fortran design. A group at
General Electric developed an object-
oriented design for the same project,®
and it is not clear which design, if
either, is most appropriate. Just as a
combination of top-down and bot-
tom-up development is appropriate to
many applications, a combination of
functional and object-oriented design
might well be most appropriate. Only
by determining which design type, or
combination of types, is best suited to
the particular application can we teach
people which design approach to use.
Without such-training, programmers
must rely on their experience with
other languages and will probably pro-
duce functional designs.

Proper tool support is mandatory.
This project was undertaken without a
production-quality validated compil-
er——a necessary tool. Likewise, a lan-
guage-oriented editor, capable of
eliminating 60 percent of the observed
errors, would have been desirable.
Such an editor would have freed the
programmers to concentrate on the
logic errors that undoubtedly remain
in the design and code. Such an editor
would ‘have dramatically reduced the
error rate. Other useful tools for this
project would be data dictionaries, call
structure and compilation dependency
tools, cross references, and other
means of obtaining multiple views of
the system. A PDL processor with in-
terface checks, definition and use rela-
tion lists, and various metrics would
also have aided in the early stages of
development.

Some methodology must be fol-

lowed for a project to be successful,
and programmers must undersiand
the methodology and tools before the
project begins. In this case, the lack of
useful tools proved troublesome. In
addition, the PDL was loosely defined
until after design began. Effective
design reading might have caught
many errors. If we had tested this proj-
ect after a compiler became available,
a test plan created. after the require-
ments were completed would have
been necessary. However, that aspect
of the methodology was deemed unim-
portant. Language is only one aspect
of the environment and methodology.
It cannot save a project in which the
rest of the methodology is ignored.

We believe this project is atypical
since it was not finished and no compil-
er was available. However, it is typical
in that training consumed an enormous
amount of effort, and the programmers
were not familiar with the underlying
software engineering concepts of Ada.
In this respect, it resembled the begin-
ning of many projects. Also of note,
the learning curve'ig methodology is
quite large. As we study more projects
that use ' Ada, we will learn how to both
teach and use it and discover how to re-
duce mistakes. In the meantime, we
know that using Ada will be difficult at
first, but in time its use will make us
more effective in applying existing
software engineering techniques to
ease the .programming process and
thereby increase the quality of the
product. []

Acknowledgments

Elizabeth Kruesi Bailey, John W.
Bailey, John D. Gannon, Sylvia B.
Sheppard, and Marvin V. Zelkowitz
were.the other monitors of this project
and contributed to the work reported
here. The authors would also like to
thank the other members of our re-
search group, particularly David H.

COMPUTER

-

Hutchens, James T. Ramsey, and
Richard W. Selby, Jr., for numerous
enlightening discussions concerning
this project. Research for this study
was supported in part by the Office of
Naval Research and the Ada Joint Pro-
gram Office under grant N00014-82-K-
0225 to the University of Maryland.

References

1. V.R. Basili and E. E. Katz, “Metrics
of Interest in an Ada Development,”’
IEEE Workshop on Software Engi-
neering Technology Transfer, Miami,
FL, Apr. 1983, pp. 22-29.

2. J. D. Gannon, E. E. Katz, and V. R,
Basili, ‘“‘Characterizing Ada Pro-
grams: Packages,”’ The Measurement
of Computer Software Performance,
Los Alamos National Laboratory,
Aug. 1983.

3. V. R, Basili et al,, ““A Quantitative
Analysis of a Software Development
in Ada,’’ University of Maryland tech.
report UOM-1403, 1984.

4. V. R. Basili and D. M. Weiss, “A
Methodology for Collecting Valid
Software Engineering Data,’”’ [EEE
Trans. Software Engineering, Vol.
SE-10, No. 6, Nov. 1984, pp. 728-738.

5. J. W. Bailey, ““Teaching Ada: A
Comparison of Two Approaches,”
First Washington Symposium on Ada
Acquisition Management, ACM,
Laurel, MD, March 6, 1984.

6. M. V. Zelkowitz et al., “Software
Engineering Practices in the US and
Japan,” Computer, Vol. 17, No. 6,
June 1984, pp. 57-66.

7. IEEE Standard Glossary of Software
Engineering Terminology, 1EEE-
STD-729-1983, IEEE, New York,
1983.

8. V. R. Basili and B. T. Perricone,
“Software Errors and Complexity:
An Empirical Investigation," Comm.
ACM, Vol. 27, No. 1, Jan. 1984, pp.
42-52.

9. A. G. Duncan et al., “Communica-
tions System Design Using Ada,”’
Proc. Seventh Int’l. Conf. Software
Engincering, 1984, pp. 398407,

September 1985

Victor R. Basili is professor and chairman
of the Computer Science Department at the
University of Maryland. He is currently
measuring ard evaluating software devel-
opment in industrial settings.

Basili was involved in the design and
development of several software projects,
including the SIMPL family of program-
ming languages. He has authored over 60
published papers. In 1982, he received the
Outstanding Paper Award from the /EEE
Transactions on Software Engineering. He
was program chairman for both the Sixth
International Conference on Software
Engineering and the First ACM SIGSOFT
Software Engineering Symposium on
Tools and Methodogy Evaluation, and
serves on the editorial boards of the Journal
of Systems and Software and the IEEE
Transactions on Software Engineering. He
is a member of the ACM and the executive
committee of the Technical Committee on
Software Engineering, and is a senior
member of the IEEE CS.

Elizabeth E. Katz’s research interests in-
clude the measurement and evaluation of
the effect of various tools and techniques
on the software development process and
its product, as well as the development of
such tools and techniques. Her current
focus is on measures for developments
using Ada. She received a BS degree in
computer science and English from the
College of William and Mary in 1981, an
MS in computer science from the Universi-
ty of Maryland in 1983, and is now working
toward her PhD at Maryland. She is a stu-
dent member of ACM and IEEE.

Nora Monina Panlilio-Yap is a research -
assistant at the University of Maryland. Her
area of research is software engineering.
She obtained the BS in chemical engineer-
ing from the University of the Philippines
in 1976, and the MA in computer science
from Duke University in 1982. She is cur-
rently working towards the PhD in com-
puter science at the University of Maryland.
She was a World Fellowship recipient of the
Delta Kappa Gamma Society International
from 1979 to 1984 and has been an Interna-
tional Fulbright Scholar since 1979,

Counie Loggia Ramsey is a doctoral can-
didate and research assistant in computer
science at the University of Maryland, Col-
lege Park. Her research interests include the
development of expert systems for software
engineering. She received her BA in biology
from the State University of New York at
Binghamton in 1979. '

Shik Chang is interested in software
development techniques and tools. He
received a BS degree in computer science
from the University of Maryland in 1983,
where he is currently a graduate student in
computer science. He is a student member
of the ACM and IEEE Computer Society.

Questions about this article can be directed to Victor R. Basili, Dept. of Computer Science,
University of Maryland, College Park, MD 20742.

65

