IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 7, JULY 1986

733

Experimentation in Software Engineering

VICTOR R. BASILI, seniorR MEMBER, 1EEE, RICHARD W. SELBY, MEMBER, IEEE, AND
DAVID H. HUTCHENS, MEMBER, IEEE

Abstract—Experimentation in software engineering supports the ad-
vancement of the field through an iterative learning process. In this
paper we present a framework for analyzing most of the experimental
work performed in software engineering over the past several years.
We describe a variety of experiments in the framework and discuss
their contribution to the software engineering discipline. Some useful
recommendations for the application of the experimental process in
software engineering are included.

Index Terms—Controlled experiment, data collection and analysis,
empirical study, experimental design, software metrics, software tech-
nology measurement and evaluation.

I. INTRODUCTION

S any area matures, there is the need to understand

its components and their relationships. An experi-
mental process provides a basis for the needed advance-
ment in knowledge and understanding. Since software en-
gineering is in its adolescence, it is certainly a candidate
for the experimental method of analysis. Experimentation
is performed in order to help us better evaluate, predict,
understand, control, and improve the software develop-
ment process and product.

Experimentation in software engineering, as with any
other experimental procedure, involves an iteration of a
hypothesize and test process. Models of the software pro-
cess or product are built, hypotheses about these models
are tested, and the information learned is used to refine
the old hypotheses or develop new ones. In an area like
software engineering, this approach takes on special im-
portance because we greatly need to improve our knowl-
edge of how software is developed, the effect of various
technologies, and what areas most need improvement.
There is a great deal to be learned and intuition is not
always the best teacher.

In this paper we lay out a framework for analyzing most
of the experimental work that has been performed in soft-

Manuscript received July 15, 1985: revised January 15, 1986. This work
was supported in part by the Air Force Office of Scientific Rescarch under
Contract AFOSR-F49620-80-C-001 and by the National Acronautics and
Space Administration under Grant NSG-5123 to the University of Mary-
land. Computer support was provided in part by the Computer Science
Center at the University of Maryland.

V. R. Basili is with the Department of Computer Science. University of
Maryland, College Park, MD 20742.

R. W. Selby was with the Department of Computer Science. University
of Maryland, College Park, MD 20742. He is now with the Department of
Information and Computer Science, University of California, Irvine, CA
92717.

D. H. Hutchens is with the Department of Computer Science, Clemson
University, Clemson, SC 29634.

IEEE Log Number 8608188.

ware engineering over the past several years. We then dis-
cuss a variety of these experiments, their results, and the
impact they have had on our knowledge of the software
engineering discipline.

II. OBIECTIVES

There are three overall goals for this work. The first
objective is to describe a framework for experimentation
in software engineering. The framework for experimen-
tation is intended to help structure the experimental pro-
cess and to provide a classification scheme for under-
standing and evaluating experimental studies. The second
objective is to classify and discuss a variety of experi-
ments from the literature according to the framework. The
description of several software engineering studies is in-
tended to provide an overview of the knowledge resulting
from experimental work, a summary of current research
directions, and a basis for learning from past experience
with experimentation. The third objective is to identify
problem areas and lessons learned in experimentation in
software engineering. The presentation of problem areas
and lessons learned is intended to focus attention on gen-
eral trends in the field and to provide the experimenter
with useful recommendations for performing future stud-
ies. The following three sections address these goals.

III. EXPERIMENTATION FRAMEWORK

The framework of experimentation, summarized in Fig.
1, consists of four categories corresponding to phases of
the experimentation process: 1) definition, 2) planning, 3)
operation, and 4) interpretation. The following sections
discuss each of these four phases.

A. Experiment Definition

The first phase of the experimental process is the study
definition phase. The study definition phase contains six
parts: 1) motivation, 2) object, 3) purpose, 4) perspec-
tive, 5) domain, and 6) scope. Most study definitions con-
tain each of the six parts; an example definition appears
in Fig. 2.

There can be several motivations, objects, purposes, or
perspectives in an experimental study. For example, the
motivation of a study may be to understand, assess, or
improve the effect of a certain technology. The ‘‘object
of study’’ is the primary entity examined in a study. A
study may examine the final software product, a devel-
opment process (e.g., inspection process, change pro-
cess), a model (e.g., software reliability model), etc. The

0098-5589/86/0700-0733$01.00 © 1986 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 7. JULY 1986

I. Definition

Motivation Object Purpose Perapective Domain Scope
Understand | Product Characterize | Developer Programmer Single project
Assess Process Evaluate Modifier Program/project {Multi-project
Manage Model Predict Maintainer Replicated project
Engineer Metric Motivate Project manager Blocked subject-project
Learn Theory Corporate manager
Improve Customer
Validate User
Assure Researcher
II. Planning
Design Criteria Measurement

Experimental designs
Incomplete block

Direct reflections of cost/quality
Cost

Metric definition
Goal-question-metric
Factor-criteria-metric

Completely randomized Errors

Randomized block Changes

Fractional factorial Reliability
Multivariate analysis Correctness

Metric validation
Data collection
Automatability

Correlation Indirect reflections of cost/quality Form design and test

Factor analysis Data coupling Objective vs. subjective

Regression Information visibility Level of measurement
Statistical models Programmer comprehension Nominal/classificatory
Non-parametric Execution coverage Ordinal/ranking
Sampling Size Interval

Complexity Ratio
III. Operation
Preparation Execution Analysis

Pilot study Data collection

Data validation

Quantitative vs. qualitative

Preliminary data analysis
Plots and histograms
Model assumptions

Primary data analysis
Model application

1V. Interpretation

Interpretation context Extrapolation Impact
Statistical framework Sample representativeness Visibility
Study purpose Replication
Field of research Application
Fig. 1. Summary of the framework of experimentation.
Definition element example .
Motivation To improve the unit testing process, #Teams per #Projects
Purpose characterize and evaluate project h
Object the processes of functional and structural testing one more than one
Perspective from the perspective of the developer
Domain: programmer | as they are applied by experienced programmers one Single project | Multi-project
Domain: program to unit-size software variation
Scope in a blocked subject-project study.
Fig. 2. Study definition example. more than Replicated Blocked
one project subject-project

purpose of a study may be to characterize the change in a
system over time, to evaluate the effectiveness of testing
processes, to predict system development cost by using a
cost model, to motivate' the validity of a theory by ana-
lyzing empirical evidence, etc. In experimental studies
that examine **software quality,”” the interpretation usu-
ally includes correctness if it is from the perspective of a
developer or reliability if it is from the perspective of a
customer. Studies that examine metrics for a given project
type from the perspective of the project manager may in-
terest certain project managers, while corporate managers
may only be interested if the metrics apply across several
project types. ‘

"For clarification. the usage of the word “"motivate™ as a study purpose
is distinct from the study “motivation. ™

Fig. 3. Experimental scopes.

Two important domains that are considered in experi-
mental studies of software are 1) the individual program-
mers or programming teams (the ‘‘teams’") and 2) the
programs or projects (the *‘projects’). *‘Teams’ are
(possibly single-person) groups that work separately. and
“‘projects’’ are separate programs or problems on which
teams work. Teams may be characterized by experience,
size, organization, etc., and projects may be character-
ized by size, complexity, application. etc. A general clas-
sification of the scopes of experimental studies can be ob-
tained by examining the sizes of these two domains
considered (see Fig. 3). Blocked subject-project studies
examine one or more objects across a set of teams and a
set of projects. Replicated project studies examine ob-

BASILI ez al.: EXPERIMENTATION IN SOFTWARE ENGINEERING

ject(s) across a set of teams and a single project, while
multiproject variation studies examine object(s) across a
single team and a set of projects. Single project studies
examine object(s) on a single team and a single project.
As the representativeness of the samples examined and
the scope of examination increase, the wider-reaching a
study’s conclusions become.

B. Experiment Planning

The second phase of the experimental process is the
study planning phase. The following sections discuss as-
pects of the experiment planning phase: 1) design, 2) cri-
teria, and 3) measurement.

The design of an experiment couples the study scope
with analytical methods and indicates the domain samples
to be examined. Fractional factorial or randomized block
designs usually apply in blocked subject-project studies,
while completely randomized or incomplete block designs
usually apply in multiproject and replicated project stud-
ies [33], [41]. Multivariate analysis methods, including
correlation, factor analysis, and regression {75], [80],
[89], generally may be used across all experimental
scopes. Statistical models may be formulated and custom-
ized as appropriate [89]. Nonparametric methods should
be planned when only limited data may be available or
distributional assumptions may not be met [100]. Sam-
pling techniques [40] may be used to select representative
programmers and programs/projects to examine.

Different motivations, objects, purposes, perspectives,
domains, and scopes require the examination of different
criteria. Criteria that tend to be direct reflections of cost/
quality include cost [114], [108], [86], [5], [28], errors/
changes [49], [24], [112], [2], [81], [13], reliability [42],
[64], [56], [69], [70], [76], [77], [95], and correctness
[51], [61], [68]. Criteria that tend to be indirect reflec-
tions of cost/quality include data coupling [62], [48],
[104], {78], information visibility [85], {83], [55], pro-
grammer understanding [99], [103], [109], [113], exe-
cution coverage [105], [15], [18], and size/complexity
[11], [59], [71].

The concrete manifestations of the cost/quality aspects
examined in the experiment are captured through mea-
surement. Paradigms assist in the metric definition pro-
cess: the goal-question-metric paradigm [17], [25], [19],
[93] and the factor-criteria-metric paradigm {39], [72].
Once appropriate metrics have been defined, they may be
validated to show that they capture what is intended [7],
[21], [45], [50], [108], [116]. The data collection process
includes developing automated collection schemes [16]
and designing and testing data collection forms [25], {27].
The required data may include both objective and subjec-
tive data and different levels of measurement: nominal (or
classificatory), ordinal (or ranking), interval, or ratio
[100].

C. Experiment Operation

The third phase of the experimental process is the study
operation phase. The operation of the experiment consists

735

of 1) preparation, 2) execution, and 3) analysis. Before
conducting the actual experiment, preparation may in-
clude a pilot study to confirm the experimental scenario,
help organize experimental factors (e.g., subject exper-
tise), or inoculate the subjects [45], [44], [63], [18],
[113], [73]. Experimenters collect and validate the de-
fined data during the execution of the study [21], [112].
The analysis of the data may include a combination of
quantitative and qualitative methods {30]. The prelimi-
nary screening of the data, probably using plots and his-
tograms, usually precedes the formal data analysis. The
process of analyzing the data requires the investigation of
any underlying assumptions (e.g., distributional) before
the application of the statistical models and tests.

D. Experiment Interpretation

The fourth phase of the experimental process is the
study interpretation phase. The interpretation of the ex-
periment consists of 1) interpretation context, 2) extrap-
olation, and 3) impact. The results of the data analysis
from a study are interpreted in a broadening series of con-
texts. These contexts of interpretation are the statistical
framework in which the result is derived, the purpose of
the particular study, and the knowledge in the field of re-
search [16]. The representativeness of the sampling ana-
lyzed in a study qualifies the extrapolation of the results
to other environments [17]. Several follow-up activities
contribute to the impact of a study: presenting/publishing
the results for feedback, replicating the experiment [33],
[41], and actually applying the results by modifying
methods for software development, maintenance, man-
agement, and research.

IV. CLASSIFICATION OF ANALYSES

Several investigators have published studies in the four
general scopes of examination: blocked subject-project,
replicated project, multiproject variation, or single proj-
ect. The following sections cite studies from each of these
categories. Note that surveys on experimentation meth-
odology in empirical studies include [35], [96], [74], [98].
Each of the sections first discusses one experiment in
moderate depth, using italicized keywords from the
framework for experimentation, and then chronologically
presents an overview of several others in the category. In
any survey of this type it is almost certain that some de-
serving work has been accidentally omitted. For this, we
apologize in advance.

A. Blocked Subject-Project Studies

With a motivation to improve and better understand unit
testing, Basili and Selby [18] conducted a study whose
purpose was to characterize and evaluate the processes
(i.e., objects) of code reading, functional testing, and
structural testing from the perspective of the developer.
The testing processes were examined in a blocked sub-
ject-project scope, where 74 student through professional
programmers (from the programmer domain) tested four
unit-size programs (from the program domain) in a rep-

736 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 7, JULY 1986

licated fractional factorial design. Objective measurement
of the testing processes was in several criteria areas: fault
detection effectiveness, fault detection cost, and classes
of faults detected. Experiment preparation included a pi-
lot study [63], execution incorporated both manual and
automated monitoring of testing activity, and analysis
used analysis of variance methods [33], [90]. The major
results (in the interpretation context of the study purpose)
included: 1) with the professionals, code reading detected
more software faults and had a higher fault detection rate
than did the other methods; 2) with the professionals,
functional testing detected more faults than did structural
testing, but they were not different in fault detection rate;
3) with the students, the three techniques were not differ-
ent in performance, except that structural testing detected
fewer faults than did the others in one study phase; and
4) overall, code reading detected more interface faults and
functional testing detected more control faults than did the
other methods. A major result (in the interpretation con-
text of the field of research) was that the study suggested
that nonexecution based fault detection, as in code read-
ing, is at least as effective as on-line methods. The par-
ticular programmers and programs sampled qualify the
extrapolation of the results. The impact of the study was
an advancement in the understanding of effective software
testing methods.

In order to understand program debugging, Gould and
Drongowski [58] evaluated several related factors, in-
cluding effect of debugging aids, effect of fault type, and
effect of particular program debugged from the perspec-
tive of the developer and maintainer. Thirty experienced
programmers independently debugged one of four one-
page programs that contained a single fault from one of
three classes. The major results of these studies were: 1)
debugging is much faster if the programmer has had pre-
vious experience with the program, 2) assignment bugs
were harder to find than other kinds, and 3) debugging
aids did not seem to help programmers debug faster. Con-
sistent results were obtained when the study was con-
ducted on ten additional experienced programmers [57].
These results and the identification of possible *‘princi-
ples’” of debugging contributed to the understanding of
debugging methodology.

In order to improve experimentation methodology and
its application, Weissman [113] evaluated programmers’
ability to understand and modify a program from the per-
spective of the developer and modifier. Various measures
of programmer understanding were calculated, in a series
of factorial design experiments, on groups of 16-48 uni-
versity students performing tasks on two small programs.
The study emphasized the need for well-structured and
well-documented programs and provided valuable testi-
mony on and worked toward a suitable experimentation
methodology.

In order to assess the impact of language features on
the programming process, Gannon and Horning [54] char-
acterized the relationship of language features to software
reliability from the perspective of the developer. Based

on an analysis of the deficiencies in a programming lan-
guage, nine different features were modified to produce a
new version. Fifty-one advanced students were divided
into two ‘groups and asked to complete implementations
of two small but sophisticated programs (75-200 line) in
the original language and its modified version. The rede-
signed features in the two languages were contrasted in
program fault frequency, type, and persistenice. The ex-
periment identified several language-design decisions that
significantly affected reliability, which contributed to the
understanding of language design for reliable software.

In order to understand the unit testing process better,
Hetzel [60] evaluated a reading technique and functional
and “‘selective’” testing (a composite approach) from the
perspective of the developer. Thirty-nine university stu-
dents applied the techniques to three unit-size programs
in a Latin square design. Functional and ‘‘selective’’ test-
ing were equally effective and both superior to the reading
technique, which contributed to our understanding of test-
ing methodology.

In order to improve and better understand the mainte-
nance process, Curtis ef al. [44] conducted two experi-
ments to evaluate factors that influence two aspects of
software maintenance, program understanding, and mod-
ification, from the perspective of the developer and main-
tainer. Thirty-six junior through advanced professional
programmers in each experiment examined three classes
of small (36-57 source line) programs in a factorial de-
sign. The factors examined include control flow complex-
ity, variable name mnemonicity, type of modification, de-
gree of commenting, and the relationship of programmer
performance to various complexity metrics. In [45] they
continued the investigation of how software characteris-
tics relate to psychological complexity and presented a
third experiment to evaluate the ability of 54 professional
programmers to detect program bugs in three programs in
a factorial design. The series of experiments suggested
that software science {59] and cyclomatic complexity [71]
measures were related to the difficulty experienced by
programmers in locating errors in code.

In order to improve and better understand program de-
bugging, Weiser [110] evaluated the theory that ‘‘pro-
grammers use ‘slicing’ (stripping away a program’s state-
ments that do not influence a given variable at a given
statement) when debugging’’ from the perspective of the
developer, maintainer, and researcher. Twenty-one uni-
versity graduate students and programming staff de-
bugged a fault in three unit-size (75-150 source line) pro-
grams in a nonparametric design. The study results
supported the slicing theory, that is, programmers during
debugging routinely partitioned programs into a coherent,
discontiguous piece (or slice). The results advanced the
understanding of software debugging methodology.

In order to improve design techniques, Ramsey, At-
wood, and Van Doren [87] evaluated flowcharts and pro-
gram design languages (PDL) from the perspective of the
developer. Twenty-two graduate students designed two
small (approximately 1000 source line) projects, one using

BASILI et al.: EXPERIMENTATION IN SOFTWARE ENGINEERING

flowcharts and the other using PDL. Overall, the results
suggested that design performance and designer-pro-
grammer communication were better for projects using
PDL.

In order to validate a theory of programming knowl-
edge, Soloway and Ehrlich {102] conducted two studies,
using 139 novices and 41 professional programmers, to
evaluate programmer behavior from the perspective of the
researcher. The theory was that programming knowledge
contained programming plans (generic program fragments
representing common sequences of actions) and rules of
programming discourse (conventions used in composing
plans into programs). The results supported the existence
and use of such plans and rules by both novice and ad-
vanced programmers.

Other blocked subject-project studies include [82],
[115], and [111].

B. Replicated Project Studies

With a motivation to assess and better understand team
software development methodologies, Basili and Reiter
[16] conducted a study whose purpose was to characterize
and evaluate the development processes (i.e., objects) of
a 1) disciplined-methodology team approach, 2) ad hoc
team approach, and 3) ad hoc individual approach from
the perspective of the developer and project manager. The
development processes were examined in a replicated
project scope, in which advanced university students
comprising seven three-person teams, six three-person
teams, and six individuals (from the programmer domain)
used the approaches, respectively. They separately de-
veloped a small (600-2200 line) compiler (from the pro-
gram domain) in a nonparametric design. Objective mea-
surement of the development approaches was in several
criteria areas: number of changes, number of program
runs, program data usage, program data coupling/bind-
ing, static program size/complexity metrics, language
usage, and modularity. Experiment preparation included
presentation of relevant material [68], [8], [34], execution
included automated monitoring of on-line development
activity and analysis used nonparametric comparison
methods. The major results (in the interpretation context
of the study purpose) included: 1) the methodological dis-
cipline was a key influence on the general efficiency of
the software development process; 2) the disciplined team
methodology significantly reduced the costs of software
development as reflected in program runs and changes;
and 3) the examination of the effect of the development
approaches was accomplished by the use of quantitative,
objective, unobtrusive, and automatable process and
product metrics. A major result (in the interpretation con-
text of the field of research) was that the study supported
the belief that incorporating discipline in software devel-
opment reflects positively on both the development pro-
cess and final product. The particular programmers and
program sampled qualify the extrapolation of the results.
The impact of the study was an advancement in the un-

737

derstanding of software development methodologies and
their evaluation.

In order to improve the design and implementation pro-
cesses, Parnas [84] evaluated system modularity from the
perspective of the developer. Twenty university under-
graduates each developed one of four different types of
implementations for one of five different small modules.
Then each of the modules were combined with others to
form several versions of the whole system. The results
were that minor effort was required in assembling the sys-
tems and that major system changes were confined to
small, well-defined subsystems. The results supported the
ideas on formal specifications and modularity discussed
in [83] and [85], and advanced the understanding of de-
sign methodology.

In order to assess the impact of static typing of pro-
gramming languages in the development process, Gannon
[53] evaluated the use of a statically typed language (hav-
ing integers and strings) and a ‘‘typeless’’ language (e.g.,
arbitrary subscripting of memory) from the perspective of
the developer. Thirty-eight students programmed a small
(48-297 source line) problem in both languages, with half
doing it in each order. The two languages were compared
in the resulting program faults, the number of runs con-
taining faults, and the relation of subject experience to
fault proneness. The major result was that the use of a
statically typed language can increase programming reli-
ability, which improved our understanding of the design
and use of programming languages.

In order to improve program composition, comprehen-
sion, debugging, and modification, Shneiderman [99]
evaluated the use of detailed flowcharts in these tasks from
the perspective of the developer, maintainer, modifier, and
researcher. Groups of 53-70 novice through intermediate
subjects, in a series of five experiments, performed var-
ious tasks using small programs. No significant differ-
ences were found between groups that used and those that
did not use flowcharts, questioning the merit of using de-
tailed flowcharts.

In order to improve and better understand the unit test-
ing process, Myers [79] evaluated the techniques of three-
person walk-throughs, functional testing, and a control
group from the perspective of the developer. Fifty-nine
junior through advanced professional programmers ap-
plied the techniques to test a small (100 source line) but
nontrivial program. The techniques were not different in
the number of faults they detected, all pairings of tech-
niques were superior to single techniques, and code re-
views were less cost-effective than the others. These re-
sults improved our understanding of the selection of
appropriate software testing techniques.

In order to validate a particular metric family, Basili
and Hutchens [11] evaluated the ability of a proposed
metric family to explain differences in system develop-
ment methodologies and system changes from the per-
spective of the developer, project manager, and re-
searcher. The metrics were applied to 19 versions of a
small (600-2200) compiler, which were developed by

738

teams of advanced university students using three differ-
ent development approaches (see the first study [16] de-
scribed in this section). The major results included: 1) the
metrics were able to differentiate among projects devel-
oped with different’development methodologies; and 2)
the differences among individuals had a large effect on the
relationships between the metrics and aspects of system
development. These results provided insights into the for-
mulation and appropriate use of software metrics.

In order to improve the understanding of why software
errors occur, Soloway et al. [65], [101] characterized pro-
grammer misconceptions, cognitive strategies, and their
manifestations as bugs in programs from the perspective
of the developer and researcher. Two hundred and four
novice programmers separately attempted implementa-
tions of an elementary program. The results supported the
programmers’ intended use of ‘‘programming plans®’
[103] and revealed that most people preferred a read-pro-
cess strategy over a process-read strategy. The results ad-
vanced the understanding of how individuals write pro-
grams, why they sometimes make errors, and what
programming language constructs should be available.

In order to understand the effect of coding conventions
on program comprehensibility, Miara et al. [73] con-
ducted a study to evaluate the relationship between inden-
tation levels and program comprehension from the per-
spective of the developer. Eighty-six novice through
professional subjects answered questions about one of
seven program variations with different level and type of
indentation. The major result was that an indentation level
of two or four spaces was preferred over zero or six
spaces.

In order to improve software development approaches,
Boehm, Gray, and Seewaldt [29] characterized and eval-
uated the prototyping and specifying development ap-
proaches from the perspective of the developer, project
manager, and user. Seven two- and three-person teams,
consisting of university graduate students, developed ver-
sions of the same application software system (2000-4000
line); four teams used a requirement/design specifying
approach and three teams used a prototyping approach.
The systems developed by prototyping were smaller, re-
quired less development effort, and were easier to use.
The systems developed by specifying had more coherent
designs, more complete functionality, and software that
was easier to integrate. These results contributed to the
understanding of the merits and appropriateness of soft-
ware development approaches.

In order to validate the theoretical model for N-version
programming [3], [66], Knight and Leveson [67] con-
ducted a study to evaluate the effectiveness of N-version
programming for reliability from the perspective of the
customer and user. N-version programming uses a high-
level driver to connect several separately designed ver-
sions of the same system, the systems ‘*vote’’ on the cor-
rect solution, and the solution provided by the majority of
the systems is output. Twenty-seven graduate students
were asked to independently design an 800 source line

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 7, JULY 1986

system. The factors examined included individual system
reliability, total N-version system reliability, and classes
of faults that occurred in systems simultaneously. The
major result was that the assumption of independence of
the faults in the programs was not justified, and therefore,
the reliability of the combined *‘voting’’ system was not
as high as given by the model.

In order to improve and better understand software de-
velopment approaches, Selby, Basili, and Baker [94]
characterized and evaluated the Cleanroom development
approach {46}, [47], in which software is developed with-
out execution (i.e., completely off-line), from the per-
spective of the developer, project manager, and customer.
Fifteen three-person teams of advanced university stu-
dents separately developed a small system (800-2300
source line); ten teams used Cleanroom and five teams
used a traditional development approach in a nonpara-
metric design. The major results included: 1) most devel-
opers using the Cleanroom approach were able to build
systems without program execution; and 2) the Clean-
room teams’ products met system requirements more
completely and succeeded on more operational test cases
than did those developed with a traditional approach. The
results suggested the feasibility of complete off-line de-
velopment, as in Cleanroom, and advanced the under-
standing of software development methodology.

Other replicated project studies include [37], [4], and
[63].

C. Multiproject Variation Studies

With a motivation to improve the understanding of re-
source usage during software development, Bailey and
Basili [5] conducted a study whose purpose was to predict
development cost by using a particular model (i.e., ob-
Ject) and to evaluate it from the perspective of the project
manager, corporate manager, and researcher. The partic-
ular model generation method was examined in a multi-
project scope, with baseline data from 18 large (2500-
100 000 source line) software projects in the NASA
S.E.L. [27], [26], [38], [91] production environment
(from the program domain), in which teams contained
from two to ten programmers (from the programmer do-
main). The study design incorporated multivariate meth-
ods to parameterize the model. Objective and subjective
measurement of the projects was based on 21 criteria’ in
three areas: methodology, complexity, and personnel ex-
perience. Study preparation included preliminary work
[52], execution included an established set of data collec-
tion forms [27], and analysis used forward multivariate
regression methods. The major results (in the interpreta-
tion context of the study purpose) included 1) the esti-
mation of software development resource usage improved
by considering a set of both baseline and customization
factors; 2) the application in the NASA environment of

*Twenty-one factors were selected after examining a total of 82 factors
that possibly contributed to project resource expenditure. including 36 from
[108] and 16 from [28].

BASILI et al.: EXPERIMENTATION IN SOFTWARE ENGINEERING

the proposed model generation method, which considers
both types of factors, produced a resource usage estimate
for a future project within one standard deviation of the
actual; and 3) the confirmation of the NASA S.E.L. for-
mula that the cost per line of reusing code is 20 percent
of that of developing new code. A major result (in the
interpretation context of the field of research) was that the
study highlighted the difference of each software devel-
opment environment, which improved the selection and
use of resource estimation models. The particular pro-
gramming environment and projects sampled qualify the
extrapolation of the results. The impact of the study was
an advancement in the understanding of estimating soft-
ware development resource expenditure.

In order to assess, manage, and improve multiproject
environments, several researchers [28], [20], [108], [10],
[36], [21], [62], {112}, [97], [107] have characterized,
evaluated, and/or predicted the effect of several factors
from the perspective of the developer, modifier, project
manager, and corporate manager. All the studies exam-
ined moderate to large projects from production environ-
ments. The relationships investigated were among various
factors, including structured programming, personnel
background, development process and product con-
straints, project complexity, human and computer re-
source consumption, error-prone software identification,
error/change distributions, data coupling/binding, project
duration, staff size, degree of management control, and
productivity. These studies have provided increased proj-
ect visibility, greater understanding of classes of factors
sensitive to project performance, awareness of the need
for project measurement, and efforts for standardization
of definitions. Analysis has begun on incorporating proj-
ect variation information into a management tool [9], [14].

In order to improve and better understand the software
maintenance process, Vessey and Weber [106] conducted
an experiment to evaluate the relationship between the rate
of maintenance repair and various product and process
metrics from the perspective of the developer, user, and
the project manager. A total of 447 small (up to 600 state-
ments) commercial and clerical Cobol programs from one
Australian organization and two U.S. organizations were
analyzed. The product and process metrics included pro-
gram complexity, programming style, programmer qual-
ity, and number of system releases. The major results
were: 1) in the Australian organization, program com-
plexity and programming style significantly affected the
maintenance repair rate; and 2) in the U.S. organizations,
the number of times a system was released significantly
affected the maintenance repair rate.

In order to improve the software maintenance process,
Adams [1] evaluated operational faults from the perspec-
tive of the user, customer, project manager, and corporate
manager. The fault history for nine large production prod-
ucts (e.g., operating system releases or their major com-
ponents) were empirically modeled. He developed an ap-
proach for estimating whether and under what circum-
stances preventively fixing faults in operational software

739

in the field was appropriate. Preventively fixing faults
consisted of installing fixes to faults that had yet to be
discovered by particular users, but had been discovered
by the vendor or other users. The major result was that
for the typical user, corrective service was a reasonable
way of dealing with most faults after the code had been
in use for a fairly long period of time, while preventively
fixing high-rate faults was advantageous during the time
immediately following initial release.

In order to assess the effectiveness of the testing pro-
cess, Bowen [31] evaluated estimations of the number of
residual faults in a system from the perspective of the cus-
tomer, developer, and project manager. The study was
based on fault data collected from three large (2000-6000
module) systems developed in the Hughes-Fullerton en-
vironment. The study partitioned the faults based on se-
verity and analyzed the differences in estimates of re-
maining faults according to stage of testing. Insights were
gained into relationships between fault detection rates and
residual faults.

D. Single Project Studies

With a motivation to improve software development
methodology, Basili and Turner [22] conducted a study
whose purpose was to characterize the process (i.e., ob-
Jject) of iterative enhancement in conjunction with a top-
down, stepwise refinement development approach from
the perspective of the developer. The development pro-
cess was examined in a single project scope, where the
authors, two experienced individuals (from the program-
mer domain), built a 17 000 line compiler (from the pro-
gram domain). The study design incorporated descriptive
methods to capture system evolution. Objective measure-
ment of the system was in several criteria areas: size,
modularity, local/global data usage, and data binding/
coupling [62], [104]. Study preparation included lan-
guage design [23], execution incorporated static analysis
of system snapshots, and analysis used descriptive statis-
tics. The results (in the interpretation context of the sta-
tistical framework) included: 1) the percentage of global
variables decreased over time while the percentage of ac-
tual versus possible data couplings across modules in-
creased, suggesting the usage of global data became more
appropriate over time; and 2) the number of procedures
and functions rose over time while the number of state-

‘ments per procedure or function decreased, suggesting in-

creased modularity. The major result of the study (in the
interpretation context of the study purpose) was that the
iterative enhancement technique encouraged the devel-
opment of a software product that had several generally
desirable aspects of system structure. A major result (in
the interpretation context of the field of research) was that
the study demonstrated the feasibility of iterative en-
hancement. The particular programming team and project
examined qualify the extrapolation of the results. The im-
pact of the study was an advancement in the understand-
ing of software development approaches.

In order to improve, better understand, and manage the

740

software development process, Baker [6] evaluated the ef-
fect of applying chief programming teams and structured
programming in system development from the perspective
of the user, developer, project manager, and corporate
manager. The large (83 000 line) system, known as ‘‘The
New York Times Project,”” was developed by a team of
professionals organized as a chief programmer team, using
structured code, top-down design, walk-throughs, and
program libraries. Several benefits were identified, in-
cluding reduced development time and cost, reduced time
in system integration, and reduced fault detection in ac-
ceptance testing and field use. The results of the study
demonstrated the feasibility of the chief programmer team
concept and the accompanying methodologies in a pro-
duction environment.

In order to improve their development environments,
several researchers [49], [24], [2], {81}, [13] have each
conducted single project studies to characterize the errors
and changes made during a development project. They
examined the development of a moderate to large soft-
ware project, done by a multiperson team, in a production
environment. They analyzed the frequency and distribu-
tion of errors during development and their relationship
with several factors, including module size, software
complexity, developer experience, method of detection
and isolation, effort for isolation and correction, phase of
entrance into the system and observance, reuse of existing
design and code, and role of the requirements document.
Such analyses have produced fault categorization schemes
and have been useful in understanding and improving a
development environment.

In order to better understand and improve the use of the
Ada® language, Basili et al. [55], [12] examined a ground-
support system written in Ada to characterize the use of
Ada packages from the perspective of the developer. Four
professional programmers developed a project of 10 000
source lines of code. Factors such as how package use
affected the ease of system modification and how to mea-
sure module change resistance were identified, as well as
how these observations related to aspects of development
and training. The major results were 1) several measures
of Ada programs were developed, and 2) there was an
indication that a lot of training will be necessary if we are
to expect the facilities of Ada to be properly used.

In order to assess and improve software testing meth-

odology, Basili and Ramsey [15], [88] characterized and-

evaluated the relationship between system acceptance tests
and operational usage from the perspective of the devel-
oper, project manager, customer, and researcher. The ex-
ecution coverage of functionally generated acceptance test
cases and a sample of operational usage cases was moni-
tored for a medium-size (10 000 line) software system de-
veloped in a production environment. The results calcu-
lated that 64 percent of the program statements were
executed during system operation and that the acceptance
test cases corresponded reasonably well to the operational

®Ada is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 7, JULY 1986

usage. The results gave insights into the relationships
among structural coverage, fault detection, system test-
ing, and system usage.

V. PROBLEM AREAS IN EXPERIMENTATION

The following sections identify several problem areas
of experimentation in software engineering. These areas
may serve as guidelines in the performance of future stud-
ies. After mentioning some overall observations, consid-
erations in each of the areas of experiment definition,
planning, operation, and interpretation are discussed.

A. Experimentation Overall

There appears to be no ‘‘universal model’’ or ‘‘silver
bullet”’ in software engineering. There are an enormous
number of factors that differ across environments, in terms
of desired cost/quality goals, methodology, experience,
problem domain, constraints, etc. [108], {20], [5], [10],
{28]. This results in every software development/main-
tenance environment being different. Another area of wide
variation is the many-to-one (e.g., 10:1) differential in
human performance [11], [43], [18]. The particular indi-
viduals examined in an empirical study can make an enor-
mous difference. Among other considerations, these vari-
ations suggest that metrics need to be validated for a
particular environment and a particular person to show
that they capture what is intended [11], [21]. Thus, ex-
perimental studies should consider the potentially vast dif-
ferences among environments and among people.

B. Experiment Definition

In the definition of the purpose for the experiment, the
formulation of intuitive problems into precisely stated
goals is a nontrivial task [17], [25]. Defining the purpose
of a study often requires the articulation of what is meant
by ‘‘software quality.’’ The many interpretations and per-
ceptions of quality [32], [39], [72] highlight the need for
considering whose perspective of quality is being exam-
ined. Thus, a precise specification of the problem to be
investigated is a major step toward its solution.

C. Experiment Planning

Experimental planning should have a horizon beyond a
first experiment. Controlled studies may be used to focus
on the effect of certain factors, while their results may be
confirmed in replications [92], [99], [102], [113], [58],
[57], [45], [44], [18] and/or larger case studies [5], [16].
When designing studies, consider that a combination of
factors may be effective as a ‘‘critical mass,’’ even though
the particular factors may be ineffective when treated in

isolation [16], [107]. Note that formal designs and the

resulting statistical robustness are desirable, but we should
not be driven exclusively by the achievement of statistical
significance. Common sense must be maintained, which
allows us, for example, to experiment just to help develop
and refine hypotheses [13], [112]. Thus, the experimental
planning process should include a series of experiments
for exploration, verification, and application.

BASILI et al.: EXPERIMENTATION IN SOFTWARE ENGINEERING

D. Experiment Operation

The collection of the required data constitutes the pri-
mary result of the study operation phase. The data must
be carefully defined, validated, and communicated to en-
sure their consistent interpretation by all persons associ-
ated with the experiment: subjects under observation, ex-
perimenters, and literature audience [21]. There have been
papers in the literature that do not define their data well
enough to enable a comparison of results across many
projects and environments. We have often contacted ex-
perimenters and discovered that different entities were
being measured in different studies. Thus, the experimen-
ter should be cautious about the definition, validation, and
communication of data, since they play a fundamental role
in the experimental process.

E. Experiment Interpretation

The appropriate presentation of results from experi-
ments contributes to their correct interpretation. Experi-
mental results need to be qualified by the particular sam-
ples (e.g., programmers, programs) analyzed [17]. The
extrapolation of results from a particular sample must
consider the representativeness of the sample to other en-
vironments [40], [114], [108], [86], [5], [28]. The visi-
bility of the experimental results in professional forums
and the open literature provides valuable feedback and
constructive criticism. Thus, the presentation of experi-
mental results should include appropriate qualification and
adequate exposure to support their proper interpretation.

VI. CONCLUSION

Experimentation in software engineering supports the
advancement of the field through an iterative learning pro-
cess. The experimental process has begun to be applied
in a multiplicity of environments to study a variety of
software technology areas. From the studies presented, it
is clear that experimentation has proven effective in pro-
viding insights and furthering our domain of knowledge
about the software process and product. In fact, there is
a learning process in the experimentation approach itself,
as has been shown in this paper.

We have described a framework for experimentation to
provide a structure for presenting previous studies. We
also recommend the framework as a mechanism to facil-
itate the definition, planning, operation, and interpreta-
tion of past and future studies. The problem areas dis-
cussed are meant to provide some useful recommendations
for the application of the experimental process in software
engineering. The experimental framework cannot be used
in a vacuum; the framework and the lessons learned com-
plement one another and should be used in a synergistic
fashion.

REFERENCES

[1] E. N. Adams, ‘‘Optimizing preventive service of software prod-
ucts,”” IBM J. Res. Develop., vol. 28, no. 1, pp. 2-14, Jan. 1984.

[2] J.-L. Albin and R. Ferreol, *‘Collecte et analyse de mesures de log-
iciel (Collection and analysis of software data),”’ Technique et Sci-
ence Infébrmatiques, vol. 1, no. 4, pp. 297-313, 1982 (Rairo ISSN
0752-4072).

741

[3]1 A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J.
Traverse, K. S. Tso, and U. Voges, ‘‘The UCLA 'Dedix system: A
distributed testbed for multiple-version software,”’ in Dig. 15th Int.
Symp. Fault-Tolerant Comput., Ann Arbor, M1, June 19-21, 1985,

[4] J. W. Bailey, ‘‘Teaching Ada: A comparison of two approaches,”’
in Proc. Washington Ada Symp., Washington, DC, 1984.

[5] J. W. Bailey and V. R. Basili, ‘‘A meta-model for software devel-
opment resource expenditures,”’ in Proc. 5th Int. Conf. Software
Eng., San Diego, CA, 1981, pp. 107-116.

[6] F. T. Baker, ‘‘System quality through structured programming,’’
in AFIPS Proc. 1972 Fall Joint Comput. Conf., vol. 41, 1972, pp.
339-343.

[7} V. R. Basili, Tutorial on Models and Metrics for Software Manage-
ment and Engineering. New York: IEEE Computer Society, 1980.

[8] V. R. Basili and F. T. Baker, ‘‘Tutorial of structured program-
ming,”’ in Proc. 11th IEEE COMPCON, 1EEE Cat. No. 75CH1049-
6, 1975.

[9] V. R. Basili and C. Doerflinger, ‘‘Monitoring software development
through dynamic variables,’’ in Proc. COMPSAC, Chicago, IL,
1983.

[10] V. R. Basili and K. Freburger, ‘‘Programming measurement and
estimation in the software engineering laboratory,”’ J. Syst. Soft-
ware, vol. 2, pp. 47-57, 1981.

{11] V.R. Basiliand D. H. Hutchens, ‘‘An empirical study of a syntactic
metric family,”” IEEE Trans. Software Eng., vol. SE-9, pp. 664-
672, Nov. 1983.

[12] V. R. Basili, E. E. Katz, N. M. Panilio-Yap, C. L. Ramsey, and
S. Chang, ‘‘A quantitative characterization and evaluation of a soft-
ware development in Ada,”’ Computer, Sept. 1985.

[13] V. R. Basili and B. T. Perricone, ‘‘Software errors and complexity:
An empirical investigation,’” Commun. ACM, vol. 27, no. 1, pp.
42-52, Jan. 1984.

[14] V. R. Basili and C. L. Ramsey, ‘‘Arrowsmith-P—A prototype ex-
pert system for software engineering management,”’ in Proc. Symp.
Expert Systems in Government, Mclean, VA, Oct. 1985.

[15] V. R. Basili and J. R. Ramsey, ‘‘Analyzing the test process using
structural coverage,”’ in Proc. 8th Int. Conf. Software Eng., Lon-
don, Aug. 28-30, 1985, pp. 306-312.

[16] V. R. Basili and R. W. Reiter, ‘A controlled experiment quantita-
tively comparing software development approaches,’’ IEEE Trans.
Software Eng., vol. SE-7, May 1981.

[17] V. R. Basili and R. W. Selby, ‘‘Data collection and analysis in soft-
ware research and management,’’ Proc. Amer. Statistical Associa-
tion and Biometric Society Joint Statistical Meetings, Philadelphia,
PA, August 13-16, 1984.

[18) —, **Comparing the effectiveness of software testing strategies,”’
Dep. Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-
1501, May 1985.

{191 —, “‘Four applications of a software data collection and anatysis
methodology,*’ in Proc. NATO Advanced Study Institute: The Chal-
lenge of Advanced Computing Technology to System Design Meth-
ods, Durham, U. K., July 29-Aug. 10, 1985.

[20] —, “‘Calculation and use of ap environment’s characteristic soft-
ware metric set,”” in Proc. 8th Int. Conf. Software Eng., London,
Aug. 28-30, 1985, pp. 386-393.

[21] V. R. Basili, R. W. Selby, and T. Y. Phillips, ‘‘Metric analysis and
data validation across FORTRAN projects,”’ IEEE Trans. Software
Eng., vol. SE-9, pp. 652-663, Nov. 1983.

[22] V. R. Basili and A. J. Turner, *‘Iterative enhancement: A practical
technique for software development,’’ IEEE Trans. Software Eng.,
vol. SE-1, Dec. 1975.

[23] ——, SIMPL-T: A Structured Programming Language.
Paladin House, 1976.

[24] V. R. Basili and D. M. Weiss, ‘‘Evaluation of a software require-
ments document by analysis of change data,’” in Proc. 5th Int. Conf.
Software Eng., San Diego, CA, Mar. 9-12, 1981, pp. 314-323.

[25] —. **A methodology for collecting valid software engineering
data*,”’ JEEE Tranf. Software Eng., vol. SE-10, pp. 728-738, Nov.
1984.

[26]) V. R. Basili and M. V. Zelkowitz, ‘‘Analyzing medium-scale soft-
ware developments,’” in Proc. 3rd Int. Conf. Software Eng., At-
lanta, GA, May 1978, pp. 116-123.

[27] V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr.,
W. F. Truszkowski, and D. L. Weiss, ‘“The software engineering
laboratory,”” Software Eng. Lab., NASA/Goddard Space Flight
Center, Greenbelt, MD, Rep. SEL-77-001, May 1977.

[28] B. W. Boehm, Software Engineering Economics.
Cliffs, NJ: Prentice-Hall, 1981.

Geneva, IL:

Englewood

742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 7, JULY 1986

{29] B. W. Boehm, T. E. Gray, and T. Seewaldt, ‘‘Prototyping versus
specifying: A multiproject experiment,”” IEEE Trans. Software
Eng., vol. SE-10, pp. 290-303, May 1984.

[30] R. C. Bogdan and S. K. Biklen, Qualitative Research for Education:
An Introduction to Theory and Methods. Boston, MA: Allyn and
Bacon, 1982.

[31] J. Bowen, ‘‘Estimation of residual faults and testing effectiveness,”’
in Proc. 7th Minnowbrook Workshop Software Performance Eval-
uation, Blue Mountain Lake, NY, July 24-27, 1984,

[32] T. P. Bowen, G. B. Wigle, and J. T. Tsai, **Specification of soft-
ware quality attributes,”” Rome Air Development Center, Griffiss
Air Force Base, NY, Tech. Rep. RADC-TR-85-37 (3 vols.), Feb.
1985.

[33) G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Ex-
perimenters. New York: Wiley, 1978.

[34] F. P. Brooks, Jr., The Mythical Man-Month.. Reading, MA: Ad-
dison-Wesley, 1975.

[35] R. E. Brooks, ‘‘Studying programmer behavior: The problem of
proper methodology, Commun. ACM, vol. 23, no. 4, pp. 207-213,
1980.

[36] W. D. Brooks, ‘‘Software technology payoff: Some statistical evi-
dence,”’ J. Syst. Software, vol. 2, pp. 3-9, 1981.

(37} F. O. Buck, ‘‘Indicators of quality inspections,’”” IBM Systems
Products Division, Kingston, NY, Tech. Rep. 21.802, Sept. 1981.

[38] D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili,
‘“The software engineering laboratory,”” Software Eng. Lab.,
NASA/Goddard Space Flight Center, Greenbelt, MD, Rep. SEL-
81-104, Feb. 1982.

[39} J. P. Cavano and J. A. McCall, *‘A Framework for the measurement
of software quality,”’ in Proc. Software Quality and Assurance
Workshop, San Diego, CA, Nov. 1978, pp. 133-139,

[40] W. G. Cochran, Sampling Techniques. New York: Wiley, 1953.

[41] W. G. Cochran and G. M. Cox, Experimental Designs. New York:
Wiley, 1950.

[42] P. A. Currit, M. Dyer, and H. D. Mills, *‘Certifying the reliability
of software,”’ IEEE Trans. Software Eng., vol. SE-12, pp. 3-11,
Jan. 1986.

[43] B. Curtis, ‘‘Cognitive science of programming,’’ 6th Minnowbrook
Workshop Software Performance Evaluation, Blue Mountain Lake,
NY, July 19-22, 1983.

{44] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,
‘‘Measuring the psychological complexity of software maintenance
tasks with the Halstead and McCabe metrics,”’ IEEE Trans. Soft-
ware Eng., pp. 96-104, Mar. 1979.

[45] B. Curtis, S. B. Sheppard, and P. M. Milliman, ‘*Third time charm:
Stronger replication of the ability of software complexity metrics to
predict programmer performance,’’ in Proc. 4th Int. Conf. Software
Eng., Sept. 1979, pp. 356-360.

[46] M. Dyer, ‘‘Cleanroom software development method,’’ IBM Fed-
eral Systems Division, Bethesda, MD, Oct. 14, 1982.

{471 M. Dyer and H. D. Mills, ‘‘Developing electronic systems with cer-
tifiable reliability,”’ in Proc. NATO Conf., Summer 1982.

[48] T. Emerson, ‘‘A discriminant metric for module cohesion,’’ in Proc.
7th Int. Conf. Software Eng., Orlando, FL, 1984, pp. 294-303.

[49] A. Endres, ‘‘An analysis of errors and their causes in systems pro-
grams,’’ IEEE Trans. Software Eng., pp. 140-149, vol. SE-1, June
1975.

[50] A. R. Feuer and E. B. Fowlkes, ‘‘Some results from an empirical
study of computer software,”’ in Proc. 4th Int. Conf. Software Eng.,
1979, pp. 351-355.

[51] R. W. Floyd, ‘‘Assigning meaning to programs,’’ Amer. Math. Soc.,
vol. 19, J. T. Schwartz, Ed., Providence, RI, 1967.

[52] K. Freburger and V. R. Basili, ‘“The software engineering labora-
tory: Relationship equations,”” Dep. Comput. Sci., Univ. Mary-
land, College Park, Tech. Rep. TR-764, May 1979.

[53] J. D. Gannon, ‘‘An experimental evaluation of data type conven-
tions,”’ Commun. ACM, vol. 20, no. 8, pp. 584-595, 1977.

[54] J. D. Gannon and J. J. Horning, ‘‘The impact of language design
on the production of reliable software,”’ IEEE Trans. Software Eng. ,
vol. SE-1, pp. 179-191, 1975.

[55] J. D. Gannon, E. E. Katz, and V. R. Basili, ‘‘Characterizing Ada
programs: Packages,’’ in The Measurement of Computer Software
Performance, Los Alamos Nat. Lab., Aug. 1983.

[56] A. L. Goel, ‘‘Software reliability and estimation techniques,’’ Rome
Air Development Center, Griffiss Air Force Base, NY, Rep. RADC-
TR-82-263, Oct. 1982.

[57) 1. D. Gould, ‘‘Some psychological evidence on how people debug

computer programs,’’ Int. J. Man-Machine Studies, vol. 7, pp. 151-
182, 1975.

[58] J. D. Gould and P. Drongowski, *‘An exploratory study of computer
program debugging,’’ Human Factors, vol. 16, no. 3, pp. 258-277,
1974.

[59]1 M. H. Halstead, Elements of Software Science.
Holland, 1977.

[60] W. C. Hetzel, ‘‘An experimental analysis of program verification
methods,’” Ph.D. dissertation, Univ. North Carolina, Chapel Hill,
1976.

[61] C. A. R. Hoare, ‘‘An axiomatic basis for computer programming,”’
Commun. ACM, vol. 12, no. 10, pp. 576-583, Oct. 1969.

[62] D. H. Hutchens and V. R. Basili, ‘‘System structure analysis: Clus-
tering with data bindings,”’ IEEE Trans. Software Eng., vol. SE-
11, Aug. 1985.

[63] S.-S. V. Hwang, ‘‘An empirical study in functional testing, struc-
tural testing, and code reading/inspection*,”’ Dep. Comput. Sci.,
Univ. Maryland, College Park, Scholarly Paper 362, Dec. 1981.

[64] Z. Jelinski and P. B. Moranda, ‘*Applications of a probability-based
model to a code reading experiment,”” in Proc. IEEE Symp. Com-
put. Software Rel., New York, 1973, pp. 78-81.

[65] W. L. Johnson, S. Draper, and E. Soloway, ‘‘An effective bug clas-
sification scheme must take the programmer into account,”’ in Proc.
Workshop High-Level Debugging, Palo Alto, CA, 1983.

[66] J. P. J. Kelly, ‘“Specification of fault-tolerant multi-version soft-
ware: Experimental studies of a design diversity approach,’’ Ph.D.
dissertation, Univ. California, Los Angeles, 1982. .

[67] J. C. Knight and N. G. Leveson, ‘‘An experimental evaluation of
the assumption of independence in multiversion programming,’’
IEEE Trans. Software Eng., vol. SE-12, pp. 96-109, Jan. 1986.

[68] R. C. Linger, H. D. Mills, and B" 1. Witt, Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979.

[69] B. Littlewood, ‘‘Stochastic reliability growth: A model for fault ren-
ovation computer programs and hardware designs,’’ IEEE Trans.
Rel., vol. R-30, Oct. 1981. ’

[70] B. Littlewood and J. L. Verrall, ‘A Bayesian reliability growth
model for computer software,’’ Appl. Statist., vol. 22, no. 3, 1973.

[71] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Software
Eng., vol. SE-2, pp. 308-320, Dec. 1976.

[72] J. A. McCall, P. Richards, and G. Walters, ‘‘Factors in software
quality,”” Rome Air Development Center, Griffiss Air Force Base,
NY, Tech. Rep. RADC-TR-77-369, Nov. 1977.

[73] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman,
‘‘Program indentation and comprehensibility,”” Commun. ACM,
vol. 26, no. 11, pp. 861-867, Nov. 1983.

[74] T. Moher and G. M. Schneider, ‘‘Methodology and experimental
research in software engineering,’’ Int. J. Man-Machine Studies,
vol. 16, no. 1, pp. 65-87, 1982.

[751 S. A. Mulaik, The Foundations of Factor Analysis.
McGraw-Hill, 1972.

[76] 1. D. Musa, ‘‘A theory of software reliability and its application,’’
IEEE Trans. Software Eng., vol. SE-1, pp. 312-327, 1975.

[771 —, “‘Software reliability measurement,”’ J. Syst. Software, vol.
1, no. 3, pp. 223-241, 1980.

[78) G. L. Myers, Composite/Structured Design. New York: Van Nos-
trand Reinhold, 1978.

[79] —, ““A controlled experiment in program testing and code walk-
throughs/inspections,’” Commun. ACM, pp. 760-768, Sept. 1978.

[80] J. Neter and W. Wasserman, Applied Linear Statistical Models.
Homewood, IL: Richard D. Irwin, 1974.

[81] T.J. Ostrand and E. J. Weyuker, ‘‘Collecting and categorizing soft-
ware error data in an industrial environment*,’’ J. Syst. Software,
vol. 4, pp. 289-300, 1983.

[82] D.J. Panzl, ‘‘Experience with automatic program testing,’’ in Proc.
NBS Trends and Applications, Nat. Bureau Standards, Gaithers-
burg, MD, May 28, 1981, pp. 25-28.

[83] D. L. Parnas, ‘‘On the criteria to be used in decomposing systems
into modules,”’ Commun. ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[84] ——, ‘‘Some conclusions from an experiment in software engineer-
ing techniques,”’ in AFIPS Proc. 1972 Fall Joint Comput. Conf.,
vol. 41, 1972, pp. 325-329.

[85] —, ‘A technique for module specification with examples,’’ Com-
mun. ACM, vol. 15, May 1972.

[86] L. Putnam, ‘‘A general empirical solution to the macro software
sizing and estimating problem,’’ IEEE Trans. Software Eng., vol.
SE-4, July 1978.

New York: North-

New York:

BASILI er al.: EXPERIMENTATION IN SOFTWARE ENGINEERING

[87] H. R. Ramsey, M. E. Atwood, and J. R. Van Doren, ‘‘Flowcharts
versus program design languages: An experimental comparison,’’
Commun. ACM, vol. 26, no.6, pp. 445-449, June 1983.

[88] J. Ramsey, ‘‘Structural coverage of functional testing,’” in Proc. 7th
Minnowbrook Workshop Software Perform. Eval., Blue Mountain
Lake, NY, July 24-27, 1984.

[89) Statistical Analysis System (SAS) User’s Guide, SAS Inst. Inc., Box
8000, Cary, NC 27511, 1982.

[90] H. Scheffe, The Analysis of Variance. New York: Wiley, 1959.

[91]1 ‘“‘Annotated bibliography of software engineering laboratory (SEL)
literature,”’ Software Eng. Lab., NASA/Goddard Space Flight Cen-
ter, Greenbelt, MD, Rep. SEL-82-006, Nov. 1982.

[92] R. W. Selby, ‘‘An empirical study comparing software testing tech-
niques,’’ in Proc. 6th Minnowbrook Workshop Software Perform.
Eval., Blue Mountain Lake, NY, July 19-22, 1983.

[93] —, ‘‘Evaluations of software technologies: Testing, CLEAN-
ROOM, and metrics,”’ Ph.D. dissertation, Dep. Comput. Sci., Univ.
Maryland, College Park, Tech. Rep. TR-1500, 1985.

[94] R. W. Selby, V. R. Basili, and F. T. Baker, *‘“CLEANROOM soft-
ware development: An empirical evaluation,’”” Dep. Comput. Sci.,
Univ. Maryland, College Park, Tech. Rep. TR-1415, Feb. 1985.

[95] J. G. Shanthikumar, ‘‘A statisical time dependent error occurrence
rate software reliability model with imperfect debugging,’” in Proc.
1981 Nat. Comput. Conf., June 1981.

[96] B. A. Sheil, *‘The psychological study of programming,’” Comput.
Surveys, vol. 13, pp. 101-120, Mar. 1981.

[97) V. Y. Shen, T. J. Yu, S. M. Thebaut, and L. R. Paulsen, ‘‘Iden-
tifying error-prone software—An empirical study,”’ IEEE Trans.
Software Eng., vol. SE-11, pp. 317-324, Apr. 1985.

[98] B. Shneiderman, Software Psychology: Human Factors in Computer
and Information Systems. Winthrop, 1980.

[99]1 B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, ‘‘Exper-
imental investigations of the utility of detailed flowcharts in pro-
gramming,”’ Commun. ACM, vol. 20, no. 6, pp. 373-381, 1977.

[100] S. Siegel, Nonparametric Statistics for the Behavioral Sciences.
New York: McGraw-Hill, 1955.

[101] E. Soloway, J. Bonar, and K. Ehrlich, ‘‘Cognitive strategies and
looping constructs: An empirical study,”” Commun. ACM, vol. 26,
no.11, pp. 853-860, Nov. 1983.

[102] E. Soloway and K. Ehrlich, ‘*Empirical studies of programming
knowledge,’’ IEEE Trans. Software Eng., vol. SE-10, pp. 595-609,
Sept. 1984.

[103} E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, ‘‘What do
novices know about programming?’* in Directions in Human-Com-
puter Interactions, A. Badre and B. Shneiderman, Eds. Norwood,
NJ: Ablex, 1982.

[104] W. P. Stevens, G. L. Myers, and L. L. Constantine, *‘Structural
design, ** IBM Syst. J., vol. 13, no. 2, pp. 115-139, 1974.

{105} L. G. Stucki, ‘‘New directions in automated tools for improving
software quality,’” in Current Trends in Programming Methodol-
ogy, R. T. Yeh, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1977.

[106] I. Vessey and R. Weber, *‘Some factors affecting program repair
maintenance: An empirical study,”” Commun. ACM, vol. 26, no. 2,
pp- 128-134, Feb. 1983.

[107] J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S.
Hoben, and Y. Liu, ‘‘Productivity factors and programming envi-
ronments,”’ in Proc. 7th Int. Conf. Software Eng., Orlando, FL,
1984, pp. 143-152.

[108] C. E. Walston and C. P. Felix, ‘*A method of programming mea-
surement and estimation,”’ IBM Syst. J., vol. 16, no. 1, pp. 54-73,
1977.

[109] G. Weinberg, The Psychology of Computer Programming.
York: Van Nostrand Rheinhold, 1971.

[110] M. Weiser, ‘‘Programmers use slices when debugging,’” Commun.
ACM, vol. 25, pp. 446-452, July 1982.

[111] M. Weiser and J. Shertz, ‘‘Programming problem representation in
novice and expert programmers,”” Int. J. Man-Machine Studies, vol.
19, pp. 391-398, 1983.

[112] D. M. Weiss and V. R. Basili, ‘‘Evaluating software development
by analysis of changes: Some data from the software engineering
laboratory,”” IEEE Trans. Software Eng., vol. SE-11, pp. 157-168,
Feb. 1985.

[113] L. Weissman, ‘‘Psychological complexity of computer programs:
An experimental methodology.”’ SIGPLAN Notices, vol. 9, no. 6,
pp- 25-36, June 1974.

{114] R. Wolverton, ‘*The cost of developing large scale software,”’ JEEE
Trans. Comput., vol. C-23, June 1974.

New

743

[115] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, ‘‘The effect of
modularization and comments on program comprehension,’” Dep.
Comput. Sci., Arizona State Univ., Tempe, AZ, Working Paper,
1981.

[116] J. C. Zolnowski and D. B. Simmons, ‘‘Taking the measure of pro-
gram complexity,’” in Proc. Nat. Comput. Conf., 1981, pp. 329-
336.

Victor R. Basili (M’83-SM’84) is Professor and
Chairman of the Department of Computer Science
at the University of Maryland, College Park. He
was involved in the design and development of
several software projects, including the SIMPL
family of programming languages. He is currently
measuring and evaluating software development
in industrial settings and has consultéd with many
agencies and organizations, including IBM, GE,
CSC, GTE, MCC, AT&T Bell Laboratories,
NRL, NSWC, and NASA. He is one of the found-
ers and principals in the Software Engineering Laboratory, a joint venture
established in 1976 between NASA/Goddard Space Flight Center, the Uni-
versity of Maryland, and Computer Sciences Corporation. In this context
he has worked closely with CSE in developing models and metrics for the
software development process and product. He has authored over 70 pub-
lished papers on the methodology, the quantitative analysis, and the eval-
uation of the software development process and product.

In 1982 Dr. Basili received the Outstanding Paper Award from the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING for his paper on the evaluation
of methodologies. He was Program Chairman for the Sixth International
Conference on Software Engineering, and the First ACM SIGSOFT Soft-
ware Engineering Symposium on Tools and Methodology Evaluation. He
serves on the editorial boards of the Journal of Systems and Sofiware and
the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He is a member of
the Association for Computing Machinery and the Executive Committee of
the Technical Committee on Software Engineering, and is a senior member
of the IEEE Computer Society.

Richard W. Selby (M'85) was born in Chicago,
IL, in 1959. He received the B.A. degree in math-
ematics and computer science from Saint Olaf
College, Northfield, MN, in 1981 and the M.S.
and Ph.D. degrees in computer science from the
University of Maryland, College Park, in 1983 and
1985, respectively.

Since 1985 he has been an Assistant Professor
of Information and Computer Science at the Uni-
versity of California, Irvine. His research inter-
ests include methodologies for developing and
testing software, techniques for empirically evaluating software methodol-
ogies, and software metrics. He is currently involved with the development
and evaluation of the Arcadia software development environment.

Dr. Selby is a member of the Association for Computing Machinery and
the IEEE Computer Society.

David H. Hutchens (M’84) received the B.S. de-
gree in mathematics from Western Carolina Uni-
versity, Cullowhee, NC, in 1977, the M.S. de-
gree in mathematical sciences from Clemson
University, Clemson, SC, in 1979, and the Ph.D.
degree in computer science from the University of
Maryland, College Park, in 1983.

He is currently an Assistant Professor of Com-
puter Science at Clemson University. His research
interests include measurement, evaluation, and
modeling of the software development process and
its product.

Dr. Hutchens is a member of the Association for Computing Machinery
and the IEEE Computer Society. -

