616

SPECIAL SECTION

METRICS FOR ADA PACKAGES:

AN INITIAL STUDY

Many novel features of Ada present programmers with a formidable learning
task. The study of four first-time Ada programmers suggests that a
background in the software engineering practices supported by Ada is
necessary to learn to use the features of the language.

J. D. GANNON, E. E. KATZ, and V. R. BASILI

When programmers begin to learn a new language,
they often start by using those features of the lan-
guage that have appeared in other languages they
already know. For example, Fortran or Cobol pro-
grammers should have no trouble learning to use
PL/1’s DO statement for bounded iteration since this
concept appears in slightly different forms in both
languages. However, repetition while a condition
holds is a novel concept for these programmers, and
they are unlikely to use DO statements for this pur-
pose. This is confirmed in a study of 102,397 state-
ments in PL/1 programs that turned up 7385 DO -
statements, but only 11 DO WHILE statements [4].
Elshoff concluded that

the most basic, general form of the DO statement is not
used. The fact that the programmers do not know of its
existence is a primary reason.

Modules allow programmers to group related data
and/or procedures and to limit the amount of infor-
mation that is accessible to the rest of the program
[9]. Splitting a program into modules should localize
the effects of program changes to correct errors or to
improve the implementation (i.e., making it more
robust or more efficient). In addition, since modules
are usually self-contained, they can be reused from
project to project. The designers of Ada® [7] recog-
nized three major uses for modules:

1. anamed collection of declarations that makes a
group of types and variables available much like
a Fortran common blocl;;

Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office).

This work is supported by the Office of Naval Research and the Ada Joint
Program Office under grant N00014-82-K-0225.

© 1986 ACM 0001-0782/86,/0700-0616 75¢

Communications of the ACM

2. agroup of related subprograms that provides a
library facility;

3. an encapsulated data type that provides the
names of the type and its operations, but hides
the details of the representation of objects of
the type and implementation of the type’s
operations.

While the first two uses are familiar to many pro-
grammers, the third use is not supported by many
commonly used programming languages. Strong syn-
tactic clues are available to help programmers de-
cide what objects comprise the first two kinds of
modules (e.g., all types and constants, a collection of
global variables, or a set of utility routines), but
fewer hints are available to aid in grouping objects
in problem-oriented terms [8]. Deciding what objects
to encapsulate in a system is a formidable challenge.

HYPOTHESES
One of the lessons of structured programming is that
simply providing users with “gotoless” programming
languages does not result in structured programs
being written. Users need to understand the ideas of
top-down development and stepwise refinement to
produce structured programs. Our main hypothesis
was that a similar phenomenon was likely to occur
with Ada packages. Users lacking a thorough famil-
iarity with the ideas of information hiding and data
abstraction were unlikely to use Ada packages to
write programs that exhibited these properties.
Compiler-generated messages help programmers
remove syntactic errors from their programs. Other
warning messages, produced by the compiler or its
run-time support system, may also be used to induce
programmers to test with more data (e.g., test'cover-

July 1986 Volume 29 Number 7

age metrics) or alter the style of their programs (e.g.,
by including more comments). Metrics based on
packages can be used to characterize the structure of
a program, and to indicate how resistant the system
is to changes in representations of data objects or the
implementations of operations. Warnings based on
these metrics might result in programmers rethink-
ing their use of packages. However, care must be
exercised since messages associated with novel con-
structs often provoke inappropriate responses. In a
language in which programmers had to explicitly
request the right to access nonlocal identifiers in-
stead of inheriting them automatically, programmers
responded to messages about lack of access to any
identifier by making all nonlocal identifiers visible
in each procedure [5].

ADA PACKAGES AND UNITS

In Ada, modules are implemented as packages. A
package consists of two parts: a specification and a
body. The specification, which contains declarations,
is further divided into visible and private parts.
Identifiers declared in the visible part can be used
by other units, whereas those declared in the private
part can only be used in the package body. For ex-
ample, the following package specification exports
the name of the type Rational with operations

/, +, etc. The representation of a rational number by
a record containing two integers is hidden from
users in a private part.

package Rational is —— specification
—— visible part
type Rational is private;
function "/" (X,Y: integer)
return Rational;
function "+" (X,Y: Rational)
return Rational;

private
type Rational is
record
Numerator, Denominator: integer;
end record;
end;

The package body contains implementations of oper-
ations and declarations of types whose names appear
in the corresponding specification part. Nothing de-
clared in the package body is visible outside the
package. However, package bodies and specifica-
tions can use information from other packages’
specifications.

Packages are not required to hide the representa-
tion of data. The specification for Rational num-
bers above could have been declared as follows:

July 1986 Volume 29 Number 7

Special Section

package Rational is —— specification
—— visible part
type Rational is
record
Numerator, Denominator: integer;
end record;

function "/" (X,Y: integer)

return Rational;

function "+" (X,Y: Rational)

return Rational;
end;
However, if the representation is defined in the visi-
ble part of the specification, any other units that can
see the package can manipulate the representation
of the data (e.g., may access the Numerator or
Denominator field of any Rational object).
Changes in the representation, therefore, might have
a tremendous effect on those units.

Encapsulating data types in packages allows the
definition of objects and their associated operations.
Hiding the representation of the data either in the
private part of the package specification or in the
package body limits the effects of changes in the
representation.

Ada programs are collections of compilation units:
predefined units, package specifications, and others
(i.e., subprogram, package, and task bodies). Where a
package is defined is another important decision. A
package might be generally available to any other
unit in the environment. It may be defined in a
library restricted to a project or group that will limit
the package availability to a subset of units. The
author of a package also has the option of defining
packages within other units limiting the scope to the
defining unit. By choosing an appropriate location
for a package’s definition, the package’s author can
limit the scope of possible changes.

A package is visible in a unit if one of the follow-
ing occurs: First, the package is named in a with
clause at the beginning of the unit. Second, the
package is visible in the unit’s parent unit. Items
declared in the package can be made directly visible
with a use clause in the same manner. However, in
this article, we concentrate on general visibility as
opposed to direct visibility. Reducing package visi-
bility would lower the number of possible bindings
[1] between the unit and the package.

PACKAGE METRICS

There are many simple characterizing metrics that
provide a sketch of the system: the number of pack-
ages declared, and the number of generic packages
and the number of times each is instantiated. In

Communications of the ACM

617

W,

A

Special Section

618

addition to these simple metrics, two more elaborate
metrics are discussed below.

Component Access Metric

When selection operations are applied to composite
objects outside package bodies, details of data repre-
sentation are spread throughout the program. Dis-
tributing representation information rather than
centralizing it in private parts of package specifica-
tions makes programs more difficult to change. If the
type of the composite object is not defined locally,
changes in representation to enhance program capa-
bility or efficiency could involve many statements in
many compilation units.

For example, consider the following Ada fragment
containing the visible type T2 having two array
components (A and B) with identical numbers of ele-
ments with the same type (T).

—— original representation

N: constant integer := ...;
type T1 is array (1..N) of T;
type T2 is
record
A: T1;
B: T1;

end record;
If we introduced a new type, NewType, a record of
two elements of type T, that permitted the two array
components of the previous example to be combined
into a single component (C) in T2

—— new representation

N: constant integer := ...;
type NewType 1is
record
A: T;
B: T;

end record;
type T1 is array (1..N) of NewType;
type T2 is
record
. e
C: T1;
-7

end record;

then all references to the A and B components of
type T2 variables (e.g., V) would have to be changed.

—— original representation

V.A(...)
V.B(...)
—— new representation
V.C(...).A
V.C(...).B

Communications of the ACM

The ratio of component accesses of objects with non-
locally defined data types to lines of text in a pro-
gram unit measures the unit’s resistance to changes.
Subunits of a package are considered part of the
package; therefore, any component accesses to the
objects defined in the package in these units are
considered local.

Package Visibility Metric

Another means of measuring packages is to:look at
their visibility to other units in the system. We ex-
amine two versions of a system—the current one
and one where the with clauses may have been
moved to lower the visibility.

Definitions. Each package has the following visibil-
ity measures:

1. Used. Number of units where information from
the package is accessed or changed.

2. Current. ‘Number of units where the package is
currently visible. ‘

3. Available. Number of units where the package
could be made visible by adding a with clause,
given the current unit structure.

4. Proposed. Number of units where the package is
visible given the current unit structure and the
with clauses in their lowest possible positions.

Only those units that are part of the current system
are included in our measures. In addition, package
bodies and their subunits are not included in the
measures for that package because they are part of
its implementation. These values can be computed
during the design of a system or after the system has
been completed.

Examples. Figures 1 and 2 illustrate different views
of a small system containing the following compo-
nents: package P defininga procedure X;and
procedure A defining subunits B, ¢, and D. In Fig-
ure 1, there is a with clause for P in a; therefore, P
is currently visible in four units. (X is not included
in these measures because it is a subunit of P.) How-
ever, P.X is only used in two units, B and D. In
Figure 2, we propose moving the with clause from
A to B and D, limiting the visibility of P to three
units. For a system in which C is a subunit of B, that
is the lowest location for the with clauses.

Visibility Ratios. Two interesting visibility ratios for
the systems in Figures 1 and 2 are given in Table I
(p. 620). ‘

Each of these ratios has an upper bound of one
and a lower bound of zero. The ratio of units in
which a package is accessed to those in which it
could be made available (UA) measures the per-
ceived generality of the package. If UA(P) is high,

July 1986 Volume 29 Number 7

Special Section

ey

FIGURE 1. Global Visibility of Package P

FIGURE 2. Limited Visibility of Package P

Communications of the ACM 619

July 1986 Volume 29 Number 7

Special Section

620

TABLE | Visibility Ratios

package P may support objects manipulated
throughout the system. However, if UA(P) is low
(i.e., P could be available much more widely than is
necessary), the designers may have mistakenly be-
lieved the package to be more generally useful than
it is.

The ratio of the number of units in which a pack-
age must be visible to those in which it is visible
measures the success of the design decision to mini-
mize visibility. If PC(P) is high, P’s visibility is lim-
ited given the current system structure.

Had the design goal been minimizing the visibility
of packages used, the second subunit structure
would be better. The ratios should be used to indi-
cate which packages should be examined more
closely, not to replace the need to understand why
design decisions have been made.

A CASE STUDY

We studied a subset of an existing ground-support
system for a satellite, which was redesigned and im-
plemented in Ada [2]. With the help of the original
designers of the system, requirements were devel-
oped for a subset system that included an interactive
operator interface, graphic output routines, and con-
current telemetry monitoring.

This was an early Ada development to examine
the effect of using Ada in an industrial environment.
The programming team consisted of four program-
mers with diverse backgrounds. The lead program-
mer had substantial industrial experience in the ap-
plication area and was fluent in Fortran and assem-
bler languages. The senior programmer had less ex-
perience in the application area, but wider exposure
to languages. The junior programmer was a recent
computer science graduate who had been trained in
modern programming languages and design meth-
ods. The programmer/librarian was a novice pro-
grammer who had taken a single course in Fortran
programming.

Since none of the programmers was familiar with
Ada, a one-month training period preceded the start
of the project. They viewed 15 hours of videotaped
lectures given by Ichbiah, Firth, and Barnes. A six-
day in-house course by a consultant was spread over
a period of weeks to allow team members to com-
plete assignments, the last of which was a 500-line
team project in which they encapsulated new data
types in packages. Another half day was spent re-

Communications of the ACM \

viewing the programming practices they were ex-
pected to use: design and code walk-throughs, struc-
tured programming, information hiding, etc.

The bulk of the development of this system was
done with the Ada/Ed interpreter between February
and December 1982. Some testing was done on the
ROLM compiler in the summer of 1983. The lack of
production-quality compilers and access to their par-
sers prevented the programming team from fully
testing their system, and our reporting package met-
ric values to them during the case study. Thus the
study cannot confirm our hypothesis that reporting
metrics will result in changes in system structure.
However, the system structure and use of packages
can be studied to determine if programmers with
typical Ada training make effective use of packages.

The Program 7
The final program contained 4375 text lines (exclud-
ing comments and blank lines) of Ada. The systém
included 11 packages contained in 19 units and a
main program with 29 subunits. Some attempts were
made to decompose the functions of the subunits;
therefore, as many as four nesting levels of subunits
are used in the system. Figure 3 shows the structure
of the system. Of the 11 packages defined, one’s
body was not written, and it was never used.

The packages were of four types:

1. two common blocks exporting only definitions,
three libraries exporting only functions,

3. four encapsulated data types exporting private
type definitions and operations, and

4. two data types exporting the representation of
the type.

Although these numbers seem to indicate that the
package feature was used appropriately, closer ex-
amination refutes this conclusion. Of the four pack-
ages defining encapsulated data types, two were de-
vice drivers, another was a mathematical function,
and the remaining package definition was neither
completed nor used. Device drivers and mathemati-
cal libraries are common modules in existing soft-
ware systems—no new fully encapsulated types
were defined.

Five of the 11 packages were generic, but each
was instantiated only once. The generic parameters
were primarily ranges for arrays and precision for
real numbers. The programmers used the standard

July 1986 Volume 29 Number 7

Special Section

Only visible
in definitions
2
=
>
()]
o
g
o
o]
Q
[=d
]
z
°©
g
@
©
@\
1]
o
(o]
X
Q
[
o
Fmmm — e m e
i
: Number of | -~
i nonpackage]
| units where Number of |
| visible \ packages |
] visible i
| |
' |
' |
! [
! I
FIGURE 3. Actual System
sequential_io package in various instantiations, but widest variety of programming languages) defined
they only used one instantiation for each of the ge- any. packages. The other two team members used
neric packages they defined. Of those five instantia- the conventional packages provided by the other
tions, two were in one other package, and three two programmers (i.e;, the device drivers and the
were in the main program. The programmers mathematical subroutines) and the standard Ada
seemed to view packages as global entities. packages, but wrote none of their-own. Even though
A more alarming discovery was that only two of the requirements specified that an antenna beam-
the team members (those with experience in the forming network had binary treelike connectivity

July 1986 Volume 29 Number 7 Communications of the ACM 621

Special Section

622

and a binary tree package specification was written,
different internal functions manipulating a different
representation of binary trees were written in-
stead of providing a package body to match the
specification.

COMPONENT ACCESSES

Table II summarizes nonlocal component accesses
for each programmer based on all modules written
by the programmer. The total number of component
accesses, the accesses to packaged data, and the ac-
cesses to nonpackaged data are each included.

These metrics show that on average more than 1
of every 10 lines (0.11) of text contained a reference
to a component of an object with an externally de-
fined type. Roughly twice as many references are
made to packaged data as are made to unpackaged
data, which suggests that the more complex data
types might have been packaged but not hidden.
However, Programmer 3 made more references to
components of unpackaged data.

Table IIl summarizes the component accesses by
package for selected packages. Note that Package 3
has 217 of the packaged component accesses. This is
not surprising considering that the package contains
global data and types. The majority of the remaining
packaged component accesses were to Package 7,
which provides some types shared by several related
units. If the data in these two packages were hidden,
the number of packaged component accesses and the
effect of changes to the packages would be greatly
diminished. However, changes to the representation

TABLE Ill. Component Accesses by Package

Communications of the ACM

TABLE l. Component Accesses by Programmer

at this time would affect many other units.

The values in Table II indicate that the first pro-
grammer’s code should be relatively difficult to
change since about one of every five lines contained
a component access. We selected one of this pro-
grammer’s modules and made the trivial modifica-
tion discussed in the “Component Access Metric”
section (page 618). To make this change in the repre-
sentation, 11 program changes [3] were required in
the module we selected. In addition, 10 program
changes were needed in five other modules that en-
compassed two of the four major subsystems in the
program. The record type containing these compo-
nents could have been encapsulated in a package
definition. Then, the same change in the representa-
tion would require a change in the private part of
the package specifications and a total of 4 program
changes in two functions of the package body. No
other modules would be affected. '

PACKAGE VISIBILITY

An examination of the visibility of the packages
within the other units indicates that the system
structure did not minimize package visibility. The
visibility ratios for the 10 packages that were used
are given in Table IV.

Although the main program used only two pack-
ages, six packages were named in both with and use
clauses there. Most of the packages were viewed as
global data or functions that were accessible every-
where. This view is consistent with the Fortran style
of programming most familiar to the programmers.

Note that the UA column is fairly low for all the
packages except Package 3, which contains type def-
initions and constants used throughout the system.
The low values of UA suggest that most packages
could be defined locally to groups of units.

The PC column demonstrates the programmers’
view of the role of packages in the system. Five of
the packages had minimal visibility; however, the
rest of the packages are excessively visible. This is

July 1986 Volume 29 Number 7

Special Section

TABLE IV. Package Visibility Vectors and Ratios

yet another example of the programmers’ global data
approach to package definition.

CONCLUSIONS

The case study demonstrates what might happen
when programmers who are experienced in an ap-
plication area but lack training in modern software
development practices begin to use Ada. Despite
training efforts that are similar to those that are
likely to be used in a typical industrial setting, only
traditional modules like device drivers and mathe-
matical libraries were defined. Encapsulated types
were declared only by programmers with the widest
exposure to different languages, but even the pro-
grammers’ prior success in working with these lan-
guages does not guarantee success with Ada. A good
background in the software engineering practices
that Ada supports is probably necessary to learn

to use the full capabilities of the features of the
language—simply teaching professional program-
mers Ada is not enough.

We mistakenly assumed that because packages
were being declared the programming team was us-
ing Ada effectively. Had our package metrics been
applied during the case study, they might have
helped the programmers better understand how to
use packages and alerted us to their problems. Pack-
age visibility is a rather crude metric that can be
used during design to check that the system archi-
tecture does not simply make all packages visible to
all program units. Lowering the visibility will proba-
bly decrease the scope of any changes made to the
package. However, even if package visibility is re-
stricted, packages may still export type definitions
that permit programmers to access the components
of composite objects. Program units that directly ac-
cess components of objects are likely to be difficult
to change.

Metrics that track the use of packages during sys-
tem development treat the symptoms and not the
problem; however, we expect many early develop-

July 1986 Volume 29 Number 7

ments will have these symptoms. These metrics and
those described in [6] may help in the transition to
using Ada effectively.

Acknowledgments. M. V. Zelkowitz, J. B. Bailey,
E. Kruesi Bailey, and S. B. Sheppard were the other
monitors of the case study and have contributed to
the work reported here.

REFERENCES

1..Basili, V.R,, and Turner, A.J. Iterative enhancement: A practical
technique for software development. IEEE Trans. Softw. Eng. SE-1, 4
(Dec. 1975), 390-396. j

2. Basili, V.R,, Katz, E.E., Panlilio-Yap, N.M., Ramsey, C.L., and Chang,
S. Characterization of a software development in Ada: Computer, 18,
9 (Sept. 1985), 53-65. |

3. Dunsmore, H.E., and Gannon,].D. Experimental investigation of pro-
gramming complexity. In Proceedings of the ACM/NBS 16th Anniial
Technical Symposium (Gaithersburg, Md., June). ACM, New York,
1977, pp. 117-125.

4. ‘Elshoff,].L.- An analysis of some commercial PL/1 programs. IEEE
Trans. Softw, Eng. SE-2, 2 (June 1976), 113-120. :

5. Gannon,].D., and Horning, J.J. Language design for programming
reliability. IEEE Trans. Softw. Eng. SE-1, 2 (June 1975), 179-191.

6. Hammons, C., and Dobbs, P: Coupling, cohesion, and package unity
in Ada. Ada Lett. 4, 6 (May-June 1985), 49-59. i

7. Ichbiah,].D., Barnes, J.G.P., Heliard,].C.; Krieg-Bruckner, B., Roub-
ine, O., and Wichman, B.A. Rationale for the design of the Ada
programming language. SIGPLAN Not. 14, 6 (June 1979), 8-12. :

8. Ledgard, H.L. Packages: ‘A method for software decomposition. 1985.

9. Parnas, D.L. Information distribution aspects of design methodology.
In IFIP 71, C.V: Freiman, Ed. North-Holland, Amsterdam, 1971,
pp. 339-344.

CR Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Tools and Techniques—modules and interfaces; D.2.8 [Software En-
gineering]: Metrics—comiplexity measures; D.3.3 [Programming Lan-
guages]:-Language Constructs—abstract data types; modules, packages;
K:6.1 [Management of Computing and Information Systems]: Project
and People Management—training

General Terms: Human Factors, Languages

Additional Key Words and Phrases: Ada, case study

Authors’ Present Address:].D: Gannon, E.E. Katz, and V.R. Basili, Dept.
of Computer Scijence, University of Maryland, College Park, MD 20742.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commier-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that ‘copying is by permission of
the ‘Association for Computing Machinery. To copy otherwise, or to b

i

republish, requires a fee and/or specific permission. o

Communications of the ACM

623.

