GUEST

EDITORY®

INTRODUCTION

lmplementmg Quantitative

Considering the product
is not enough in SQA —
you must also consider
the development
process. This model
addresses both needs.

: A Practical Model

Victor R. Basili and H. Dieter Rombach, University of Maryland

" ccause software affects more and
R more aspects of our life, the cost-

, effective development and main-
tenance of high-quality software is increas-
ingly important, Software quality
assurance (SQA) has become an indispens-
able dimension of software development,
designed to guarantee that quality and pro-
ductivity requirements are fulfilled.

We put this special issue together to help
people understand the increasing impor-
tance of SQA as an essential part of soft-
ware projects, outline some new ideas and
approaches to SQA, and report on some
practical experiences.

SQA'’s importance. Frequent'ly, cost-

I effectiveness and high quality are consid-

ered to be conflicting goals in software
development. In the past — and very often
today — this conflict was resolved by
schedules that favored cost-effecuveness
over quality.

Such inability to cope with all require-
ments is characteristic of a new, immature
field. But the software development and
maintenance field is now about 30 years
old. As part of a constant maturing pro-

cess, we have developed better approaches’

and techniques to develop and maintain
software, including better approaches and

techniques for SQA. Three changes reflect
the increasing maturity of our field:

* The business of software development
and maintenance has become increasingly
competitive. This requires software
projects both to be cost-effective and to
produce high-quality products to compete
in the marketplace. : :

* Today’s software applications are
more complex. Software failures can result

- in financial damage and even threaten the

health or lives of human beings. Financial,
transportation, air-traffic control, and
medical applications demand high-quality
software. Such applications have two
additional problems: (1) It is not enough
for the developer to be convinced that cer-
tain quality requirements are met; the cus-
tomer and users also must be convinced
that all requirements are met. (2) The issue
of legal liability means that, in the case of
a fatal failure, the software developer must
be able to prove that the development and
maintenance process was performed
according to state-of-the-art standards.
¢ The attitude of customers and users
toward quality has changed. As the field

-of software development and maintenance

has matured, so have customers and users,
who today expect a higher level of product
quality. Customers are less willing to

accept software products that violate
explicit or implicit quality requirements,
These changes mean that software
development must deal simultaneously
with demands for better quality and higher
productivity. SQA is supposed to guaran-
tee that project-specific quality and pro-
ductivity requirements are fulfilled.

SQA’s scope. SQA, then, must be con-
cerned with productivity (for example,
cost and schedule), process quality (which
in this context includes all development

. -and maintenance activities), and product
quality. SQA must address two classes of
requirements: external and internal.

External quality and productivity
requirements should be stated explicitly in
the project’s requirements document.
They reflect the customer’s criteria for
deciding the success or failure of a soft-
ware project. Examples of external
requirements are process productivity
(such as schedule, personnel, computer
resources), process quality (such as
methods, tools, guidelines), and final
product quality (such as reliability,
response time, documentation). Meeting
external requirements is the main goal of
all project activities.

Internal quality and productivity
requirements are usually added by the
company. These requirements address the
long-term improvement (beyond the cur-

“rent project) of the developer’s competi-
tiveness in the marketplace. For example,
a company may require that certain guide-
lines (or norms) be followed to develop
reusable software. Meeting those internal
requirements may not be important to the
customer of the current project, but might
increase the productivity of the develop-
ment environment in future projects.

SQA departments must establish pro-
ductivity and quality requirements of both
classes and guarantee that those require-
ments are met.

SQA'’s four W’s. SQA can be character-
ized by four ‘““W”’ questions:

1. What must we assure? We miust
identify the quality characteristics of
interest, state the relationships and weights
among those characteristics, and define
the degree to which they must be assured.
This requires close interaction with: the

customer and should be part of the proj-
ect’s requirements document. The fulfill-

Today, customers and
users expect a higher
level of product quality.

ment of qualitative characteristics, such as
reliability and performance, cannot be
guaranteed unless they are quantifiable.
For example, “‘reliability’> might be quan-
tified as “‘mean time between failures in
hours.”” These quantitative entities are
called measures.

2. When must we assure? We must
define at which project milestones the

quality characteristics of interest should be

controlled, to assure that the established
requirements can be met, to discover that
they cannot be met, or to take corrective
action as early as possible. ;

3. Which methods and tools must we
use? We must define which methods and
tools are most adequate to gather the
information that supports sound SQA
activities, Today, the most common

methods and tools are testing and reading
techniques.. |
4, Who must do the assurance? We
must decide what kind of professionals
(their qualifications and relation with
other project personnel) are most suited to
do an effective quality assurance job and
how they fit into the overall project organ-
ization. . .

Measurement. The effectiveness of

SQA models and supporting methods and
tools depends on whether they can be tai-
lored to the specific needs and characteris-
tics of a project and on whether both the.
development and maintenance processes
and the resulting products are tractable. In
this context, measurement is a very power-
ful mechanism for defining and analyzing
software process and product quality.
However, measurement must be goal-
oriented: It must be driven by the overall
objectives of SQA.'?
- Oneof our objectives in this special issue
is to-address realistic ways to use measure-
ment in SQA. Elsewhere, we have
provided an operational framework for
using measurement in SQA.? Our model
stresses the need for objective and subjec-
tive, as- well as direct and indirect,
measures. .

Objective -measures are numerical
expressions (numbers, sums, ratios, and
distributions) or graphical representations
of numerical expressions that can be com-
puted from software documents such as.

{-source code, designs, and test data.

“Objective’” means two people should
compute the identical value indepen-
dently. Subjective measures are relative,
based on an individual’s estimation or a
compromise within a group. Typical sub-
jective measures are ‘‘degree to which a.
method was used’’ or ‘‘experience of per-'

sonnel with respect to the application.”’

Direct measures allow a project-specific
quantification (and definition) of a qual-
ity factor of interest. An indirect measure
helps predict the expected value of a direct
measure. For instance, a meaningful direct
measure for ‘‘operational reliability’’
might be ‘‘number of failures per week of
operation’’ or ““number of failures per call
of some system component.’’ The indirect
measure ‘‘number of failures during the
preceding acceptance test’’ might be use-
ful for predicting operational reliability as
defined by the direct measures already dur-
ing development. Other meaningful
indirect measures may include product
measures such as complexity.

Indirect measures can contribute valu-
able information to SQA activities. Know-
ing the relationship between direct
measures and indirect measures for a qual-
ity characteristic lets us predict whether
requirements with respect to that charac-
teristic can be fulfilled and, in turn, correct
development when necessary.

Quantitative SQA. Our model for quan-
titative SQA consists of three phases, all
of which suggest some kind of mea-
surement:

1. Define quality requirements in quan-
titative terms. We must select the quality
characteristics of interest, define priorities
among and relations between those qual-
ity characteristics, define each characteris-
tic by one or more direct measures, and
define the quality requirements quantita-
tively by assigning an expected value to
each measure.

2. Plan quality control. We must plan
adequate actions to assure the fulfillment
of the defined quality requirements, con-

. trol the proper execution of these actions,
and evaluate their results. Planning
includes defining what criteria might con-
trol the quality characteristics of interest,
how these criteria are quantifiable in terms
of indirect measures, how these indirect
measures can be used for prediction and
control, when and how the data needed for
computing all measures should be col-
lected, and what methods and tools should
be used. Selecting appropriate indirect
measures requires that we have sound

8

knowledge of the project’s particular
development or maintenance process.

3. Perform. quality control. This
activity consists of two parts: (1) measure-
ment, in which the ‘methods and tech-
niques specified during the planning phase
are applied to gather the actual values for
all defined direct and indirect measures
and distributions, and (2) evaluation, in
which the direct measurements are com-
pared to the quality requirements and
indirect measurements are interpreted to
explain or predict the values of direct
measures, Evaluation also involves decid-
ing if the requirements were met for each

We believe productivity
increases automatically
if a high-quality develop-

ment process is used.

quality ch;aracteristic and for the entire set
of project requirements.
An important attribute of our quantita-

tive SQA model is its consideration of the.

quality of the process, not just of the prod-
uct. One reason quality and productivity
are perceived as conflicting is that process
quality is often neglected. We believe pro-
ductivity increases automatically if a high-
quality development process is employed.
For SQA, this means that it is not enough

to check whether the developed products *

are of the desired quality — to improve
quality and productivity it is just as impor-

tant to evaluate the impact of the methods

and tools used to meet (or fall short of
meeting) those quality requirements.’
Our model also accounts for the equal
importance of analytic and constructive
SQA activities. The term “‘assurance’’ (as
opposed to analysis) indicates that the
objective is both to determine if quality

-requirements are met (the analytic aspect)

and, when they are not met to suggest cor-
rective actions (the constructive aspect).
Quality can only be achieved by undertak-
ing appropriate constructive actions. Con-

structive actions might be suggested to
meet the desired quality requiremenits for =

the current project or so the company can
improve the quality of future projects.

Our model also covers all phases of
development and maintenance. This is
especially important for suggesting effec-
tive corrective quality assurance actions.
The earlier in the software process that
quality problems are detected or antici-
pated, the more effective the countermea-
sures can be.

Finally, our model stresses the impor-
tance of separating responsibilities for
development and SQA. Defining quality
requirements, planning quality control,
and performing the evaluation part of
quality control should be conducted by
development-independent : personnel.
According to our model it is not important
who performs the measurement part of
quality control as long as it is planned for
and evaluated by development-indepen-
dent personnel. :

Implementing this independence of

"SQA can be done in many ways, ranging
- from contracting two independent compa-

nies (one in charge of development, the
other of SQA) to using different develop-
ment groups that perform SQA for each
other.

About this issue, This issue is not
intended to give you an overview of SQA.
Many other publications, including works
by Boehm* and Buckley and Poston,’ are
available for that purpose. The articles we
selected for this issue present new
approaches and ideas for successful SQA
and report on the applications of some
SQA techniques in industry. oS

Acknowledgments

We thank the authors and reviewers who
helped to make this issue a reality. Special
thanks to Bruce Shriver, who initiated this spe-
cial issue while he was editor-in-chief of IEEE
Software, and to Ted Lewis, the current editor-
in-chief, for his constant guidance, encourage-
ment, and help in the review process.

References
1. V.R. Basili and H.D. Rombach, ““Tailor-
ing the Software Process to Project Goals -
and Environments,”” -Proc. - Ninth Int’l
Conf. Software Eng., CS Press, Los
Alamitos, Calif., 1987, pp. 345-357.
2. V.R, Basili and D.M. Weiss, ‘A Method-
" ology for Collecting Valid Software Engi-
neering Data,” IEEE- Trans. Software
Eng., Nov. 1984, pp. 728-738.

|EEE Software -

3. H.D. Rombach and V.R. Basili, *“A Quan-
titative Approach to Quality Assurance,’’
Informatik Spektrum, June 1987, pp.
145-158.

4. B.W. Boehm, J.R. Brown, and M. Lipow,
“‘Quantitative Evaluation of Software
Quality,” Proc. Second Int’l Conf. Soft-
ware Eng., CS Press, Los Alamitos, Calif.,
1976, pp. 592-605.

5. F.J. Buckley and R. Poston, ‘‘Software
Quality Assurance,”’ IEEE Trans. Software
Eng., Jan. 1984, pp. 36-41.

y %

Victor R. Basili is a professor and chairman of
the Computer Science Department at the Uni-
versity of Maryland, College Park. He has been
involved in the design and development of
- - several software projects, including the SIMPL
_family of programming languages. He is cur-
renly measuring and evaluating software
development in industrial settings and has con-
sulted with many agencies and organizations.

Basili has written more than 80 papers on the
methodology, the quantitative analysis, and the
evaluation of the software development process
and product. He serves on the editorial boards
of the Journal of Systems and Software and the
IEEE Transactions on Software Engineering,
and is a senior member of the Computer Soci-
ety of the IEEE.

H. Dieter Rombach is an assistant professor of
computer science at the University of Maryland,
College Park. His research interests include soft-
ware methodologies, measurement of the soft-
ware process and its products, and distributed
systems.

He received a BS in mathematics and an MS
in mathematics and computer science from the
University of Karlsruhe, West Germany, and a
PhD in computer science from the University of
Kaiserslautern, West Germany. He is a member
of the Computer Society of the IEEE, ACM, the
German Computer Society (GI), the Software
Engineering Laboratory, and the University of
Maryland Institute for Advanced Computer
Studies.

September 1987

