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Abstract—This study applies an experimentation methodology to
compare three state-of-the-practice software testing techniques: a) code
reading by stepwise abstraction, b) functional testing using equiva-
lence partitioning and boundary value analysis, and ¢) structural test-
ing using 100 percent statement coverage criteria. The study compares
the strategies in three aspects of software testing: fault detection effec-
tiveness, fault detection cost, and classes of faults detected. Thirty-two
professional programmers and 42 advanced students applied the three
techniques to four unit-sized programs in a fractional factorial exper-
imental design. The major results of this study are the following. 1)
With the professional programmers, code reading detected more soft-
ware faults and had a higher fault detection rate than did functional
or structural testing, while functional testing detected more faults than
did structural testing, but functional and structural testing were not
different in fault detection rate. 2) In one advanced student subject
group, code reading and functional testing were not different in faults
found, but were both superior to structural testing, while in the other
advanced student subject group there was no difference among the
techniques. 3) With the advanced student subjects, the three tech-
niques were not different in fault detection rate. 4) Number of faults
observed, fault detection rate, and total effort in detection depended
on the type of software tested. 5) Code reading detected more interface
faults than did the other methods. 6) Functional testing detected more
control faults than did the other methods. 7) When asked to estimate
the percentage of faults detected, code readers gave the most accurate
estimates while functional testers gave the least accurate estimates.

Index Terms—Code reading, empirical study, functional testing,
methodology evaluation, off-line software review, software measure-
ment. software testing, structural testing.

I. INTRODUCTION

HE processes of software testing and fault detection

continue to challenge the software community. Even
though the software testing and fault detection activities
are inexact and inadequately understood, they are crucial
1o the success of a software project. This paper presents
a controlled study where an experimentation methodology
was applied to address the uncertainty of how to test soft-
ware effectively. In this investigation, common testing
techniques were applied to different types of software by
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subjects that had a wide range of professional experiet
This controlled study is intended to evaluate different te
ing methods that are actually used by software deve
opers, ‘‘state-of-the-practice’” methods, as opposed t
state-of-the-art techniques.

This work is intended to characterize how testing effec-
tiveness relates to several factors: testing technique, soft-
ware type, fault type, tester experience, and any interac-
tions among these factors. The study presented extends
previous work by incorporating different testing tech-
niques and a greater number of persons and programs,
while broadening the scope of issues examined and add-
ing statistical significance to the conclusions.

There are multiple perspectives from which to view em-
pirical studies of software development techniques, in-
cluding the study presented in this paper.

e Experimenter—An experimenter may view the study
as a demonstration of how a software development tech-
nique (or methodology, tool, etc.) can be empirically
evaluated. Experimenters may examine the work as an ex-
ample application of a particular experimentation meth-
odology that may be reused in future studies.

e Rescarcher—A researcher may view the study as an
empirical basis to refine theories of software testing. Re-
searchers formulate software testing theories that have a
horizon across multiple studies. As a consequence, they
examine data from a variety of sources and focus on data
that either support or refute proposed theories.

e Practitioner—A practitioner may view the study as a
source of information about which approaches to testing
should be applied in practice. Practitioners may focus on
the particular quantifications and comparisons provided
by the results. They then consider the relationship of the
programs and programmers examined to the particular en-
vironment or projects in which the results might be ap-
plied.

The following sections describe the testing techniques
examined, the investigation goals, the experimental de-
sign, operation, analysis, and conclusions.

11. TesTING TECHNIQUES

To demonstrate that a particular program actually mects
its specifications, professional software developers cur-
rently urilize many different testing methods. The con-
trolled study presented analyzes three common software
testing techniques, which will be referred to as functional
testing, structural testing, and code reading. Before pre-
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senting the goals for the empirical study comparing the
techniques, a description will be given of the testing strat-
egies and their different capabilities (see Fig. 1.). In func-
tional testing, which is a ‘*black box"* approach, a pro-
grammer constructs test data from the program’s
specification through methods such as equivalence parti-
tioning and boundary value analysis [42]. The program-
mer then executes the program and contrasts its actual be-
havior with that indicated in the specification. In structural
testing, which is a **white box’’ approach [25], [29], a
programmer inspects the source code and then devises and
executes test cases based on the percentage of the pro-
gram’s statements or expressions executed (the *‘test set
coverage'') [52]. The structural coverage criteria used was
100 percent statement coverage. In code reading by step-
wise abstraction, a person identifies prime subprograms
in the software, determines their functions. and composes
these functions to determine a function for the entire pro-
gram [35], [39]. The code reader then compares this de-
rived function and the specifications (the intended func-
tion).

The controlled study presented analyzes, therefore, 1)
the functional testing technique of using equivalence class
partitioning and boundary value analysis, 2) the structural
testing technique of using 100 percent statement coverage
criteria, and 3) the code reading technique of reading by
stepwise abstraction. Certainly more advanced methods
of testing software have been proposed (for example, see
[10]). The intention of the controlled study, however, is
to apply an experimentation methodology to analyze test-
ing methods that are actually being used by developers to
test software [56]. Note that alternate forms exist for each
of the three methods described, for example, functional
testing that takes into consideration the program design
[27], structural testing that uses branch or data flow cri-
teria [16], and code reading in multiperson inspections
[14]. With the above descriptions in mind, we will refer
to the three testing methods as functional testing, struc-
tural testing, and code reading.

A. Investigation Goals

The goals of this study comprise three different aspects
of software testing: fault detection effectiveness, fault de-
tection cost, and classes of faults detected. An application
of the goal /question/metric paradigm [2], {6]leads to the
framework of goals and questions for this study appearing
in Fig. 2.

The first goal area is performance oriented and includes
a natural first question (I-A): which of the techniques de-
tects the most faults in the programs? The comparison be-
tween the techniques is being made across programs, each
with a different number of faults. An alternate interpre-
tation would then be to compare the percentage of faults
found in the programs (question I-A-1). The number of
faults that a technique exposes should also be compared;
that is, faults that are made observable but not necessarily
observed and reported by a tester (I-A-2). Because of the
differences in types of software and in testers' abilities, it
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Fig. 1. Capabilitics of the testing methods.

[. Fault detection efectiveness

A. For programmers dotzg unls testing, whis: of the testing teclalGues
(code reactizg, fuzctional testiag, or siricturai testing) cetects tle
@ost fauwlts ia programs?

1. Which of the tecantques detects the arsatest perceatage cf faults 'a
the programs (the programs each ceatala a dllerest sumbder of
fauilts)?

2. Whieh of the techniques expeses he areatest zumber (or perceatage)
of program fauits (faults that are observable dut tot secessartly
reported)?

B. Is the cumber of faulls observed depezdent co sofiware tyse?

C. Is the sumber of faults observed cepeacest og tie exDertise levei of the
person testiag?

II. Fault detection cost

A. For programmTers dolng uzit testing, ‘which of tde testing techdiques
(code reacing. fuactional testing. or structural tescing) cetects e
faults at the Nighest rale (=fauits/efort)?

B. [s the fault detectlon rate depeacest on sefixare [3%-104

C. Is the fault detection rate dependeat on the expertise tevel of t2e rerzcn
testing?

OI. Classes of faults observed

A. For programmers dolng ualt testlnz, do the methods tend to capture
diSerent classes of faults?

B. What classes of faults are observable but go uareported?

Fig. 2. Outline of goals / subgoals / questions for testing experiment.

is relevant to determine whether the number of the faults
detected is either program or programmer dependent (I-
B, I-C). Since one technique may find a few more faults
than another, it becomes useful to know how much effort
that technique requires (II-A). Awareness of what types
of software require more effort to test (II-B) and what
types of programmer backgrounds require less effort in
fault uncovering (II-C) is also quite useful. If one is in-
terested in detecting certain classes of faults, such as in
error-based testing [15], [53] it is appropriate to apply a
technique sensitive to that particular type (III-A). Clas-
sifying the types of faults that are observable yet go un-
reported could help focus and increase testing effective-
ness (III-B).

III. EMPIRICAL STUDY

Admittedly, the goals stated here are quite ambitious.
In no way is it implied that this study can definitively an-
swer all of these questions for all environments. It is in-
tended, however, that the statistically significant analysis
presented lends insights into their answers and into the
merit and appropriateness of each of the techniques. Note
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that this study compares the individual application of the
three testing techniques in order to identify their distinct
advantages and disadvantages. This approach is a first step
toward proposing a composite testing strategy, which
possibly incorporates several testing methods. The fol-
lowing sections describe the empirical study undertaken
to pursue these goals and questions, including the selec-
tion of subjects, programs, and experimental design, and
the overall operation of the study. For an overview of the
experimentation methodology applied in this study, as
well as a discussion of numerous software engineering ex-
periments, see [4].

A. Irerative Experimentation

The empirical study consisted of three phases. The first
and second phases of the study took place at the Univer-
sity of Maryland in the Falls of 1982 and 1983, respec-
tively. The third phase took place at Computer Sciences
Corporation (Silver Spring, MD) and NASA Goddard
Space Flight Center (Greenbelt, MD) in the Fall of 1984,
The sequential experimentation supported the iterative
nature of the learning process, and-enabled the initial set
of goals and questions to the expanded and resolved by
further analysis. The goals were further refined by dis-
cussions of the preliminary results [47], [51]. These three
phases enabled the pursuit of result reproducibility across
environments having subjects with a wide range of ex-
perience,

B. Subject and Program /Fault Selection

A primary consideration in this study was to use a re-
alistic testing environment to assess the effectiveness of
these different testing strategies, as opposed to creating a
best possible testing situation [23]. Thus. 1) the subjects
for the study were chosen to be representative of different
levels of expenise, 2) the programs tested correspond to
different types of software and reflect common program-
ming style, and 3) the faults in the programs were repre-
sentative of those frequently occurring in software. Sam-
pling the subjects, programs, and faults in this manner is
intended to evaluate the testing methods reasonably, and
to facilitate the generalization of the results to other en-
vironments.

1) Subjects: The three phases of the study incorpo-
rated a total of 74 subjects: the individual phases had 29,
13. and 32 subjects. respectively. The subjects were se-
lected, based on several criteria, to be representative of
three different levels of computer science expenise: ad-
vanced, intermediate, and junior. The number of subjects
in each level of expertise for the different phases appears
in Fig. 3.

The 42 subjects in the first two phases of the study were
the members of the upper level **Software Design and De-
velopment'” course at the University of Maryland in the
Falls of 1982 and 1983. The individuals were either up-
per-level computer science majors or graduate students;
some were working part-time and all were in good aca-
demic standing. The topics of the course included struc-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13, NO. 12, DECEMBER 1987

| Phase
Level of 1 2 3 total
Expertise (Univ. Md) _ (Univ. Md)  (NASA/CSC)
Advaaced (o} (4] 8 8
Intermediate [] 4 11 24
Junlor 20 ] 13 42
total 29 13 32 74

Fig. 3. Expertise levels of subjects.

tured programming practices, functional correctness, top-
down design, modular specification and design, step-wise
refinement, and PDL, in addition to the presentation of
the techniques of code reading, functional testing, and
structural testing. The references for the testing methods
were [40], [14], [42], [27], and the lectures were pre-
sented by V. R. Basili and F. T. Baker. The subjects from
the University of Maryland spanned the intermediate and
junior levels of computer science expertise. The assign-
ment of individuals to levels of expertise was based on
professional experience and prior academic performance
in relevant computer science courses. The individuals in
the first and second phases had overall averages of 1.7
(SD = 1.7) and 1.5 (SD = 1.5) years of professional
experience. The nine intermediate subjects in the first
phase had from 2.8 to 7 years of professional experience
(average of 3.9 years, SD = 1.3), and the four in the
second phase had from 2.3 10 5.5 years of professional
experience (average of 3.2, SD = 1.5). The 20 junior
subjects in the first phases and the nine in the second phase
both had from 0 to 2 years professional experience (aver-
ages of 0.7, SD = 0.6, and 0.8, SD = 0.8, respectively).

The 32 subjects in the third phase of the study were
programming professionals from NASA and Computer
Sciences Corporation. These individuals were mathema-
ticians, physicists, and engineers that develop ground
support software for satellites. They were familiar with
all three testing techniques. but had used functional test-
ing primarily. A four hour tutorial on the testing tech-
niques was conducted for the subjects by R. W. Selby.
This group of subjects, examined in the third phase of the
experiment, spanned all three expertise levels and had an
overall average of 10.0 (SD = 5.7) years professional ex-
perience. Several criteria were considered in the assign-
ment of subjects to expertise levels, including years of
professional experience, degree background, and their
manager’s suggested assignment. The eight advanced
subjects ranged from 9.5 to 20.5 years professional ex-
perience (average of 15.0, SD = 4.1). The eleven inter-
mediate subjects ranged from 3.5to 17.5 years experience
(average of 10.9, SD = 4.9). The 13 junior subjects
ranged from 1.5 to 13.5 years experience (average of 6.1,
SD = 4.4).

2) Programs: The experimental design enables the
distinction of the testing techniques while allowing for the
effects of the different programs being tested. The four
programs used in the investigation were chosen to be rep-
resentative of several different types of software. The pro-
grams were selected specially for the study and were pro-
vided to the subjects for testing; the subjects did not test
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programs that they had written. All programs were written
in a high-level language with which the subjects were fa-
miliar. The three programs tested in the CSC/NASA
phase were written in Fortran, and the programs tested in
the University of Maryland phase were written in the
Simpl-T structured programming language {5].' The four
programs tested were P,) a text processor. P,) a mathe-
matical plotting routine. P;) a numeric abstract data type,
and P,) a database maintainer. The programs are sum-
marized in Fig. 4. There exists some differentiation in
size, and the programs are a realistic size for unit testing.
Each of the subjects tested three programs. but a total of
four programs was used across the three phases of the
study. The programs tested in each of the three phases of
the study appear in Fig. 5. The specifications for the pro-
grams appear in the Appendix. and their source code ap-
pears in [3]. [48].

The first program is a text formatting program. which
also appeared in [41]. A version of this program. origi-
nally written by [43] using techniques of program cor-
rectness proofs, was analyzed in [19]. The second pro-
gram is a mathematical plotting routine. This program was
written by R. W. Selby. based roughly on a sample pro-
gram in [33]. The third program is a numeric data abstrac-
tion consisting of a set of list processing utilities. This
program was submitted for a class project by a member
of an intermediate level programming course at the Uni-
versity of Maryland [36]. The fourth program is a main-
tainer for a database of bibliographic references. This
program was analyzed in [23], and was written by a sys-
tems programmer at the University of North Carolina
computation center.

Note that the source code for the programs contains no
comments. This creates a worst-case situation for the code
readers. In an environment where code contained helpful
comments, performance of code readers would likely im-
prove, especially if the source code contained as com-
ments the intermediate functions of the program seg-
ments. In an environment where the comments were at all
suspect, they could then be ignored.

3) Faults: The faults contained in the programs tested
represent a reasonable distribution of faults that com-
monly occur in software {1]. [54]. All the faults in the
database maintainer and the numeric abstract data type
were made during the actual development of the pro-
grams. The other two programs contain a mix of faults
made by the original programmer and faults seeded in the
code. The programs contained a total of 34 faults: the text
formatter had nine, the plotting routine had six, the ab-
stract data type had seven, and the database maintainer
had twelve.

a) Fault Origin: The faults in the text formatter were
preserved from the article in which it appeared [41], ex-
cept for some of the more controversial ones [9]. In the

'Simpl-T is a structured language that supports several string and file
handling primitives, in addition to the usual control ow constructs avail-
able, for example, in Pascal.
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Fig. 5. Programs tested in cach phase of the analysis.

mathematical plotter, faults made during program trans-
lation were supplemented by additional representative
faults. The faults in the abstract data type were the orig-
inal ones made by the program’s author during the devel-
opment of the program. The faults in the database main-
tainer were recorded during the development of the
program. and then reinserted into the program. The next
section describes a classification of the different types of
faults in the programs. Note that this investigation of the
fault detecting ability of these techniques involves only
those types occurring in the source code, not other types
such as those in the requirements or the specifications.

b) Fault Classification: The faults in the programs
are classified according to two different abstract classifi-
cation schemes [1]. One fault categorization method sep-
arates faults of omission from faults of commission. Faults
of commission are those faults present as a result of an
incorrect segment of existing code. For example, the
wrong arithmetic operator is used for a computation in the
right-hand-side of an assignment statement. Faults of
omission are those faults present as a result of a program-
mer’s forgetting to include some entity in a module. For
example, a statement is missing from the code that would
assign the proper value to a variable.

A second fault categorization scheme partitions soft-
ware faults into the six classes of 1) initialization, 2) com-
putation, 3) control, 4) interface, 5) data, and 6) cos-
metic. Improperly initializing a data structure constitutes
an initialization fault. For example, assigning a variable
the wrong value on entry to a module. Computation faults
are those that cause a calculation to evaluate the value for
a variable incorrectly. The above example of a wrong
arithmetic. operator in the right-hand-side of an assign-
ment statement would be a computation fault. A control
fault causes the wrong control flow path in a program to
be taken for some input. An incorrect predicate in an IF-
THEN-ELSE statement would be a control fault. Inter-
face faults result when a module uses and makes assump-
tions about entities outside the module’s local environ-
ment. Interface faults would be, for example, passing an
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incorrect argument to a procedure. or assuming in a mod-
ule that an array passed as an arpument was filled with
blanks by the passing routine. A data fault are those that
result from the incorrect use of a data structure. For ex-
ample, incorrectly determining the index for the last cle-
ment in an array. Finally, cosmetic faults are clerical mis-
takes when entering the program. A spelling mistake in
an error message would be a cosmetic fault.

Interpreting and classifying faults in software is a diffi-
cult and inexact task. The categorization process often re-
quires trying to recreate the original programmer’s mis-
understanding of the problem [34]. The above two fault
classification schemes attempt to distinguish among dif-
ferent reasons that programmers make faults in software
development. They were applied to the faults in the pro-
grams in a consistent interpretation; it is certainly possi-
ble that another analyst could have interpreted them dif-
ferently. The separate application of each of the two
classification schemes to the faults categorized them in a
mutually exclusive and exhaustive manner. Fig. 6 dis-
plays the distribution of faults in the programs according
to these schemes.

¢) Fault Description: The faults in the programs are
described in Fig. 7. There have been various efforts to
determine a precise counting scheme for “*defects’’ in
software [18], [31], [13]. According to the IEEE expla-
nations given, a software “‘fault’’ is a specific manifes-
tation in the source code of a programmer **error.'* For
example, due to a misconception or document discrep-
ancy, a programmer makes an “*error’” (in his/her head)
that may result in more than one *‘fault” in a program.
Using this interpretation, software **faults’* reflect the
correctness. or lack thereof. of a program. A program in-
put may reveal a software **fault™ by causing a software
“failure.”” A software **failure"" is therefore a manifes-
tation of a software **fault."* The entities examined in this
analysis are software faults.

C. Experimenial Design

The experimental design applied for each of the three
phases of the study was a fractional factorial design [7].
[12]. This experimental design distinguishes among the
testing techniques. while allowing for variation in the
ability of the panicular individual testing or in the pro-
gram being tested. Fig. 8 displays the fractional factorial
design appropriate for the third phase of the study. Sub-
Ject S, is in the advanced expertise ievel, and he structur-
ally tested program P,, functionally tested program P,
and code read program P,. Notice that all of the subjects
tested each of the three programs and used each of the
three techniques. Of course. no one tests a given program
more than once. The design appropriate for the third phase
1s discussed in the following paragraphs. with the minor
differences between this design and the ones applied in
the first two phases being discussed at the end of the scc-
tion.

1) Independent and Dependent Variables: The exper-
imental design has the three independent variables of test-
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| Omission  Commuissioe | Total
Initlalization [} 2 2
Computation 4 4 8
Control 2 s k4
Interface 2 11 13
Data 2 1 3
Coesmetie 0 1 1
Total 10 24 34

Fig. 6. Distribution of faults in the programs.

ing technique, software type, and level of experntise. For
the design appearing in Fig. 8, appropriate for the third
phase of the study, the three main effects have the follow-
ing levels:

1) testing technique: code reading, functional testing,
and structural testing.

2) software types: (P,) text processing, (P;) numeric
abstract data type, and (P,) database maintainer.

3) level of expertise: advanced, intermediate, and jun-
ior.

Every combination of these levels occurs in the design.
That is, programmers in all three levels of expertise ap-
plied all three testing techniques on all programs. In ad-’
dition to these three main effects, a factorial analysis of
variance (ANOVA) model supports the analysis of inter-
actions among each of these main effects. Thus, the in-
teraction effects of testing technique * software type, test-
ing technique * expertise level, software type * expertise
level, and the three-way interaction of testing technique
* software type * expertise level are included in the
model. There are several dependent variables examined
in the study, including number of faults detected, per-
centage of faults detected, total fault detection time. and
fault detection rate. Observations from the on-line meth-
ods of functional and structural testing also had as depen-
dent variables number of computer runs, amount of cpu-
time consumed, maximum statement coverage achieved,
connect time used, number of faults that were observable
from the test data. percentage of faults that were observ-
able from the test data, and percentage of faults observ-
able from the test data that were actually observed by the
tester.

2) Analysis of Variance Model: The three main effects
and all the two-way and three-way interactions effects are
called fixed effects in this factorial analysis of variance
model. The levels of these effects given above represent
all levels of interest in the investigation. For example, the
effect of testing technique has as particular levels code
reading, functional testing, and structural testing; thes:
particular testing techniques are the only ones under com-
parison in this study. The effect of the particular subjects
that participated in this study requires a little different
interpretation. The subjects examined in the study were
random samples of programmers from the large popula-
tion of programmers at each of the levels of expertise.
Thus, the effect of the subjects on the various dependent
variables is a random variable, and this effect therefore is
called a random effect. If the samples examined are truly
representative of the population of subjects at each ex-
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a0d replaces the arst character of ile B Pa omlssica data  words appearing twice tn a title get two
aex: 1297t iise with 3 ":” cress refesence entries
3 P3  comxzission Interface routize FIRST returss sero (0) whea tle C P2 __ ccmmission computationthe X azd ¥ 2xes are mislabeled
lst Bas ooe elemest D P2 omission computationpolnts with negative y-values are zet
X P3  commissicn laterface routine ISEMPTY returss irue {1) when processed 124 do 210t appear ¢ le
tle !ist has ope eiement Zraph
l P3  commission interface routise DELETEFIRST cag not Ceiete E P2 commission control the origia (0.0) appears co ibe graph re-
the Arst lis: element when the list has gardless of whether !t Is an tnput pcia?
ouly oce element F P2 commission  data 0o polnis can appear on the vertleal ax's
= P3  commission Imterface routtae LISTLENGTH returns oge iess G P2 commission computationthe vertical and dorizontal scallng for
thaz than the actual lengtl of the lst the pixeis are ealeulated lncorrectiy.
o P3  commission igterface routise ADDFIRST can add more thaa causing some polais not Lo appear In tte
the specified fve elements to the list proper pixel
° P3  commission Interface routie ADDLAST caz add more thaa H P2 omlission computatlonwhen mcre thad one polgt would appear
the speciled Zve eiernents to the list iz 2 given pixel. only an asterisk (o) ap-
P P3 omission computationroutine REVERSE does not reverse the pears, 20t a0 Appropriate integer
iIst properly wien t2e list das more t2aa
oue elemesnt
Fig. 7. Fault classification and description.
- 5 ] i i alysis of vari model
Code NPT ——— the sample chosen. Since this analysis of ariance mg
Reading Testing Testiag contains both fixed and random effects, it is called a mixed
P, PyP| P P,P, | P, P,sP, model. The additive ANOVA model for the design ap-
5, | —x —X— X— pearing in Fig. 8 is given below (7], [12].
Advanced S, —_—X X— —X
Subjects . .. 71]“ =pu + «; -+ 6] -+ Y + 6/(1 -+ aﬁ’/
S X— —_X —X— .
: + oy + By + By t €
s, —X— pr - —X where
Iocer- S —X —X— X— . .
medlate . Yijk is the observed response from subject / of ex-
Subjects . pertise level k using testing technique i on
S| X—o —X —X— .
program ;.
Junt :.” ;x— X < ‘cx u is the overall mean response.
unlor o X— —] —X— . . . . s oe
Subjects . .. Q; is the main effect of testing technique i (i = 1,
. 2,3).
3 —_X —X— X—— : . F (7 =
* B; is the main effect of program j (j = 1, 3, 4).
Fig. 8. Fractional factorial design. Yi is the main effect of expertise level k (k = 1,
2, 3).
pertise level, the inferences from the analysis can then be Oy is the random effect of subject ! within exper-

generalized across the whole population of subjects at each
expertise level, not just across the particular subjects in

tise level k, a random variable (I = 1, 2,
s, 32:k=1,2,3).
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aB, is the interaction effect of testing technique i
with program j (i = 1,2,3:j = 1, 3, 4).

@Yy is the interaction effect of testing technique i
with expertise level A (i = 1,2, 3: k = 1, 2.
3).

Bvu  is the interaction effect of program j with ex-
pertise level k (j =1,3,4; k =1, 2, 3).

aBy;; is the interaction effect of testing technique i
program j with expertise level k (i = 1, 2, 3:
J=13, 4 k= 1, 2, 3).

€ijkl is the experimental error for each observation,

a random variable.

The tests of hypotheses on all the fixed effects men-
tioned above are referred to as F-tests [46]. The F-tests
use the error (residual) mean square in the denominator,
except for the test of the expertise level effect. The ex-
pected mean square for the expentise level effect contains
a component for the actual variance of subjects within ex-
pertise level. In order to select the appropriate term for
the denominator of the expertise level F-test, the mean
square for the effect of subjects nested within expertisc
level is chosen. The parameters for the random effect of
subjects within expertise level are assumed to be drawn
from a normally distributed random process with mean
zero and common variance. The experimental error terms
are assumed to have mean zero and common variance.

The fractional factorial design applied in the first two
phases of the analysis differed slightly from the one pre-
sented above for the third phase.’ In the third phase of the
study, programs P,, P, and P, were tested by subjects in
three levels of expertise. In both phases one and two., there
were only subjects from the levels of intermediate and
junior expertise. In phase one. programs P, P,, and P-
were tested. In phase two. the programs tested were Py,
P,, and P,. The only modifications necessary to the above
explanation for phases one and two are 1) eliminating the
advanced expertise level, 2) changing the program P sub-
scripts appropriately. and 3) leaving out the three way in-
teraction term in phase two. because of the reduced num-
ber of subjects. In all three of the phases. all subjects used
each of the three techniques and tested each of the three
programs for that phase. Also. within all three phrases.
all possible combinations of expertise level. testing tech-
niques. and programs occurred.

The order of presentation of the testing techniques was
randomized among the subjects in each level of expertise
in each phase of the study. However. the integrity of the
results would have suffered if each of the programs in a
given phase was tested at different times by different sub-
Jjects. Note that each of the testing sessions took place on
a different day because of the amount of effort required.
If different programs would have been tested on different
days, any discussion about the programs among subjects

:Al(hough the data from all the phases can be analyzed together. the
number of empty cells resulting from not having all three experience levels
and all four programs in all phases limits the number of parameters that
can be estimated and causes nonunique Type IV partial sums of squares.

between testing sessions would have affected the future
performance of others. Therefore, all subjects in a phase
tested the same program on the same day. The actual or-
der of program presentation was the order in which the
programs are listed in the previous paragraph.

D. Experimental Operation -

Each of the three phases were broken into five distinct
pieces: training, three testing sessions, and a follow-up
session. All groups of subjects were exposed to a similar
amount of training on the testing techniques before the
study began. As mentioned earlier, the University of
Maryland subjects were enrolled in the **Software Design
and Development’* course, and the NASA /CSC subjects
were given a four-hour tutorial. Background information
on the subjects was captured through a questionnaire. El-
ementary exercises followed by a pretest covering all
techniques were administered to all subjects after the
training and before the testing sessions. Reasonable effort
on the part of the University of Maryland subjects was
enforced by their being graded on the work and by their
needing to use the techniques in a major class project.
Reasonable effort on the part of the NASA /CSC subjects
was certain because of their desire for the study’s out-
come to improve their software testing environment. All
subjects’ groups were judged highly motivated during the
study. The subjects were all familiar with the editors. ter-
minals. machines, and the programs" implementation lan-
guage.

The individuals were requested to use the three testing
techniques to the best of their ability. Every subject par-
ticipated in all three testing sessions of his /her phase,
using all techniques but each on a separate program. The
individuals using code reading were each given the spec-
ification for the program and its source code. They were
then asked to apply the methods of code reading by step-
wise abstraction to detect discrepancies between the pro-
gram’s abstracted function and the specification. The
functional testers were each given a specification and the
ability to execute the program. They were asked to per-
form equivalence partitioning and boundary value analy-
sis 1o select a set of test data for the program. Then they
executed the program on this collection of test data. and
inconsistencies between what the program actually per-
formed and what they thought the specification said it
should perform were noted. The structural testers were
given the source code for the program. the ability 1o ex-
ecute it. and a description of the input format for the pro-
gram. The structural testers were asked to examine the
source and generate a set of test cases that cumulatively
execute 100 percent of the program’s statements. When
the subjects were applying an on-line technique. they gen-
crated and executed their own test data: no test data sets
were provided. The programs were invoked through a test
driver that supported the use of the multiple input data
sets. This test driver, unbeknown to the subjects. drained
off the input cases submitted to the program for the ex-
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perimenter’s later analysis; the programs could only be
accessed through a test driver.

A structural coverage tool calculated the actual state-
ment coverage of the test set and which statements were
left unexecuted for the structural testers.? After the struc-
tural testers generated a collection of test data that met (or
almost met) the 100 percent coverage criteria, no further
execution of the program or reference to the source code
was allowed. They retained the program’s output from the
test cases they had generated. These testers were then pro-
vided with the program's specification. Now that they
knew what the program was intended to do, they were
asked to contrast the program’s specification with the be-
havior of the program on the test data they derived. This
scenario for the structural testers was necessary so that
‘‘observed’’ faults could be compared.

At the end of each of the testing sessions, the subjects
were asked to give a reasonable estimate of the amount of
time spent detecting faults with a given testing technique.
The University of Maryland subjects were assured that
this had nothing to with the grading of the work. There
seemed to be little incentive for the subjects in any of the
groups not to be truthful. At the completion of each test-
ing session, the NASA /CSC subjects were also asked
what percentage of the faults in the program that they
thought were uncovered. After all three testing sessions
in a given phase were completed. the subjects were re-
quested to critique and evaluate the three testing tech-
niques regarding their understandability, naturalness, and
effectiveness. The University of Maryland subjects sub-
mitted a written critique, while a two hour debriefing fo-
rum was conducted for the NASA /CSC individuals. In
addition to obtaining the impressions of the individuals,
these follow-up procedures gave an understanding of how
well the subjects were comprehending and applying the
methods. These final sessions also afforded the partici-
pants an opportunity to comment on any particular prob-
lems they had with the techniques or in applying them to
the given programs.

IV. DATA ANALYSIS

The analysis of the data collected from the various
phases of the experiment is presented according to the goal
and question framework discussed earlier.

A. Fault Detection Effectiveness

The first goal area addresses the fault detection effec-
tiveness of each of the techniques. Fig. 9 presents a sum-
mary of the measures that were examined to pursue this
goal area. A brief description of each measure is as fol-
lows; an asterisk (*) means only relevant for on-line test-
ing.

a) Number of faults detected = the number of faults

*Program statements within the body of a WHILE statement were con-
sidered unexecuted if the Boolean condition of the WHILE statement was
false. Having the Boolean condition of the WHILE statement become true

at some point was a prerequisite for executing the statements with the body
of the WHILE,
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Plhase | #3Subdj. | Measure i Meaa | SD i Mia. | Max. |
) % Faults detected 13041 132 000! 7tc0.
- % Faults detectea i 3478 | o8 0.0 | 100.00 !
1 26(e) = Faulis nbservadle | 828 | 1.5 3.00 8.0C |
1 20(s) | 9% Faults obserrable | 7430 | 20.5+ | 33.33 | 100.00
1 29(s) | O Datected/nbservabie | =908 | n4.01 | 0.00 | 100.00
2 i 13 | = Fauits cetected 1338 ! 196 | 000 7T.00°
2 |13 | O Paulry detecean 13833 | 2285 | 0.0 | 100.00 |
3 32 = Faults detestea I 4.27 t 196 0.00 i 8.c0t
3 32 7% Faults detected | 40.92 | 27.44 0.00 | 100.00 i
3 32 % Faults felt found | 75.10 | 24.07 0.0 | 100.00 i
3 32(e) | = Faults observabie | 581 1 1,32 3.00 |  g¢col
3 32(s) 5 Faulis observable | 82.11 | 19.38 { 25.00 | 100.00 |
3 32(e) Tt Datectea/observanle | 20.37 | 2704 | 0.00 | 100.00 |
3 220e) Moy, X et covemad i gT02 | 293 | 400 | 10000
Ave | 74 = Facits detecten ] 397 | 1831 QcO | 8.CO0:
Ave | 74 €5 Faults datacred | 4058 | arag 0.00 | 100.0
Ave | 81(s) & Faults obsarradle ' 53 1 s 3.0 | 900
Ave | 81(e) | ©F Pauirs obsersabia 1233 1203 1250 1 1000 !
Ave f_810s) | % Daevected/stservadie | 70.3 | 25.8 | 0.0 | 100.0

Fig. 9. Overall summary of detection effectiveness data. Note: some data

pertain only to on-line techniques (*), and some data were collected only
in centain phases.

detected by a subject applying a given testing technique
on a given program.

b) Percentage of faults detected = the percentage of a
program’s faults that a subject detected by applying a test-
ing technique to the program.

¢) Number of faults observable (*) = the number of
faults that were observable from the program’s behavior
given the input data submitted.

d) Percentage of faults observable (*) = the percentage
of a program’s faults that were observable from the pro-
gram'’s behavior given the input data submitted.

e) Percentage detected /observable (*) = the percent-
age of faults observable from the program’s behavior on
the given input set that were actually observed by a sub-
ject.

f) Percentage faults felt found = a subject’s estimate
of the percentage of a program's faults that he /she
thought were detected by his /her testing.

g) Maximum statement coverage (*) = the maximum
percentage of a program'’s statements that were executed
in a set of test cases.

1) Data Distributions: The actual distribution of the
number of faults observed by the subjects appears in Fig,
10, broken down by phase. From Figs. 9 and 10, the large
variation in performance among the subjects is clearly
seen. The mean number of faults detected by the subjects
is displayed in Fig. 11, broken down by technique, pro-
gram, expertise level, and phase.

2) Number of Faults Detected: The first question un-
der this goal area asks which of the testing techniques
detected the most faults in the programs. The overall F-
test of the techniques detecting an equal number of faults
in the programs is rejected in the first and third phases of
the study (o« < 0.024 and @ < 0.0001, respectively; not
rejected in phase two, a > 0.05). Recall that the phase
three data was collected from 32 NASA /CSC subjects,
and the phase one data was from 29 University of Mary-
land subjects. With the phase three data, the contrast of
“‘reading — 0.5 * (functional + structural)®” estimates
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Fig. 10. Distribution of the number of faults detected broken down by
phase. Key: code readers (C), functional testers (F), and structural test-
ers (S).
7 Paase i functional testing detected 1.11 more faults per program
I 1 ] 2 ! 3 | than did structural testing (o« < 0.0007, c.i. 0.52-1.70).
Eoect L Lovel L Mean/SD) ) MeanfSD) | MeaniSD) | In the phase one data, the contrast of **0.5 * (reading +
Techtlcue | Readiog | 4.10(1.93) | 3.00(2.20) | $.00 (1.92: f ti D — st I . h h hni £
| Functliopal | 4.45 (1.70) | 3.77 (1.53) | 4.47 (1.34) unctional) _S ructural - estimates that the technique o
| Structural | 378 (1.87) | 3.08 (1.89) | 3.5 (1.800 structural testing detected 1.00 fault less per program than
Programm | Formatter | 4.07 (1.22) | 3.23(2.20) | 4.10 {1.73) did either reading or functional testing (o < 0.0065, c.i.
: DP‘°“°~' : 3.48 (1.45) : 3.31 (1.97) : SA) 0.31-1.69). In the phase one data, the contrast of *‘read-
.28 (2.28! . .22 (1.73) . . X C el .
B TR — ,l‘w e ing — functional”” was not statistically different from zero
Experuise | Jumtor | 3.88 (1.851 i 3.04 (2.07) | 3.60 (1.83, (@ > 0.05). The poor performance of structural testing
| lstermed. i 4.07 (1.25) ! 2.83 (1.84) | 4.18 (1.99) across the phases suggests the inadequacy of using state-
, Advageed i () () ] 5.00 (1.53) ment coverage criteria. The above pairs of contrasts were
chosen because they are linearly independent.
Fig. 11. Overall summary for number of faults detected (SD = sid. dev.).

that the technique of code reading by stepwise abstraction
detected 1.24 more faults per program than did either of
the other techniques (@ < 0.0001, c.i. 0.73-1.75).% Note
that code reading performed well even though the profes-
sional subjects’ primary experience was with functional
testing. Also with the phase three data, the contrast of
““functional — structural’” estimates that the technique of

) “The probability of Type 1 ervor is rcported. the probability of erro-
neously rejecting the null hypothesis. The abbreviation **c.i."" stands for
95 percent confidence interval.

3) Percentage of Faults Detected: Since the programs
tested each had a different number of faults, a question in
the earlier goal /question framework asks which tech-
nique detected the greatest percentage of faults in the pro-
grams. The order of performance of the techniques is the
same as above when the percentage of the program's faults
detected are compared. The overall F-tests for phases one
and three were rejected as before (@ < 0.037 and o <
0.0001. respectively; not rejected in phase two, o >
0.05). Applying the same contrasts as above: a) in phase
three, reading detected 16.0 percent more faults per pro-
gram than did the other techniques (¢ < 0.0001, c.i. 9.9-
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22.1), and functional detected 11.2 percent more faults
than did structural (@ < 0.003, c.i. 4.1-18.3); b) in phase
one, structural detected 13.2 percent fewer of a program'’s
faults than did the other methods (« < 0.011, c.i. 3.5-
22.9), and reading and functional were not statistically
different as before. '

4) Dependence on Software Type: Another question in
this goal area queries whether the number or percentage
of faults detected depends on the program being tested.
The overall F-test that the number of faults detected is not
program dependent is rejected only in the phase three data
(e < 0.0001). Applying Tukey's multiple comparison on
the phase three data reveals that the most faults were de-
tected in the abstract data type, the second most in the
text formatter, and the least number of faults were found
in the database maintainer (simultaneous o« < 0.05).
When the percentage of faults found in a program is con-
sidered, however, the overall F-tests for the three phases
are all rejected (o < 0.027, a < 0.01, and @ < 0.0001
in respective order). Tukey’s multiple comparison yields
the following orderings on the programs (all simultaneous
a < 0.05). In the phase one data, the ordering was (data
type = plotter) > text formatter; that is, a higher per-
centage of faults were detected in either the abstract data
type or the plotter than were found in the text formatter;
there was no difference between the abstract data type and
the plotter in the percentage found. In the phase two data,
the ordering of percentage of faults detected was plotter
> (text formatter = database maintainer). In the phase
three data, the ordering of percentage of faults found in
the programs was the same as the number of faults found,
abstract data type > text formatter > database main-
tainer. Summarizing the effect of the type of software on
the percentage of faults observed: 1) the programs with
the highest percentage of their faults detected were the
abstract data type and the mathematical plotter, the per-
centage detected between these two was not statistically
different; 2) the programs with the lowest percentage of
their faults detected were the text formatter and the data-
base maintainer; the percentage detected between these
two was not statistically different in the phase two data,
but a higher percentage of faults in the text formatter was
detected in the phase three data.

5) Observable Versus Observed Faults: One evalua-
tion criteria of the success of a software testing session is
the number of faults detected. An evaluation criteria of
the particular test data generated, however, is the ability
of the test data to reveal faults in the program. A test data
set’s ability to reveal faults in a program can be measured
by the number or percentage of a program’s faults that are
made observable from execution on that input.® Distin-
guishing the faults observable in a program from the faults

Test data **reveal a fault’ or ‘*make a fault observable'* by making a
fault be manifested as a program failure (see the explanation in the earlier
section entitled Fault Description). Since the analysis is focusing on the
number of distinct software faults revealed—and for purposes of readabil-
ity—this paragraph uses the single word **fault.”
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actually observed by a tester highlights the differences in
the activities of test data generation and program behavior
examination. As shown in Fig. 8, the average number of
the programs' faults observable was 68.0 percent when
individuals were either functional testing or structural
testing. Of course, with a nonexecution-based technique
such as code reading, 100 percent of the faults are ob-
servable. Test data generated by subjects using the tech-
nique of functional testing resulted in 1.4 more observ-
able faults (o < 0.0002, c.i. 0.79-2.01) than did the use
of structural testing in phase one of the study; the per-
centage difference of functional over structural was esti-
mated at 20.0 percent (a < 0.,0002, c.i. 11.2-28.8). The
techniques did not differ in these two measures in the third
phase of the study. However, just considering the faults
that were observable from the submitted test data, func-
tional testers detected 18.5 percent more of these observ-
able faults than did structural testers in the phase three
data (a < 0.0016, c.i. 8.9-28.1); they did not differ in
the phase one data. Note that all faults in the programs
could be observed in the programs’ output given the
proper input data. When using the on-line techniques of
functional and structural testing, subjects detected 70.3
percent of the faults observable in the program’s output.
In order to conduct a successful testing session, faults in
a program must be both revealed and subsequently ob-
served.

6) Dependence on Program Coverage: Another mea-
sure of the ability of a test set to reveal a program’s faults
is the percentage of a program'’s statements that are exe-
cuted by the test set. The average maximum statement
coverage achieved by the functional and structural testers
was 97.0 percent. The maximum statement coverage from
the submitted test data was not statistically different be-
tween the functional and structural testers (o > 0.05).
Also, there was no correlation between maximum state-
ment coverage achieved and either number or percentage
of faults found (a > 0.05).

7) Dependence on Programmer Expertise: A final
question in this goal area concerns the contribution of pro-
grammer expertise to fault detection effectiveness. In the
phase three data from the NASA /CSC professional en-
vironment, subjects of advanced expertise dctected'mqre
faults than did either the subjects of intermediate or junior
expertise (@ < 0.05). When the percentage of faults de-
tected is compared, however, the advanced subjects per-
formed better than the junior subjects (@ < 0.05), but
were not statistically different from the intermediate .sub-
jects (@ > 0.05). The intermediate and junior subjects
were not statistically different in any of the three phases
of the study in terms of number or percentage faults ob-
served. When several subject background attributes were
correlated with the number of faults found, total years of
professional experience had a minor relationship (Pearson
R = 0.22, a < 0.05). Correspondence of performance
with background aspects was examined across all ob.ser-
vations, and within each of the phases, including previous
academic performance for the University of Maryland
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subjects. Other than the above. no relationships were
found.

8) Accuracy of Self-Estimates: Recall that the NASA /
CSC subjects in the phase three data estimated, at the
completion of a testing session, the percentage of a pro-
gram’s faults they thought they had uncovered. This es-
timation of the number of faults uncovered correlated rea-
sonably well with the actual percentage of faults detected
(R = 0.57, a < 0.0001). Investigating further, individ-
uals using the different techniques were able to give better
estimates: code readers gave the best estimates (R = 0.79,
a < 0.0001), structural testers gave the second best es-
timates (R = 0.57, a < 0.0007), and functional testers
gave the worst estimates (no correlation, @ > 0.05). This
last observation suggests that the code readers were more
certain of the effectiveness they had in revealing faults in
the programs.

9) Dependence on Interactions: There were few sig-
nificant interactions between the main effects of testing
technique, program, and expertise level. In the phase two
data, there was an interaction between testing technique
and program in both the number and percentage of faults
found (@ < 0.0013, @ < 0.0014, respectively). The ef-
fectiveness of code reading increased on the text format-
ter. In the phase three data, there was a slight three-way
interaction between testing technique, program, and ex-
pertise level for both the number and percentage of faults
found (@ < 0.05, @ < 0.04 respectively).

10) Summary of Fault Detection Effectiveness:
Summarizing the major results of the comparison of fault
detection effectiveness: 1) in the phase three data, code
reading detected a greater number and percentage of faults
than the other methods, with functional detecting more
than structural; 2) in the phase one data, code reading and
functional were equally effective, while structural was in-
ferior to both—there were no differences among the three
techniques in phase two: 3) the number of faults observed
depends on the type of software; the most faults were de-
tected in the abstract data type and the mathematical plot-
ter, the second most in the text formatter, and (in the case
of the phase three data) the least were found in the data-
base maintainer; 4) functionally generated test data re-
vealed more observable faults than did structurally gen-
erated test data in phase one, but not in phase three; 5)
subjects of intermediate and junior expertise were equally
effective in detecting faults, while advanced subjects
found a greater number of faults than did either group; 6)
self-estimates of faults detected were most accurate from
subjects applying code reading, followed by those doing
structural testing, with estimates from persons function-
ally testing having no relationship.

B. Fault Detection Cost

The second goal area examines the fault detection cost
of each of the techniques. Fig. 12 presents a summary of
the measures that were examined to investigate this goal
area. A brief description of each measure is as follows;
an asterisk (*) means only relevant for on-line testing. All
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| Pnase « wmSubj. | Measyre | Meaz i SD 1 Mia. i Max. |
{1 | 26 i = Fauits / hour | 183 | 128 | 000 i t.00l
[ D0 | Detection time ned | 333 | 200 1 0-s 1 0000
{2 1 13 | = Faults / bour | 099 { 081 | 0.00 | 3.00]
{2 | 13 | Deteetiop time (e} | 420 1 302 | 100 | 14.001
3 32 = Faults / hour 233 § 2.28 t 0.00 14.00 |
3 32 Detectiop time (hrs) 278 | 1.7 | 0.0 728
3 32(+) Cpu-time (sec) 45,2 | 88.1 3.0 283.0
3 32(s) Cpu-time (sec: norm.) | 38.8 31.7 2.9 3144
3 32(s) | Consect time (min) 6s.83 | so.m | 350 | 214.00
3 32(e} | & program runs 3.45 £.00 { 1.00 24.00
Ave T4 = Faults / hour 1.82 1.80 0.00 14.00
Ave 4 Detection time (hrs) | 3.32 219 | 0.30 14.00

Fig. 12. Overall summary of fault detection cost data. Note: some data

pertain only to on-line techniques (*), and some data were collected only
in certain phases.

of the on-line statistics were monitored by the operating
systems of the machines.

a) Number of faults /hour = the number of faults de-
tected by a subject applying a given technique normalized
by the effort in hours required, called the fault detection
rate.

b) Detection time = the total number of hours that a
subject spent in testing a program using a technique.

c¢) Cpu-time (*) = the cpu-time in seconds used during
the testing session.

d) Normalized cpu-time (*) = the cpu-time in seconds
used during the testing session, normalized by a factor for
machine speed.®

e) Connect time (*) = the number of minutes that a
individual spent on-line while testing a program.

f) Number of program runs (*) = the number of exe-
cutions of the program test driver; note that the driver
supported multiple sets of input data.

1) Data Distributions: The actual distribution of the
fault detection rates for the subjects appears in Fig. 13,
broken down by phase. Once again, note the many-to-one
differential in subject performance. Fig. 14 displays the
mean fault detection rate for the subjects, broken down
by technique, program, expertise level, and phase.

2) Fault Detection Rate and Total Time: The first
question in this goal area asks which testing technique had
the highest fault detection rate. The overall F-test of the
techniques having the same detection rate was rejected
in the phase three data (o« < 0.0014). but not in the other
two phases (o > 0.05). As before, the two contrasts of
‘“‘reading — 0.5 * (functional + structural)’ and *‘func-
tional — structural’’ were examined to detect differences
among the techniques. The technique of code reading was
estimated at detecting 1.49 more faults per hour than did
the other techniques in the phase three data (o < 0.0003,
c.i. 0.75-2.23). The techniques of functional and struc-
tural testing were not statistically different (¢ > 0.05).
Comparing the total time spent in fault detection, the
techniques were not statistically different in the phase two
and three data; the overall F-test for the phase one data

®In the phase three data, testing was done on both a VAX 11/780 and
an IBM 4341. As suggested by benchmark comparisons [11], the VAX
cpu-times were divided by 1.6 and the IBM cpu-times were divided by 0.9.
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Fig. 13. Distribution of the fault detection rate (number of faults detected
per hour) broken down by phase. Key: code readers (C), functional test-

ers (F), and structural testers (S).

Phase
1 | 2 i 3

Efect | Levei Mzan(SD) | Mean(SD) | \fean/SD)
Technique Readling 1.80 (1.83) | 0.58 (0.468) | 3.33 (3.42)
Functional | 1.38 (0.60) | 1.22 (0.01) | 1.84 (1.00)

Structural 1.40 (0.87) | 1.18 (0.84) | 1.82 (1.24)

Program Formatter 1.60 (1.39) | 0.8 (0.87) | 2.15 (1.10)

Plotter 1.19 (0.33) | 0.9210.71) ()

Data type | 2.09 (1.42) | NS 3.70 (3.29)

Database 1) | 108 (1.04) | 1.14(0.70)

Expertise | Jualor 1.38 (0.67) | 1.00(0.85) | 2.14 (2.48)
Intermed. | 2.22(1.38) | 0.96 (0.74) | 2.53 (2.48)

Advanced () () 2.36 (1.61)

Fig. 14. Overall summary for fault detection rate (number of faults de-

tected per hour) (SD = sid. dev).

was rejected (@ < 0.013). In the phase one data, struc-
tural testers spent an estimated 1.08 hours less testing than
did the other techniques (¢ < 0.004, c.i. 0.39-1.78),
while code readers were not statistically different from
functional testers. Recall that in phase one, the structural
testers observed both a lower number and percentage of
the programs’ faults than did the other techniques.

3) Dependence on Software Type: Another question in
this area focuses on how fault detection rate depends on
software type. The overall F-test that the detection rate is
the same for the programs is rejected in the phase one and

phase three data (¢ < 0.0l and & < 0.0001, respec-
tively); the detection rate among the programs was not
statistically different in phase two (o > 0.05). Applying
Tukey’s multiple comparison on the phase one data finds
that the fault detection rate was greater on the abstract
data type than on the plotter, while there was no differ-
ence either between the abstract data type and the text
formatter or between the text formatter and the plotter
(simultaneous a < 0.05). In the phase three data, the fault
detection rate was higher in the abstract data type than it
was for the text formatter and the database maintainer,
with the text formatter and the database maintainer not
being statistically different (simultaneous a < 0.05). The
overall effort spent in fault detection was different among
the programs in phases one and three (¢ < 0.012 and «
< 0.0001, respectively), while there was no difference in
phase two. In phase one, more effort was spent testing the
plotter than the abstract data type, while there was no sta-
tistical difference either between the plotter and the text
formatter or between the text formatter and the abstract
data type (simultaneous o < 0.05). In phase three, more
time was spent testing the database maintainer than was
spent on either the text formatter or on the abstract data
type, with the text formatter not differing from the ab-
stract data type (simultaneous o < 0.05). Summarizing
the dependence of fault detection cost on software type,



1) the abstract data type had a higher detection rate and
less total detection effort than did either the plotter or the
database maintainer, the latter two were not different in
either detection rate or total detection time; 2) the text
formatter and the plotter did not differ in fault detection
rate or total detection effort; 3) the text formatter and the
database maintainer did not differ in fault detection rate
overall and did not differ in total detection effort in phase
two, but the database maintainer had a higher total detec-
tion effort in phase three; 4) the text formatter and the
abstract data type did not differ in total detection effort
overall and did not differ in fault detection rate in phase
one, but the abstract data type had a higher detection rate
in phase three.

4) Computer Costs: In addition to the effort spent by
individuals in software testing, on-line methods incur ma-
chine costs. The machine cost measures of Cpu-time, con-
nect time, and the number of runs were compared across
the on-line techniques of functional and structural testing
in phase three of the study. A nonexecution-based tech-
nique such as code reading, of course, incurs no machine
time costs. When the machine speeds are normalized (see
measure definitions above), the technique of functional
testing used 26.0 more seconds of cpu-time than did the
technique of structural testing (¢ < 0.016, c.i. 7.0-
45.0). The estimate of the difference is 29.6 seconds when
the cpu-times are not normalized (a < 0.012, c.i. 9.0-
50.2). Individuals using functional testing used 28.4 more
minutes of connect time than did those using structural
testing (a« < 0.004, c.i. 11.7-45.1). The number of
computer runs of a program’s test driver was not different
between the two techniques (a > 0.05). These results
suggest that individuals using functional testing spent
more time on-line and used more cpu-time per computer
run than did those structurally testing.

5) Dependence on Programmer Expertise: The rela-
tion of programmer expertise to cost of fault detection is
another question in this goal section. The expertise level
of the subjects had no relation to the fault detection rate
in phases two and three (o« > 0.05 for both F-tests). Re-
call that phase three of the study used 32 professional sub-
Jects with all three levels of computer science expertise.
In phase one, however, the intermediate subjects detected
faults at a faster rate than did the junior subjects (a <
0.005). The total effort spent in fault detection was not
different among the expertise levels in any of the phases
(a > 0.05 for all three F-tests). When all 74 subjects are
considered, years of professional experience correlates
positively with fault detection rate (R = 0.41, a <
0.0002) and correlates negatively with total detection time
(R = —0.25, o < 0.03). These last two observations
suggest that persons with more years of professional ex-
perience detected the faults faster and spent less total time
doing so. Several other subject background measures
showed no relationship with fault detection rate or total
detection time (« > 0.05). Background measures were
examined across all subjects and within the groups of
NASA/CSC subjects and University of Maryland sub-

jects.

6) Dependence on Interactions: There were few sig-
nificant interactions between the main effects of testing
technique, program, and expertise level. There was an in-
teraction between testing technique and software type in
terms of fault detection rate and total detection cost for
the phase three data (o < 0.003 and a < 0.007, respec-
tively). Subjects using code reading on the abstract data
type had an increased fault detection rate and a decreased
total detection time.

7) Relationships Between Fault Detection Effectiveness
and Cost: There were several correlations between fault
detection cost measures and performance measures. Fault
detection rate correlated overall with number of faults de-
tected (R = 0.48, o < 0.0001), percentage of faults
detected (R = 0.48, a < 0.0001), and total detection
time (R = —0.53, @ < 0.0001), but not with normalized
cpu-time, raw cpu-time, connect time, or number of com-
puter runs (a > 0.05). Total detection time correlated
with normalized cpu-time (R = 0.36, a < 0.04) and raw
cpu-time (R = 0.37, @ < 0.04), but not with connect
time, number of runs, number of faults detected, or per-
centage of faults detected (@ > 0.05). The number of
faults detected in the programs correlated with the amount
of machine resources used: normalized cpu-time (R =
0.47, @ < 0.007), raw cpu-time (R = 0.52, o < 0.002),
and connect time (R = 0.49, « < 0.003), but not with
the number of computer runs (o > 0.05). The correla-
tions for percentage of faults detected with machine re-
sources used were similar. Although most of these cor-
relations are weak, they suggest that 1) the higher the fault
detection rate, the more faults found and the less time
spent in fault detection; 2) fault detection rate had no re-
lationship with use of machine resources; 3) spending
more time in detecting faults had no relationship with the
amount of faults detected; and 4) the more cpu-time and
connect time used, the more faults found.

8) Summary of Fault Detection Cost: Summarizing the
major results of the comparison of fault detection cost: 1)
in the phase three data, code reading had a higher fault
detection rate than the other methods, with no difference
between functional testing and structural testing; 2) in the
phase one and two data, the three techniques were not
different in fault detection rate; 3) in the phase two and
three data, total detection effort was not different among
the techniques, but in phase one less effort was spent for
structural testing than for the other techniques, while
reading and functional were not diffferent; 4) fault detec-
tion rate and total effort in detection depended on the type
of software: the abstract data type had the highest detec-
tion rate and lowest total detection effort, the plotter and
the database maintainer had the lowest detection rate and
the highest total detection effort, and the text formatter
was somewhere in between depending on the phase; 5) in
phase three, functional testing used more cpu-time and
connect time than did structural testing, but they were not
different in the number of runs; 6) in phases two and three,
subjects across expertise levels were not different in fault
detection rate or total detection time, in phase one inter-
mediate subjects had a higher detection rate; and 7) there



BASILI AND SELBY: EFFECTIVENESS OF SOFTWARE TESTING STRATEGIES

was a moderate correlation between fault detection rate
and years of professional experience across all subjects.

C. Characterization of Faults Detected

The third goal area focuses on determining what classes
of faults are detected by the different techniques. In the
earlier section on the faults in the software, the faults were
characterized by two different classification schemes:
omission or commission; and initialization. control, data,
computation, interface, or cosmetic. The faults detected
across all three study phases are broken down by the two
fault classification schemes in Fig. 15. The entries in the
figure are the average percentage (with standard devia-
tion) of faults in a given class observed when a particular
technique was being used. Note that when a subject tested
a program that had no faults in a given class, he/she was
excluded from the calculation of this average.

1) Omission Versus Commission Classification: When
the faults are partitioned according to the omission/com-
mission scheme, there is a distinction among the tech-
niques. Both code readers and functional testers observed
more omission faults than did structural testers (a <
0.001), with code readers and functional testers not being
different (¢ > 0.05). Since a fault of omission occurs as
a result of some segment of code being left out, you would
not expect structurally generated test data to find such
faults. In fact, 44 percent of the subjects applying struc-
tural testing found zero faults of omission when testing a
program. A distribution of the faults observed according
to this classification scheme appears in Fig. 16.

2) Six-Part Fault Classification: When the faults are
divided according to the second fault classification
scheme, several differences are apparent. Both code read-
ing and functional testing found more initialization faults
than did structural testing (a < 0.05), with code reading
and functional testing not being different (« > 0.05).
Code reading detected more interface faults than did either
of the other methods (o < 0.01), with no difference be-
tween functional and structural testing (a > 0.05). This
suggests that the code reading process of abstracting and
composing program functions across modules must be an
effective technique for finding interface faults. Functional
testing detected more control faults than did either of the
other methods (a < 0.01), with code reading and struc-
tural testing not being different (o« > 0.05). Recall that
the structural test data generation criteria examined is
based on determining the execution paths in a program
and deriving test data that execute 100 percent of the pro-
gram's statements. One would expect that more control
path faults would be found by such a technique. However,
structural testing did not do as well as functional testing
in this fault class. The technique of code reading found
more computation faults than did structural testing (o <
0.05). with functional testing not being different from
either of the other two methods (a > 0.05). The three
techniques were not statistically different in the percent-
age of faults they detected in either the data or cosmetic
fault classes (@ > 0.05 for both). A distribution of the
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Fig. 15. Characterization of the faults detected. Mean (and std. dev.) of
the percentage of faults in each class that were detected.
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Fig. 16. Characterization of faults detected by the three techniques: 10
omission (0). versus 24 commission (x). The vertical axis is the percent-
age of persons using the particular technique that detected the fault.

Readizg Functiozal Structural
100%
| 4 PP
PO POC PC
ca i
P A P
5% [+ ACPPC C
AP [+ P
AP cc PCP
ce PC
D A
50%% CP! )
m DPII
cp A
o) . Cl
Pl 1
25%% pcl ac
sPO a
t D
SIPID csDt
0% CcPIOD m! PO

Fig. 17. Characterization of faults detected by the three tcchmq}les. Ini-
tialization (2-A), computation (8-P), control (7-_C). data (3-D), interface
(13-1). and cosmetic (1-S). The vertical axis is the percentage of the
persons using the particular technique that detected the fault.

faults observed according to this classiﬁc;ation scheme ap-
pears in Fig. 17. . .

3) Observable Fault Classification: Fig. 18 displays
the averge percentage (with standard deviation) of faults
from each class that were observable from the test data
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Fig. 18. Characterization of the faults observable but not reported. The
mean (and std. dev.) of the percentage of such faults in each class are
given. (With the appropriate inputs, all faults could be made observable
in the program output. The faults included here are those that were ob-

servable given the program inputs selected by the testers yet were un-
reported.)

submitted, yet were not reported by the tester.” The two
on-line techniques of functional and structural testing were
not different in any of the fauits classes (o > 0.05 ). Note
that there was only one fault in the cosmetic class.

4) Summary of Characterization of Faults De-
tected: Summarizing the major results of the comparison
of classes of faults detected: 1) code reading and func-
tional testing both detected more omission faults and in-
itialization faults than did structural testing; 2) code read-
ing detected more interface faults than did the other
methods; 3) functional testing detected more control faults
than did the other methods; 4) code reading detected more
computation faults than did structural testing; and 5) the
on-line techniques of functional and structural testing were

not different in any classes of faults observable but not
reported.

V. CONCLUSIONS

This study compares the strategies of code reading by
stepwise abstraction, functional testing using equivalence
class partitioning and boundary value analysis. and struc-
tural testing using 100 percent statement coverage. The
study evaluates the techniques across three data sets in
three different aspects of software testing: fault detection
effectiveness, fault detection cost, and classes of faults
detected. The three data sets involved a total of 74 pro-
grammers applying each of the three testing techniques on
unit-sized software; therefore, the analysis and results
presented were based on observations from a total of 222
testing sessions. The investigation is intended to compare
the different testing strategies in representative testing sit-
uations, using programmers with a wide range of experi-
ence, different software types, and common software
faults.

In this controlled study, an experimentation methodol-
ogy was applied to compare the effectiveness of three test-
ing techniques; for an overview of the experimentation
methodology, see [4]. Based on our experience and ob-
servation [56], the three testing techniques represent the
high end of the range of testing methods that are actually
being used by developers to test software. The techniques

The standard deviations presented in the figure are high because of the
several instances in which all observable faults were reported.
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examined correspond, therefore, to the state-of-the-prac-
tice of software testing rather than the state-of-the-art. As
mentioned earlier, there exist alternate forms for each of
the three testing methods.

There are several perspectives from which to view em-
pirical studies of software development techniques. Three
cxample perspectives given were that of the experimen-
ter, researcher, and practitioner. One key aspect of the
study presented, especially from an experimenter’s per-
spective, was the use of an experimentation methodology
and a formal statistical design. The actual empirical re-
sults from the study, which are summarized below, may
be used to refine a researcher’s theories about software
testing or to guide a practitioner’s application of the tech-
niques.

Each of the three testing techniques showed some merit
in this evaluation. The major empirical results of this
study are the following. 1) With the professional pro-
grammers, code reading detected more software faults and
had a higher fault detection rate than did functional or
structural testing, while functional testing detected more
faults than did structural testing, but functional and struc-
tural testing were not different in fault detection rate. 2)
In one University of Maryland (UoM) subject group, code
reading and functional testing were not different in faults
found, but were both superior to structural testing, while
in the other UoM subject group there was no difference
among the techniques. 3) With the UoM subjects, the
three techniques were not different in fault detection rate.
4) Number of faults observed, fault detection rate, and
total effort in detection depended on the type of software
tested. 5) Code reading detected more interface faults than
did the other methods. 6) Functional testing detected more
control faults than did the other methods. 7) When asked
to estimate the percentage of faults detected, code readers
gave the most accurate estimates while functional testers
gave the least accurate estimates.

The results suggest that code reading by stepwise ab-
straction (a nonexecution-based method) is at least as ef-
fective as on-line functional and structural testing in terms
of number and cost of faults observed. They also suggest
the inadequacy of using 100 percent statement coverage
criteria for structural testing. Note that the professional
programmers examined preferred the use of functional
testing because they felt is was the most effective tech-
nique: their intuition. however, turned out to be incorrect.
Recall that the code reading was performed on uncom-
mented programs, which could be considered a worst-case
scenario for code reading.

In comparing the results to related studies. there are
mixed conclusions. A prototype analysis done at the Uni-
versity of Maryland in the Fall of 1981 [30] supported the
belief that code reading by stepwise abstraction does as
well as the computer-based methods, with each strategy
having its own advantages. In the Myers experiment [41],
the three techniques compared (functional testing, 3-per-
son code reviews, control group) were equally effective.
He also calculated that code reviews were less cost-effec-
tive than the computer-based testing approaches. The first
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observation is supported in one study phase here, but the
other observation is not. A study conducted by Hetzel [23]
compared functional testing, code reading, and *‘selec-
tive'’ testing (a composite of functional, structural, and
reading techniques). He observed that functional and *‘se-
lective'" testing were equally effective, with code reading
being inferior. As noted earlier, this is not supported by
this analysis. The study described in this analysis exam-
ined the technique of code reading by stepwise abstrac-
tion, while both the Myers and Hetzel studies examined
alternate approaches to off-line (nonexecution-based) re-
view/reading. Other studies that have compared the effec-
tiveness of software testing strategies include {22], [32],
(211, [20], [24], (8], [26], [28], [55], [38]), [45], [17].

A few remarks are appropriate about the comparison of
the cost-effectiveness and phase-availability of these test-
ing techniques. When examining the effort associated with
a technique, both fault detection and fault isolation costs
should be compared. The code readers have both detected
and isolated a fault; they located it in the source code.
Thus, the reading process condenses fault detection and
isolation into one activity. Functional and structural test-
ers have only detected a fault; they need to delve into the
source code and expend additional effort in order to iso-
late the fault. Moreover, the code reading process corre-
sponds more closely to the activity of program proving
than do the other methods. Also, a nonexecution-based
reading process can be applied to any document produced
during the development process (e.g., high-level design
document, low-level design document, source code doc-
ument). While functional and structural execution-based
techniques may only be applied to documents that are ex-
ecutable (e.g., source code), which are usually available
later in the development process.

Investigations related to this work include studies of
fault classification [54], [34], [44], [1] and Cleanroom
software development [50]. In the Cleanroom software
development approach, techniques such as code reading
are used in the development of software completely off-
line (i.e., without program execution). In [50], systems
deveioped using Cleanroom met system requirements
more completely and had a higher percentage of success-
ful operational test cases than did systems developed with
a more traditional approach.

The work presented in this paper differs from previous
studies in several ways. 1) The nonexecution-based soft-
ware review technique used was code reading by stepwise
abstraction. 2) The study was based on programmers—
including professionals—having varying expertise, differ-
ent software types, and programs having a representative
profile of common software faults. 3) A very sensitive
statistical design was employed to account for differences
in individual performance and interactions among testing
technique, software type, and subject expertise level. 4)
The study was conducted in multiple phases in order to
refine experimentation methods. 5) The scope of issues
examined was broadened (e.g., observed versus observ-
able faults, structural coverage of functional testing, mul-
tiple fault classification schemes).
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The empirical study presented is intended to advance
the understanding of how various software testing strate-
gies contribute to the software development process and
to one another. The results given were calculated from a
set of individuals applying the three techniques to unit-
sized programs—the direct extrapolation of the findings
to other testing environments is not implied. Further work
applying these and other results to devise effective testing
environments is underway [49].

APPENDIX
THE SPECIFICATIONS FOR THE PROGRAMS

Program I*

Given an input text of up to 80 characters consisting of
words separated by blanks or new-line characters, the
program formats it into a line-by-line form such that 1)
each output line has a2 maximum of 30 characters, 2) a
word in the input text is placed on a single output line,
and 3) each output line is filled with as many words as
possible.

The input text is a stream of characters, where the char-
acters are categorized as either break or nonbreak char-
acters. A break character is a blank, a new-line character
(&), or an end-of-text character (/). New-line characters
have no special significance; they are treated as blanks by
the program. The characters & and / should not appear in
the output,

A word is defined as a nonempty sequence of nonbreak
characters. A break is a sequence of one or more break
characters and is reduced to a single blank character or
start of a new line in the output.

When the program is invoked, the user types the input
line, followed by a / (end-of-text) and a carriage return.
The program then echoes the text input and formats it on
the terminal.

If the input text contains a word that is too long to fit
on a single output line, an error message is typed and the
program terminates. If the end-of-text character is miss-
ing, an error message is issued and the program awaits
the input of properly terminated line of text.

Program 2

Given ordered pairs (x, y) of either positive or negative
integers as input, the program plots them on a grid with
a horizontal x-axis and a vertical y-axis which are appro-
priately labeled. A plotted point on the grid should appear
as an asterisk (*).

The vertical and horizontal scaling is handled as fol-
lows. If the maximum absolute value of any y-value is
less than or equal to 20, the scale for vertical spacing will
be one line per integral unit [e.g., the point (3, 6) should
be plotted on the sixth line, two lines above the point (3,
4)]. Note that the origin [point (0, 0)] would correspond
to an asterisk at the intersection of the axes (the x-axis is

Note that this specification was rewritten in [37].
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referred to as the Oth line). If the maximum absolute value
of any x-value is less than or equal to 30, the scale for
horizontal spacing will be one space per integral unit [e.g.,
the point (4, 5) should be plotted four spaces to the right
of the y-axis, two spaces to the right of (2, 5)]. However,
if the maximum absolute value of any y-value is greater
than 20, the scale for vertical spacing will be one line per
every (max absolute value of y-values)/20 rounded-up.
[e.g., If the maximum absolute value of any y-value to be
plotted is 66, the vertical line spacing will be a line for
every 4 integral units. In such a data set, points with y-
values greater than or equal to eight and less than twelve
will show up as asterisks in the second line, points with
y-values greater than or equal to twelve and less than six-
teen will show up as asterisks in the third line, etc. Con-
tinuing the example, the point (3, 15) should be plotted
on the third line, two lines above the point (3, 5).] Hori-
zontal scaling is handled analogously.

If two or more of the points to be plotted would show
up as the same asterisk in the grid (like the points (9, 13)
and (9, 15) in the above example), a number **2"' (or
whatever number is appropriate) should be printed instead
of the asterisk. Points whose asterisks will lie on a axis
or grid marker should show up in place of the marker.

Program 3

A list is defined to be an ordered collection of integer
elements which may have elements annexed and deleted
at either end, but not in the middle. The operations that
need to be available are ADDFIRST, ADDLAST, DE-
LETEFIRST, DELETELAST, FIRST, ISEMPTY,
LISTLENGTH, REVERSE, and NEWLIST. Each oper-
ation is described in detail below. The lists are to contain
up to a maximum of 5 elements. If an element is added
to the front of a **full”” list (one containing five elements
already). the element at the back of the list is to be dis-
carded. Elements to be added to the back of a full list are
discarded. Requests 1o delete elements from empty lists
result in an empty list, and requests for the first element
of an empty list results in the integer 0 being returned.
The detailed operation descriptions are as below:
ADDFIRST(LIST L, INTEGER ])

Returns the list L with I as its first element followed by

all the elements of L. If L is **full’’ 1o begin with, L’s

last element is lost.
ADDLAST(LIST L, INTEGER 1)

Returns the list with all of the elements of L followed

by I. If L is full to begin with, L is returned (i.e., I is

ignored).
DELETEFIRST(LIST L)

Returns the list containing all but the first element of L.

If L is empty, then an empty list is returned.
DELETELAST(LIST L)

Returns the list containing all but the last element of L.

If L is empty, then an empty list is returned.
FIRST(LIST L)

Returns the first element in L. If L is empty, then it

returns zero.
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ISEMPTY(LIST L)
Returns one if L is empty, zero otherwise.
LISTLENGTH(LIST L)
Returns the number of elements in L. An empty list has
zero elements,
NEWLIST(LIST L)
Returns an empty list.
REVERSE(LIST L)
Returns a list containing the elements of L in reverse
order.

Program 4

(Note that a *“‘file’” is the same thing as an IBM
‘‘dataset.””)

The program maintains a database of bibliographic ref-
erences. It first reads a master file of current references,
then reads a file of reference updates, merges the two, and
produces an updated master file and a cross reference ta-
ble of keywords.

The first input file, the master, contains records of 74
characters with the following format:

column comment
1-3 each reference has a unique reference key
4-14 author of publication

15-72  title of publication

73-74  year issued

The key should be a three character unique identifier con-
sisting of letters between A-Z. The next input file, the
update file, contains records of 75 characters in length.
The only difference from a master file record is that an
update record has either an “*A"" (capital A meaning add)
oran ‘R’ (capital R meaning replace) in column 75. Both
the master and update files are expected to be already
sorted alphabetically by reference key when read into the
program. Update records with action replace are substi-
tuted for the matching key record in the master file. Rec-
ords with action add are added to the master file at the
appropriate location so that the file remains sorted on the
key field. For example, a valid update record to be read
would be

BlTbaker  anintroduction to program testing 83A

The program should produce two pieces of output. It
should first print the sorted list of records in the updated
master file in the same format as the original master file.
It should then print a keyword cross reference list. All
words greater than three characters in a publication’s title
are keywords. These keywords are listed alphabetically
followed by the key fields from the applicable updated
master file entries. For example, if the updated master file
contained two records,

ABCkermit introduction to software testing 82
DDXjones the realities of software management 81

then the keywords are introduction, testing, realities,
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software, and management. The cross reference list should
look like

introduction
ABC
management
DDX
realities
DDX
software
ABC
DDX
testing
ABC

Some possible error conditions that could arise and the
subsequent actions include the following. The master and
update files should be checked for sequence, and if a rec-
ord out of sequence is found, a message similar to ‘‘key
ABC out of sequence’’ should appear and the record
should be discarded. If an update record indicates replace
and the matching key can not be found, a message similar
to ‘‘update key ABC not found’’ should appear and the
update record should be ignored. If an update record in-
dicates add and a matching key is found, something like
*‘key ABC already in file’’ should appear and the record
should be ignored. (End of specification.)
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