Software

Viewing Maintenance
as Reuse-Oriented
Software Development

Treating maintenance
as a reuse-oriented
development process
provides a choice of
maintenance
approaches and
improves the overall
evolution process.

January 1990

Victor R. Basili, University of Maryland at College Park

developed with the goal of maximiz-

ing the reuse of experience in the
form of knowledge, processes, products,
and tools, the maintenance process is log-
ically and ideally suited to a reuse-ori-
ented development process. There are
many reuse models, but the key issue is
which process model is best suited to the
maintenance problem at hand.

In this article, I present a high-level or-
ganizational paradigm for development
and maintenance in which an organiza-
tion can learn from development and
maintenance tasks and then apply that
paradigm to several maintenance process
models. Associated with the paradigm isa
mechanism for setting measurable goals
so you can evaluate the process and the
product and learn from experience.

If you believe that software should be

An earlier version of this article was given asthe keynote
presentation at the Conference on Software Mainte-
nance in October 1988.

0740-7459/90/0100/0019/$01.00 © 1990 1EEE

Maintenance models

Most software systems are complex, and
modification requires a deep un-
derstanding of the functional and non-
functional requirements, the mapping of
functions to system components, and the
interaction of components. Withoutgood
documentation of the requirements, de-
sign, and code with respect to function,
traceability, and structure, maintenance
becomes a difficult, expensive, and error-
prone task. As early as 1976, Les Belady
and Manny Lehman reported on the
problems with the evolution of IBM
0S/360.! The literature is filled with sim-
ilar examples.

Maintenance comprises several types of
activities: correcting faults in the system,
adapting the system to a changing operat-
ing environment (such as new terminals
and operating-system modifications), and
adapting the system to changes in the
original requirements. The new system is

19

0ld system New system

Requirements Requirements e

Design Design sl
Code Code

| I

Test ToSt —e— |

Figure 1. Quick-fix process model.

0fd system New system
Requirements =Requirements =
ll)esign Il)esign

(I:ode (llode

{est }est

Al\nalysis /l\nalysis

Figure 2. Interative-enhancement model.

Oid system Repository New system

Requirements —=-(Ri}-=—= Requirements
I I

Design ————w (Di)~=—= Design

Code ——————s(Ci) ~—s~ Code

Test ———— = (Ti) —= Test

Figure 3. Full-reuse model.

like the old system, yet itis also different in
a specific set of characteristics.

You can view the new version of the sys-
tem as a modification of the old system or
as anew system that reuses many of the old
system’s components. Although these two
views have many aspects in common, they
are very different in how you organize the
maintenance process, the effects on fu-
ture products, and the support environ-
ments required.

Consider the following three mainte-
nance process models:

* the quick-fix model,

¢ the iterative-enhancement model, and

¢ the full-reuse model.

All three models reuse the old system
and so are reuse-oriented. Which model

you choose for a particular modification is

determined by a combination of manage-
ment and technical decisions that depend
on the characteristics of the modification,
the future evolution of the product line,
and the support environment available.
Each model assumes that there is a com-
plete and consistent set of documents de-

20

scribing the existing system, from require-
ments through code. Although this may
be a naive assumption in practice, a side
effect of this article’s presentation should
be to motivate organizations to gain the
benefits of having such documentation.

Quick-fix model. The quick-fix model
represents an abstraction of the typical ap-

.proach to software maintenance. In the

quick-fix model, you take the existing sys-
tem, usually just the source code, and
make the necessary changes to the code
and the accompanying documentation
and recompile the system as a new ver-
sion. This may be as straightforward as a
change to some internal component, like
an error correction involving a single
component or a structural change or even
some functional enhancement.

Figure 1 demonstrates the flow of
change from the old system’s source code
to the new version’s source code. It is as-
sumed — but not always true — that the
accompanying documentation is also up-
dated. You can view this model as reuse-
oriented, since you can view the model as
creating a new system by reusing the old
system or as simply modifying the old sys-
tem. However, viewing it in a reuse orien-
tation gives you more freedom in the
scope of change than viewing it in a modi-
fication or patch orientation.

Iterative-enhancement model. Iterative
enhancement’ is an evolutionary model
proposed for development in environ-
ments where the complete set of require-
ments for a system was not fully un-
derstood or where the developer did not
know how to build the full system. Al-
though iterative enhancement was pro-
posed as a development model, it is well
suited to maintenance. It assumes a com-
plete and consistent set of documents de-
scribing the system. The iterative-en-
hancement model

e starts with the existing system’s re-
quirements, design, code, test, and analy-
sis documents;

¢ modifies the set of documents, starting
with the highestlevel document affected
by the changes, propagating the changes
down through the full set of documents;
and '

¢ at each step of the evolutionary pro-

cess, lets you redesign the system, based
on analysis of the existing system.

The process assumes that the mainte-
nance organization can analyze the exist-
ing product, characterize the proposed
set of modifications, and redesign the cur-
rent version where necessary for the new
capabilities.

Figure 2 demonstrates the flow of
change from the highestlevel document
affected by the change through'the low-
estlevel document. This model supports
the reuse orientation more explicitly. An
environment that supports the iterative-
enhancement model clearly supports the

- quick-fix model.

Full-reuse model. While iterative en-
hancement starts with evaluating the ex-
isting system for redesign and modifica-
tion, a full-reuse process model starts with
the requirements analysis and design of
the new system and reuses the appropri-
ate requirements, design, and code from
any earlier versions of the old system. It
assumes a repository of documents and
components defining earlier versions of
the current system and similar systems.
The full-reuse model

e starts with the requirements for the
new system, reusing as much of the old
system as feasible, and

* builds a new system using documents
and components from the old system and
from other systems available in your re-
p(;Sito ry; you develop new documentsand
components where necessary.

Here, reuse is explicit, packaging of ex-
isting components is necessary, and analy-
sis is required to select the appropriate
components. _ ,

Figure 3 demonstrates the flow of vari-
ous documents into the various docu-
ment repositories (which are all part of
the larger repository) and how those re-
positories are accessed for documents for
the new development. There is an as-
sumption that the items in the repository
are classified according to a variety of
characteristics, some of which I describe
later in the article.

This repository may contain more than
just the documents from the earlier sys-
tem — it may contain documents from
earlier versions, documents from other
products in the product line, and some

IEEE Software

generic reusable forms of documents. An
environment that supports the full-reuse
model clearly supports the other two
models.

Model differences. The difference be-
tween the last two approaches is more one
of perspective than style. The full-reuse
model frees you to design the new sys-
tem’s solution from the set of solutions of
similar systems. The iterative-enhance-
ment model takes the last version of the
current system and enhances it.

Both approaches encourage redesign,
but the full-reuse model offers a broader
set of items for reuse and can lead to the
development of more reusable compo-
nents for future systems. By contrast, the
iterative-enhancement model encourages
you: to tailor existing systems to get the ex-
tensions for the new system.

Reuse framework

The existence of multiple maintenance
models raises several questions. Which is
" the most appropriate model for a particu-
lar environment? a particular system? a
particular set of changes? the task at
hand? How do you improve each step in
the process model you have chosen? How
do you minimize overall cost and maxi-
mize overall quality? :

To answer these questions, you need a
model of the object of reuse, a model of
the process that adapts that object to its
target application, and a model of the re-
used object within its target application.
Figure 4 shows a simple model for reuse.
In this model, an object is any software
process or product and a transformation
is the set of activities performed when re-
using that object.

The model steps are

* identifying the candidate reusable
pieces of the old object,

¢ understanding them,

* modifying them to your needs, and

¢ integrating them into the process.

To flesh out the model, you need a
framework for categorizing objects, trans-
formations, and their context. The frame-
work should cover various categories. For
example, is the object of reuse a process or
a product? In each category, there are
various classification schemes for the
product (such as requirements docu-

January 1990

Context
0ld object Transformation [—— New object
Repository
Figure 4. Simple reuse model.

ment, code module, and test plan) and
for the process (such as cost estimation,
risk analysis, and design).

Framework dimensions. There are a
variety of approaches to classifying reus-
able objects, most notably the faceted
scheme offered by Ruben Prieto-Diaz and
Peter Freeman.?] offer here ascheme that

1 offer here a scheme
that categorizes three
aspects of reuse: the
reusable object, the
reusable object’s
context, and the process
of transforming
that object.

categorizes three aspects of reuse: the re-
usable object, the reusable object’s con-
text, and the process of transforming that
object. This scheme owes much to ideas
presented at the 1987 Minnowbrook
Workshop on Software Reuse.

Object dimensions include:

* Reuse-object type. Whatis a character-
ization of the candidate reuse object?
Sample process classifications include a
design method and a test technique;
product classifications include source
code and requirements documents.

* Self-containedness. How independent
and understandable is the candidate ob-
ject? Sample classifications include syn-
tactic independence (such as a data-cou-
pling measure) and specification
precision (such as functional notation
and English).

¢ Reuse-object quality. How good is the
candidate reuse object? Sample classifica-
tions include maturity (such as the num-
ber of systems using it), complexity {such
as cyclomatic complexity), and reliability

(such as the number of failures during
previous use).

Context dimensions include:

® Requirements domain. How similar
are the requirements domains of the can-
didate reuse object and the current proj-
ect? Sample classifications are application
(such as ground-support software for sat-
ellites) and distance (such as same appli-
cation or similar algorithms but different
problem focus).

¢ Solution domain. How similar are the
evolution processes that resulted in the
candidate reuse objects and the ones used
in the current project? Sample classifica-
tions are process model (such as the
waterfall model), design method (such as
function decomposition), and language
(such asFortran).

* Knowledge-transfer mechanism. How
is information about the candidate reuse
objects and their context passed to cur-
rent and future projects? People, such asa
subset of the development team, provide
a common knowledge-transfer mecha-
nism. :

Transformation dim nsions include:

¢ Transformation type. How do you
characterize transformation activities?
Sample classifications include percent of
change required, direction of change
(such as general to domain-specific or
project-specific to domain-specific), mod-
ification mechanism (such as verbatim,
parameterized, template-based, or un-
constrained), and identification mecha-
nism (such as by name or by functional
requirements).

* Activity integration. How do you inte-
grate the transformation activities into the
new system development? One sample
classification is the phase where the activ-
ity is performed in the new development
(for example, planning, requirements de-
velopment, and design).

¢ Transformed quality. What is the con-
tribution of the reuse object to the new
system compared to the objectives set for
it? Sample classifications are reliability
(such as no failures associated with that
component) and performance (such as
satisfying a timing requirement).

21

Comparing the models. When applying
the reuse framework to maintenance, the
set of reuse objects is a set of product doc-
uments. You compare-the models to see
which is appropriate for the current set of
changes according to the framework’s
three dimensions.

First consider the reuse-object dimen-
sion: C

The objects of the quickfix and itera-
tive-enhancement models are the set of
documents representing the old system.
The object of the full-reuse model is any
appropriate document in the repository.

For self-containedness, all the models
depend on the unit of change. The quick-
fix model depends on how much evolu-
tion has taken place, since the system may
have lost structure ‘over time as objects
were added, modified, and deleted. In it-
erative enhancement, the evolved sys-
tem’s structure and understandability
should improve with respect to the appli-
cation and the classes of changes made so
far. In the fullreuse model, the evolved
system’s structure, understandability, and
generality should improve; the degree of
improvement will depend on the quality
and maturity of the repository.

For reuse-object quality, the quick-fix
model offers little knowledge about the
old object’s quality. In iterative enhance-
ment, the analysis phase provides a fair as-
sessment of the system’s quality. In full
reuse, you have an assessment of the reuse
object’s quality across several systems.

Now consider the context dimernsions:

For the requirements domain, the
quick-fix and iterative-enhancement
models assume that you are reusing the
same application — in fact, the same proj-
ect. The full-reuse model allows manage-
able variation in the application domain,
depending on what is available in the re-

- pository. AR :

For the solution domain, the quick-fix
model assumes the same solution struc-
ture exists during maintenance as during
development. There is no change in the
basic design or structure of the new sys-
tem. In iterative enhancement, some
modification to the solution structure is
allowed because redesign is a part of the
model. The full-reuse model allows major
differences in the solution structure: You

22

can completely redesign the system from a
structure based on functional decompost-
tion to one based on object-oriented de-
sign, for example.

For the knowledge-transfer mechanism,
the quickfix and itérative-enhancement
models work best when the same people
are developing and maintaining the sys-
tem. The full-reuse model can compen-
sate for having a different team, assuming
that you have application specialists and a
well-documented reuse-object repository.

The quick-fix model’s
weaknesses are that the
modification is usually a

patch that is not
well-documented, partly
destroying the system
structure and hindering
future evolution.

Last, consider the transformation di-
mension:

For the transformation type, the quick-
fix model typically uses activities like
source-code lookup, reading for un-
derstanding, unconstrained modifica-
tion, and recompilation. Iterative en-
hancement typically begins with a search
through the highest-level (most abstract)
document affected by the modification,
changing it and evolving the subsequent
documents to be consistent, using several
modification mechanisms, The full-reuse
model uses a library search and several
modification mechanisms; those selected
depend on the type of change. In full
reuse, modification is done off-line.

For activity integration, all activities are
performed at same time in the quick-fix
model. Iterative enhancement associates
the activities with all the normal develop-
ment phases. In full reuse, you identify the
candidate reusable pieces during project
planning and perform the other activities
during development.

For transformed quality, the quick-fix

model usually works best on small, well-
contained modifications because their ef-
fects on the system can be understood and
verified in context. Iterative enhance-
ment is more appropriate for larger
changes where the analysis phase can'pro-
vide better assessment of the full effects of
changes. Full reuse is appropriate for
large changes and major redesigns. Here,
analysis and performance history of the
reuse objects support quality.

Applying the models. Given these differ-
ences, you can analyze the maintenance
process models and recommend where:
they might be most applicable.

But first, consider the relationship ‘be-
tween the development and maintenance
process models: You can consider devel~
opment to be a subset of maintenance:
Maintenance environments differ from
development environments in the con-
straints on the solution, customer de-
mand, timeliness of response, and organi-
zation.

Most maintenance organizations are set
up for the quick-fix model but not for the
iterative-enhancement or-full-reuse mod-
els, since they are responding to timeli-
ness — a system failure needs to be fixed
immediately or a customer demands a
modification of the system’s functionality.
This is best used when ‘there is little
chance the system will be modified again.

- Clearly, these are the quick-fix model’s
strengths. But its weaknesses are that the
modification is usually a patch that is not
well-documented, the structure of the sys-
tem has been partly destroyed, making fu-
ture evolution of the system difficult and
errorridden, and the model is not com-
patible with development processes. -

The iterative-enhancement model al-
lows redesign that lets the system struc-
ture evolve, making future modifications
easier. It focuses on making the system as
good as possible. It is compatible with de-
velopment process models. It isa good ap-
proach to use when the product will have
a long life and evolve over time. In this
case, if timeliness is also a constraint, you
can use the quick-fix model for patches
and the iterative-enhancement model for
long-term change, replacing the patches.
The drawbacks are that it is a more costly
and possibly less timely approach (in the

|IEEE Software

short run) than the quick-fix model and
provides little support for generic compo-
nents or future, similar systems.

The fullreuse model gives the main-
tainer the greatest degree of freedom for
change, focusing on long-range develop-
ment for a set of products, which has the
side effect of creating reusable compo-
nents of all kinds for future develop-
ments. It is compatible with development
process models and, in fact, is the way de-
velopment models should evolve. It is best
used when you have multiproduct envi-
ronments or generic development where
the product line has a long life. Its draw-
back is that it is more costly in the short
run and is not appropriate for small mod-
ifications (although you can combine it
with other models for such changes).

My assessment of when to apply these
models is informal and intuitive, since it is
a qualitative analysis. To do a quantitative
analysis, you would need quantitative
models of the reuse objects, trans
formations, and context. You would need
a measurement framework to character-
ize (via classification), evaluate, predict,
and motivate management and technical
decisions. To do this, you would need to
apply to the models a mechanism for gen-
erating and interpreting quantitative
measurement, like the goal/ques
tion/metric paradigm."’6 (See the box on
p. 24 for a description of this paradigm
and its application to choosing the appro-
priate maintenance process model.)

Reuse enablers

There are many support mechanisms
necessary to achieve maximum reuse that
have not been sufficiently emphasized in
the literature. In this article, I have pre-
sented several: a set of maintenance mod-
els, a mechanism for choosing the appro-
priate models based on the goals and
characteristics of the problem at hand,
and a measurement and evaluation mech-
anism. To support these activities, there is
aneed for an improvement paradigm that
helps organizations evaluate, learn, and
enhance their software processes and
products, a reuse-oriented evolution envi-
ronment that encourages and supports
reuse, and automated support for both
the paradigm and environment as well as
for measurement and evaluation.

January 1990

Improvement paradigm. The improve-
ment paradigm* is a high-level organiza-
tional process model in which the organi-
zation learns how to improve its products
and process. In this model, the organiza-
tion should learn how to make better deci-
sions on which process model to use for
the maintenance of its future products
based on past performance. The para-
digm has three parts: planning, analysis,
and learning and feedback.

In planning, there are three integrated

In the improvement
paradigm, organizations
should learn how to make
better decisions on
which process model to
use for the maintenance
of its future products
based on past
performance.

activities that are iteratively applied:

* Characterize the current project envi-
ronment to provide a quantitative analysis
of the environment and a model of the
project in the context of that environ-
mient. For maintenance, the characteriza-
tion provides product-dimension data,
change and defect data, cost data and
customer-context data for earlier versions
of the system, information about the
classes of candidate components available
in the repository for the new system, and
any feedback from previous projects with
experience with different models for the
types of modifications required.

® Set up goals and refine them into
quantifiable questions and metrics using
the goal/question/metric paradigm to
get performance that has improved com-
pared to previous projects. This consists of
a top-down analysis of goals that iteratively
decomposes high-level goals into detailed
subgoals. The iteration terminates with
subgoals that you can measure directly.

® Choose and tailor the appropriate

construction model for this project and
the supporting methods and tools to sat-
isfy the project goals. Understanding the
environment quantitatively lets you
choose the appropriate process model
and fine-tune the methods and tools
needed to be most effective. For example,
knowing the effect of earlier applications
of the maintenance models and methods
in creating new projects from old systems
lets you choose and fine-tune the appro-
priate process model and methods that
have been most effective in creating new
systems of the type required from older
versions and component parts in the re-
pository.

In analysis, you evaluate the current
practices, determine problems, record

* the findings, and make recommendations

for improvement. You must conduct data
analysis during and after the project. The
goal/question/metric paradigm lets you
trace from goals to metrics and back,
which lets you interpret the measurement
in context to ensure a focused, simpler
analysis. The goal-driven operational
measures provide a framework for the
kind of analysis you need.

In learning and feedback, you organize
and encode the quantitative and qualita-
tive experience gained from the current
project into a corporate information base
to help improve planning, development,
and assessment for future projects. You
can feed the results of the analysis and in-
terpretation phase back to the organiza-
tion to change how it does business based
on explicitly determined successes and
failures.

In this way, you can learn how to im-
prove quality and productivity and how to
improve goal definition and assessment.
You can start the next project with the ex-
perience gained from this and previous
projects. For example, understanding the
problems associated with each new ver-
sion of a system provides insights into the
need for redesign and redevelopment.

Reuse-oriented -environment. Reuse
can be more effectively achieved in an en-
vironment that supports reuse. (See the
article by Ted Biggerstaff and Charles
Richter’ for a set of reusability tech-
nologies and the article by myself and Die-
ter Rombach® for a set of environment

23

Goal/question/metric paradigm

The goal/questior/metric paradigm represents a systematic ap-
proach for setting project goals (taitored to the needs of an organi-
zation) and defining them in an operational, tractable way. Goals
are associated with a set of quanitifiable questions and models that
specify metrics and data for collection. The tractability of this soft-
ware-engineering process supports the analysis of the collected
data and computed metrics in the appropriate context of the ques-
tions, models and goals, feedback (by integrating constructive and
analytic activities), and learning (by defining the appropriate syn-
thesis procedure for lower level into higher level pieces of experi-
ence.)

The goals are defined in terms of purpose (why the project is
being analyzed), perspective (the models of interest and the point
of view of the analysis), and the environment (the context of the
project). When measuring a product or process, you ask questions
in three general categories:

« product or process definition,

« definition of the quality perspectives of interest, and

» feedback.

Product definition includes physical attributes of the product,
cost, changes and defects, and the context in which the product will
be used. Process definition includes a model of the process, an
evaluation of conformance to the model, and an assessment of the
project-specific documents and experience with the application.

Definition of the quality perspectives of interest includes the qual-
ity models used (such as reliability and user friendliness) and the
interpretation of the data collected relative to the models. ’

Feedback involves the return of information for improving the
product and process based on the quality perspective of interest.

The following is an informal application of the goal/questiorymet-
ric paradigm to a particular maintenance problem. The answers to
some of the questions are obvious. The answers to others assume
adatabase of experience that management must estimate if it is not
available.

Goals. The goal-definition phase has three parts:

* Purpose: Analyze the new product requirements to determine
the appropriate evolution model.

* Perspective: Examine the cost of the current enhancement and

~ future evolution of the system from the organization’s point of view.

« Environment: Along with the standard environmental factors,
like resource and problem factors, you would like to pay special
aftention to the context dimensions in the reuse framework.

In the requirements domain, you typically use product objects
from the same application domain, although you can choose ob-
jects from other domains in the repository, if they are generally
applicable.

The solution domain defines the process models, methods, and
tools used in the development of the old product. If you plan to use
the same processes for the evolving product, there is no problem
with reuse. If future evolution dictates changes to the solution do-

‘main, the full-reuse model lets you make these changes, but atthe

cost of reusing less of the old product.

For knowledge-transfer mechanism, you must determine what
form of documentation is needed to transfer the required applica-
tion, process, and product knowledge to the maintainers. If the
maintenance group is the same as the development group, the
major transfer mechanism is the people.

Product definition. With the goal defined, you then define your
product. In this example, there are several products: the new prod-
uct to be built (the new version of the system), the old versions, and
any other relevant objects in the repository that may be reused.

For the category of physical attributes, sample questions are:

How many requirements are there for the new system? What is
the mapping of the requirements to system componentsin the old
system? How independent are the components to be modified in
the old system? What is the complexity of the old system and its
individual components? What candidate objects are available in
the repository and what are their object, context, and transforma-
tion classifications? How many new requirements, categorized
by class (such as size, type, and whether itis a new, modified, or
deleted requirement) are there that are not in the old system?
How many components, categorized by class (such as size and
type of change) in the old system must be changed, added, and
deleted?

For the category of changes and defects, sample questions are:
How many errors, faults, and failures (categorized by class) are
there associated with the requirements and components that need
tobe changed? What is the profile of past and future changes to the
system, categorized by class (such as cost and number of times a
component has been and must be changed)?

For the category of cost, sample questions are: What was the
cost of the original system? What was the cost of each prior ver-
sion? What is the cost of each prior requirement change by class?
What is the estimated cost of modifying the old system to meet the
new requirements? What is the estimated cost of building a new
system, reusing the experience and parts of the old system and the
repository? .

For the category of customer context, sample questions are:
What are the various customer classes and how are they using the
system? What are the estimated future enhancements based on
your analysis of customer profiles, past modifications, and the state
of technology in the application domain?

Quality perspective of interest. With the product defined, you
now define the perspectives for the qualities that you are trying to
achieve.

You should make a model of the system’s evolution, along withits
associated costs. Based on the data from the evolution of this sys-
tem and other systems, as well as on the characteristics of the set
of new requirements, the model should let you estimate the cost
and benefits associated with each of the three process models and
let you choose the appropriate one. Parameters for the model will
include such items as the projected system lifetime, the number of
future related systems, and the projected cost of changes for vari-
ous classes of requirements.

Feedback. With the quality perspectives defined, you can now
get the information needed to improve the product or process. The
feedback should provide with deeper insights into the model and
our environment.

Sample questions include: Is the model appropriate? How can
the model be improved? How can the classifications be improved?

Other goals. There are many relevant goals. Consider the fol-
lowing examples:)

» Evaluate the modification activities in the reuse mode! to im-
prove them. Examine the cost and correctness of the resulting ob-
jects from the customer’s point of view. :

« Evaluate the components of the existing system to determine
whetherto reuse them. Examine theirindependence and functional
appropriateness from the viewpoint of reuse in future systems.

* Predict the ability of a set of code components to be integrated
into the current system from the developer’s point of view.

* Encourage the reuse of a set of repository components built for
reuse. Examine the reward structure from the manager's and
developer’s points of view.

24

IEEE Software

characteristics.) Software-engineering en-
vironments provide such things as a proj-
ect databases and support the interaction
of people with methods, tools, and project
data. However, experience is not con-
trolled by the project database nor owned
by the organization — so reuse exists only
implicitly.

For effective reuse, you need to be able
to incorporate the reuse process model in
the context of development. You need to
combine the development and mainte-
nance models to maximize the context di-
mensions. You need to integrate charac-
terization, evaluation, prediction, and
motivation into the process. You need to
support learning and feedback to make
reuse viable. I propose that the reuse
model can exist in the context of the im-
provement paradigm, making it possible
to support all these requirements.

Automated support. The improvement
paradigm and the reuse-oriented process
model require automated support for the
database, encoded experience, and the
repository of previous projects and reus-
able components. A special issue of JEEE
Software® offered a set of automated and
automatable technologies for reuse. You
need to automate as much of the mea-
surement process as possible and to pro-
vide a tool environment for managers and
engineers to develop project-specific
goals and generate operational defini-
tions based on these goals that specify the
metrics needed for evaluation. This evalu-
ation and feedback cannot be done in real
time without automated support.

Furthermore, automated support will
help in the postmortem analysis. For ex-
ample, a system like Tailoring a Measure-
ment Environment,” whose goal is to in-
stantiate and integrate the improvement
and goal/question/metric paradigms
and help tailor the development process,
can help support the reuse-oriented pro-
cess model because it contains mecha-
nisms to support systematic learning and
reuse.

Applying the TAME concept to mainte-
nance provides a mechanism for choos-
ing the appropriate maintenance process
model for a particular project and pro-
vides data to help you learn how to do a
better job of maintenance.

January 1990

he approach you take to mainte-

nance depends on the nature of

the problem and the size and com-
plexity of the modification. Viewing
maintenance as a reuse-oriented pro-
cess in the context of the improvement
paradigm gives you a choice of mainte-
nance models and a measurement
framework. You can evaluate the
strengths and weaknesses of the differ-
ent maintenance approaches, learn how

References

1. L. Belady and M. Lehman, “A Model of
Large Program Development, IBM Systems
J»No.3,1976, pp. 225-252.

2. V.R. Basili and A . Turner, “Iterative En-
hancement: A Practical Technique for
Software Development,” IEEE Trans. Sofi-
ware EKng., Dec. 1975, pp. 390-396.

3. R.Prieto-Diazand P. Freeman, “Classifying
Software for Reusability,” IEEE Software, Jan.
1987, pp. 6-16.

4. V.R. Basili, “Quantitative Evaluation of
Software Methodology,” Tech. Report
1519, Computer Science Dept., Univ. of
Maryland, College Park, Md., July 1985.

5. V.R.Basiliand H.D.Rombach, “The TAME
Project: Towards Improvement-Oriented
Software Environments,” IEEE Trans. Sofi-

VictorR. Basiliis 2 professor at the University of
Maryland at College Park’s Institute for Ad-
vanced Computer Studies and Computer Sci-
ence Dept. His research interests include mea-
suring and evaluating software developmentin
industrial and government settings. He is a
founder and principal of the Software Engi-
neering Laboratory, a joint venture between
the National Aeronautics and Space Adminis-
tration, the University of Maryland, and Com-
puter Science Corp.

Basili received a BS in mathematics from

to refine the various process models, and
create an experience base fromwhich to
support further management and techni-
cal decisions. :

Ifyou do not adapt the maintenance ap-
proach, you will find it difficult to know
which process model to use for a particu-
lar project, whether you are evolving the
system appropriately, and whether you
are maximizing quality and minimizing
cost over the system lifetime. <>

ware kng., June 1988, pp. 758-773.

6. V.R. Basili and D.M. Weiss, “A Methodol-
ogy for Collecting Valid Software-Engi-
neering Data,” [EEE Trans. Software Eng.,
Nov. 1984, pp. 728-738.

7. V.R. Basili and H.D. Rombach,
“Towards a Comprehensive Framework
for Reuse: A Reuse-Enabling Software-
Evolution Environment,” Tech. Report
UMIACS-TR-88-92, Computer Science
Dept., Univ. of Maryland, College Park,
Md., Dec. 1988.

8. T. Biggerstaff, “Reusability Framework, As-
sessment, and Directions,” IEEE Software,
March 1987, pp. 41-49.

9. special issue on tools for reuse, IEEE Sofi-
ware, July 1987, pp. 6-72.

Fordham College, an MS in mathematics from
Syracuse University, and a PhD in computersci-
ence from the University of Texas at Austin. He
isamember of the IEEE Computer Society and
is editor-in-chief of IEEE Transactions on Software
Engineering.

Address questions about this article to Basili
at Computer Science Dept., A.V. Williams
Bldg., Rm. 4187, University of Maryland, Col-
lege Park, MD 20742.

Copyright © 1990 The Institute of Electrical and Electronics Engineers, Inc. 25
Reprinted with permission from IEEE SOFTWARE,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720

